
Applications of Stochastics — Exercise sheet 8
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First, some exercises on large deviations.

ExerciseB 1. Let ξ1, ξ2, . . . be i.i.d. random variables, and let Sn = ξ1 + · · ·+ ξn. Show that

lim
n→∞

− logP
[
Sn > αn

]
n

= Iξ(α) ∈ [0,∞]

and

lim
n→∞

− logP
[
Sn < αn

]
n

= Iξ(α) ∈ [0,∞]

both exist for any α ∈ R. (Hint: use Fekete’s subadditive convergence lemma.)

ExerciseB 2. Prove

lim
ε→0

lim
n→∞

− logP
[
Binom(n, p)/n ∈ (α, α+ ε)

]
n

= α log
α

p
+ (1− α) log

1− α
1− p

in two ways:

(a) Calculate by hands, using Stirling’s formula.

(b) Just apply Cramér’s large deviations theorem.

Compute from this the functions IBer(p)(α) and IBer(p)(α) of the previous exercise.

The formula in the previous exercise is the tip of an iceberg, a close relationship between large deviations

and entropy theory. We will not discuss this relationship here, but at least, here is the definition and some

basic properties of the entropy of a discrete random variable:

H(X) := −
∑
x∈Ω

P[X = x ] logP[X = x ] .

If X and Y are defined on the same probability space, then H(X,Y ) is just the entropy of the variable (X,Y ),

while the conditional entropy H(X | Y ) is defined as the Y -average of the entropies of the conditional

distributions X | Y = y:

H(X | Y ) :=
∑
y∈Ω

(
−
∑
x∈Ω

P[X = x | Y = y ] logP[X = x | Y = y ]

)
P[Y = y ] .

ExerciseB 3.

(a) Show that if the probability space is finite, |Ω| = n, then H(X) ≤ log n, with equality iff X is uniform

on Ω. (Hint: use the concavity of −x log x on x ∈ [0, 1].)

(b) Show that H(X | Y ) ≤ H(X), with equality iff X and Y are independent.

(c) Show that H(X | Y ) = H(X,Y )−H(Y ). Deduce that H(X,Y ) ≤ H(X) +H(Y ), with equality iff X

and Y are independent.
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As in class, the Ising model on a finite graph G(V,E) is the random spin configuration σ : V −→ {±1}
defined as follows. Given an external magnetic field h ∈ R, the Hamiltonian is

Hh(σ) := −h
∑

x∈V (G)

σ(x)−
∑

(x,y)∈E(G)

σ(x)σ(y) ,

and then the measure, at inverse temperature β = 1/T ≥ 0, is

Pβ,h[σ] :=
exp(−βHh(σ))

Zβ,h
, where Zβ,h :=

∑
σ

exp(−βHh(σ)) .

ExerciseB 4. The partition function Zβ,h contains a lot of information about the model:

(a) Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H] = − ∂

∂β
Eβ,h[H ] .

(b) The average free energy or pressure is defined by f(β, h) := (β|V |)−1 lnZβ,h. Show that for the

average total magnetization M(σ) := |V |−1
∑
x∈V σ(x), we have

m(β, h) := Eβ,h[M ] =
∂

∂h
f(β, h) .

(c) The susceptibility of the total magnetization to a change in the external magnetic field is

χ(β, h) :=
1

β

∂

∂h
m(β, h) =

1

β

∂2

∂h2
f(β, h) .

Relate this quantity to Varβ,h[M ]. Deduce that f(β, h) is convex in h.

The Curie-Weiss model is the Ising model on the complete graph Kn, with edge weights 1/n, so that

the Hamiltonian is

Hn,h(σ) := −h
n∑
i=1

σi −
1

2n

n∑
i,j=1

σiσj .

(The 1/2 factor is to make up for having each pair {i, j} with i 6= j twice in the sum. The appearance of

the terms i = j causes just a shift of H by a constant, which is not visible in Pβ,h.) In terms of the average

magnetization M(σ) =
∑
i σi/n, note that we can write

Hn,h(σ) = −
(
hM(σ) +M(σ)2/2

)
n ,

and the number of σ’s with M(σ) = x ∈ {−1, −n+2
n , . . . , n−2

n , 1} is
(

n
n(1+x)/2

)
. Thus,

Zn,β,h =
∑
x

cn,β,h(x) , where cn,β,h(x) :=

(
n

n(1 + x)/2

)
exp

(
βn
(
hx+ x2/2

))
.

ExerciseB 5.

(a) Show that f(β, h) := limn→∞ fn(β, h) = limn→∞
maxx ln cn,β,h(x)

βn .

(b) Similarly to Exercise 2 (a), show that ln cn,β,h(x) = n
(
βhx− Φβ(x)

)
+ o(n), where

Φβ(x) =
1− x

2
ln

1− x
2

+
1 + x

2
ln

1 + x

2
− βx2

2
for x ∈ [−1, 1] .

(c) Sketch the curves Φβ(x) and Φ′β(x) on x ∈ [−1, 1], for some parameters β < 1, β = 1, and β > 1.
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(d) By choosing the appropriate root x = x0(β, h) of Φ′β(x) = βh, find maxx ln cn,β,h(x). Note that part (a)

gives
∂

∂h
f(β, h) =

∂

∂h

(
hx0(β, h)− Φβ(x0(β, h))

β

)
= x0(β, h) .

(e) By Exercise 4 (b), mn(β, h) = ∂
∂hfn(β, h). Assuming that m(β, h) := limn→∞mn(β, h) = ∂

∂hf(β, h)

holds for h 6= 0 (which is indeed the case), deduce from the above that

lim
h→0+

m(β, h) > 0 and lim
h→0−

m(β, h) < 0 for β > 1 ,

while the limits equal 0 for β ≤ 1. Hence m(β, h) is discontinuous at h = 0 iff β > 1.

(f) Show that
1

β

∂2

∂h2
f(β, h) =

1

β

∂

∂h
x0(β, h) =

1− x0(β, h)2

1− β(1− x0(β, h)2)
.

For β = 1, deduce that ∂
∂hx0(β, h) = ∞. That is, m(1, h) is continuous but not analytic at h = 0.

Assuming that the limiting susceptibility χ(β, h) := limn→∞ χn(β, h) equals 1
β
∂2

∂h2 f(β, h), we get that

the limiting susceptibility is χ(1, 0) = ∞. What does that mean for the variance of the average

magnetization?

(g)* Show that ∂
∂hx0(β, 0+) <∞ for β > 1, so that the limiting susceptibility is finite.
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