
Final exam solutions

MATC16 Cryptography and Coding Theory
Gábor Pete
University of Toronto Scarborough

Problem 1. (2+2+2 points)

(a) What is the size of the keyspace for the affine cipher over the English alphabet?

x 7→ αx + β (mod 26), where gcd(α, 26) = 1 must be for invertibility. Hence 12 choices for
α and 26 for β, that’s altogether 12 · 26 = 312.

(b) Show that the composition of two affine ciphers is again an affine cipher.

If the first key is (α1, β1), the second is (α2, β2), then the composition is

x 7→ α1x + β1 7→ α2(α1x + β1) + β2 = α1α2x + (α2β1 + β2) .

(c) What do you think the largest problem is with the security of the Hill cipher?

The problem is that a known plaintext attack gives away the key easily, with not much
plaintext. Indeed, in an n × n Hill cipher with encryption key matrix K, given n2 pairs
of known plaintext-ciphertext letters such that the resulting n × n plaintext matrix P is
invertible, the matrix equation PK = C is solved by K = P−1C. The suitable n2 plaintext
letters will probably be found in a not much longer piece of plaintext.

By the way, the system has diffusion, hence frequency attack does not work. Whether it
has confusion, is more subtle. It has reasonable confusion in the sense that each ciphertext
letter depends on a large part of the key (this is also what the book says). However, this
dependence is not “as complex as possible”, in the sense that it is in fact linear, and this
linearity is what makes the above known plaintext attack possible.

Problem 2. (2+2 points)

(a) About how many times more time does a brute force key search take against a 112-bit
DES than against a 56-bit DES?

The key space sizes are 2112 versus 256, respectively. Hence the ratio of the time amounts
that the brute force searches take is about 2112/256 = 256 ≈ 7 · 1016.

(b) What is the Double version of the 56-bit DES, and why is it much less secure than a
single 112-bit DES? (Enough to sketch your attack against Double DES, but not enough to
give just the name of it.)

Double DES: the plaintext m is encoded twice, with different keys: m 7→ Ek2

(

Ek1
(m)

)

.

This composition is NOT encryption by a single DES key (“DES is not a group”), hence
the key-space size of Double 56-DES is basically 2112, the same as of the single 112-DES.

1



However , Double DES can be attacked by “meet-in-the-middle”, which takes not much more
time than 256 (but it requires a lot of memory in turn).

This attack: Given a plaintext-ciphertext pair (m, c), with c = Ek2

(

Ek1
(m)

)

with some
unknown keys ki, write two lists of length 256 each:

{

Ek(m) : k ∈ {0, 1}56
}

and
{

Dk(c) : k ∈ {0, 1}56
}

.

There will certainly be a common element between these lists: Ek1
(m) = Dk2

(c).

However, there is the question of how many common elements there are (which you weren’t
really expected to discuss, at least not in this detail). If m and c were not long, say at most
56 bits, then these lists would be longer than the number of all possible different strings
on them, hence it would be quite likely that both lists would contain all possible strings,
hence we wouldn’t have learned anything! But if the length of m and c are 56 + k bits,
then each list has about 2−k proportion of all possible strings, and the expected number of
common strings is 256+k2−2k = 256−k. (Here I’m assuming that the DES outputs are very
random-looking.) Well, we know that 56-bit DES operates on blocks of length 64, hence
k = 8, which means that we have about 248 common elements on the lists! That sounds
huge, but the remedy is easy: we have just got reduced by a factor of 28 the set of all 256

possible keys, hence if we repeat the procedure a bit more than 7 times, with new (m, c)
pairs, then by the end only the true (k1, k2) key pair will remain.

Problem 3. (3 points)

Find the linear recursion defining the sequence 0101110 0101110 . . . of period 7.

If a recursion has order k, so that xn+k ≡ c0xn + c1xn+1 + · · ·+ ck−1xn+k−1 (mod 2), then the
resulting sequence will have at most period 2k − 1. Hence the period 7 means that k ≥ 3,
and we do not have to check if an order 2 recursion works. For order 3:





0 1 0
1 0 1
0 1 1









c0

c1

c2



 =





1
1
1



 ,

which gives the solution c0 = c1 = 1, c2 = 0, hence xn+2 = xn + xn+1.

Note that the trivial recursion xn+7 = xn is not a proper solution to the problem. In real
applications, where you start, say, with a very simple order 31 recursion, and get a sequence
of period 231 − 1, you want to find the order 31 recursion, not the order 231 − 1 one, because
in the first case you will need to know 31 consecutive elements of the sequence to generate
the entire sequence, while in the second case you would need 231 − 1 elements.

Problem 4. (3 points)

What is the multiplicative inverse of x15 in Z2[x] (mod x4 + x + 1)?

You start the Euclidean algorithm for polynomials: x15 : (x4 + x + 1) = x11 + x8 + x7 + x5 +
x3 + x2 + x + 1, with remainder 1. This means that x15 ≡ 1 (mod x4 + x + 1), hence its
inverse is 1.

2



Problem 5. (3+3 points)

(a) Alice and Bob have the same modulus n for RSA, and encryption exponents eA and eB

with gcd(eA, eB) = 1. Charles sends them the same message m encrypted with these keys,
resulting in the ciphertexts cA and cB. Eve intercepts both cA and cB. How can she find m?

The ciphertexts are given by cA ≡ meA and cB ≡ meB (mod n). By gcd(eA, eB) = 1, Eve can
find integers s, t with eAt+ eBs = 1. Thus, she can compute ct

Acs
B ≡ meAt+eBs = m (mod n).

(b) How do you achieve authentication and non-repudiation in RSA?

When Alice wants to send m to Bob, instead of just sending meB (mod nB) using his public
key, as in simple RSA, she first computes m′ ≡ mdA (mod nA) with her private key, then
sends (m′)eB (mod nB) to Bob. This Bob can decrypt with his private key dB, thus get m′,
and from that can get m using Alice’s public key eA. Since dA is known only to Alice, if the
resulting m makes sense, that’s a proof for Bob and for the world that only Alice could have
sent the message, hence we have authentication and non-repudiation.

Problem 6. (3 points) Construct a hash function using the Cipher Block Chaining mode
of operation of DES.

Let’s say for concreteness that our DES has a 56-bit key K, operating on blocks of 64 bits,
although that nowadays would not give a secure enough hash. Let’s chop our plaintext P
(that we want to hash) into blocks of 64 bits, P1, P2, . . . , Pm. Set a block C0 of 64 bits in some
arbitrary way, say, all zeros. Then let Ci := EK(Ci−1 ⊕ Pi) for i = 1, 2, . . . , m, recursively,
where EK is the DES encryption function with the key K, and ⊕ is bitwise addition (mod
2). Finally, h(P ) := Cm is the output of the hash. (The CBC mode of operation does the
same, except that there the resulting ciphertext is all of C1, C2, . . . , Cm.)

(This is fast to compute because DES is fast to compute. It’s one-way and strongly collision
free because of the good cryptographic properties of DES, namely that it resists even a
known plaintext attack. Here we ignore the fact that the 56-bit key is actually too short
nowadays.)

Problem 7. (4 points)

Test the primality of n = 881 with a Miller-Rabin test.

881 − 1 = 880 = 2455. Let’s pick a random base, say 107. (Note again that 2 is not a
uniform random number between 2 and 880, neither 3 is.) By writing 55 in base 2 and
repeated squaring, it is easy to get 10755 ≡ 387 (mod 881). This is not ±1, so need to
continue. 3872 ≡ 880 ≡ −1 (mod 881), so the test says 881 is probably a prime.

Problem 8. (5 points)

Factor n = 2773 using the elliptic curve y2 ≡ x3 + 4x + 4 (mod n) and the point P = (1, 3)
on it. Here are the formulas for point addition on a curve y2 = x3 + bx + c: if P3 = P1 + P2

and Pi = (xi, yi) for i = 1, 2, 3, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1,

3



where m = (y2 − y1)/(x2 − x1) if P1 6= P2, while m = (3x2
1 + b)/(2y1) if P1 = P2.

We first compute P +P . By the second formula for the slope m above, m ≡ 7/6 ≡ 7 ·2311 ≡
2312 (mod 2773). Then get P + P = (1771, 705).

Then compute 3P = 2P + P . By the first formula for the slope, m ≡ 702/1770 (mod
2773) should be. But the Euclidean algorithm gives gcd(1770,2773)=59. Hence we get the
factorization 2773 = 59 · 47.

Problem 9. (2+2+2 points)

(a) What is the difference between a key agreement and a key distribution protocol?

In a key agreement protocol the participants establish the key together during the protocol,
neither having a decisive role. In key distribution, one of the participants (or the key
distribution centre) generates the key alone, then sends it (securely) to all the partners.

(b) Describe the Diffie-Hellman key agreement protocol.

Alice and Bob choose a large random prime p and primitive root α (mod p). These are
public. Privately, Alice chooses integer x and Bob y. Then Alice sends αx (mod p) to Bob,
and Bob sends αy (mod p) to Alice. They both can compute now the joint key (αx)y = (αy)x

(mod p).

(c) Describe the intruder-in-the-middle attack against Diffie-Hellman.

Eve intercepts both αx and αy (mod p) when sent. She replaces both of them with αz (mod
p), with her own z. Alice and Bob receive this, without knowing they are not receiving
what they were supposed to. So they will use (αz)x and (αz)y (mod p) as keys, respectively.
Since Alice has αx and αy, she can compute the keys (αz)x and (αz)y (mod p). Hence, by
intercepting the messages encoded with these keys, she can decrypt them, read them, then
encode them with the other key and send them to the original addressee. This way she can
read everything without Alice or Bob noticing her existence, and can also send fake messages.
Note that Alice and Bob don’t have the same keys, hence they cannot communicate now
without Eve being in between.

4


