Applications of Stochastics - Exercise sheet 8

Gábor Pete
http://www.math.bme.hu/~gabor

April 24, 2018

First, some exercises on large deviations.
\triangleright Exercise 1. Let ξ_{1}, ξ_{2}, \ldots be i.i.d. random variables, and let $S_{n}=\xi_{1}+\cdots+\xi_{n}$. Show that

$$
\lim _{n \rightarrow \infty} \frac{-\log \mathbf{P}\left[S_{n}>\alpha n\right]}{n}=\bar{I}_{\xi}(\alpha) \in[0, \infty]
$$

and

$$
\lim _{n \rightarrow \infty} \frac{-\log \mathbf{P}\left[S_{n}<\alpha n\right]}{n}=\underline{I}_{\xi}(\alpha) \in[0, \infty]
$$

both exist for any $\alpha \in \mathbb{R}$. (Hint: use Fekete's subadditive convergence lemma.)
\triangleright Exercise 2. Prove

$$
\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{-\log \mathbf{P}[\operatorname{Binom}(n, p) / n \in(\alpha, \alpha+\epsilon)]}{n}=\alpha \log \frac{\alpha}{p}+(1-\alpha) \log \frac{1-\alpha}{1-p}
$$

in two ways:
(a) Calculate by hands, using Stirling's formula.
(b) Just apply Cramér's large deviations theorem.

Compute from this the functions $\bar{I}_{\operatorname{Ber}(p)}(\alpha)$ and $\underline{I}_{\operatorname{Ber}(p)}(\alpha)$ of the previous exercise.
The formula in the previous exercise is the tip of an iceberg, a close relationship between large deviations and entropy theory. We will not discuss this relationship here, but at least, here is the definition and some basic properties of the entropy of a discrete random variable:

$$
H(X):=-\sum_{x \in \Omega} \mathbf{P}[X=x] \log \mathbf{P}[X=x]
$$

If X and Y are defined on the same probability space, then $H(X, Y)$ is just the entropy of the variable (X, Y), while the conditional entropy $H(X \mid Y)$ is defined as the Y-average of the entropies of the conditional distributions $X \mid Y=y$:

$$
H(X \mid Y):=\sum_{y \in \Omega}\left(-\sum_{x \in \Omega} \mathbf{P}[X=x \mid Y=y] \log \mathbf{P}[X=x \mid Y=y]\right) \mathbf{P}[Y=y]
$$

$\triangleright \quad$ Exercise 3.
(a) Show that if the probability space is finite, $|\Omega|=n$, then $H(X) \leq \log n$, with equality iff X is uniform on Ω. (Hint: use the concavity of $-x \log x$ on $x \in[0,1]$.)
(b) Show that $H(X \mid Y) \leq H(X)$, with equality iff X and Y are independent.
(c) Show that $H(X \mid Y)=H(X, Y)-H(Y)$. Deduce that $H(X, Y) \leq H(X)+H(Y)$, with equality iff X and Y are independent.

As in class, the Ising model on a finite graph $G(V, E)$ is the random spin configuration $\sigma: V \longrightarrow\{ \pm 1\}$ defined as follows. Given an external magnetic field $h \in \mathbb{R}$, the Hamiltonian is

$$
H_{h}(\sigma):=-h \sum_{x \in V(G)} \sigma(x)-\sum_{(x, y) \in E(G)} \sigma(x) \sigma(y)
$$

and then the measure, at inverse temperature $\beta=1 / T \geq 0$, is

$$
\mathbf{P}_{\beta, h}[\sigma]:=\frac{\exp \left(-\beta H_{h}(\sigma)\right)}{Z_{\beta, h}}, \quad \text { where } \quad Z_{\beta, h}:=\sum_{\sigma} \exp \left(-\beta H_{h}(\sigma)\right) .
$$

\triangleright Exercise 4. The partition function $Z_{\beta, h}$ contains a lot of information about the model:
(a) Show that the expected total energy is

$$
\mathbf{E}_{\beta, h}[H]=-\frac{\partial}{\partial \beta} \ln Z_{\beta, h}, \text { with variance } \operatorname{Var}_{\beta, h}[H]=-\frac{\partial}{\partial \beta} \mathbf{E}_{\beta, h}[H]
$$

(b) The average free energy or pressure is defined by $f(\beta, h):=(\beta|V|)^{-1} \ln Z_{\beta, h}$. Show that for the average total magnetization $M(\sigma):=|V|^{-1} \sum_{x \in V} \sigma(x)$, we have

$$
m(\beta, h):=\mathbf{E}_{\beta, h}[M]=\frac{\partial}{\partial h} f(\beta, h) .
$$

(c) The susceptibility of the total magnetization to a change in the external magnetic field is

$$
\chi(\beta, h):=\frac{1}{\beta} \frac{\partial}{\partial h} m(\beta, h)=\frac{1}{\beta} \frac{\partial^{2}}{\partial h^{2}} f(\beta, h) .
$$

Relate this quantity to $\operatorname{Var}_{\beta, h}[M]$. Deduce that $f(\beta, h)$ is convex in h.

The Curie-Weiss model is the Ising model on the complete graph K_{n}, with edge weights $1 / n$, so that the Hamiltonian is

$$
H_{n, h}(\sigma):=-h \sum_{i=1}^{n} \sigma_{i}-\frac{1}{2 n} \sum_{i, j=1}^{n} \sigma_{i} \sigma_{j}
$$

(The $1 / 2$ factor is to make up for having each pair $\{i, j\}$ with $i \neq j$ twice in the sum. The appearance of the terms $i=j$ causes just a shift of H by a constant, which is not visible in $\mathbf{P}_{\beta, h}$.) In terms of the average magnetization $M(\sigma)=\sum_{i} \sigma_{i} / n$, note that we can write

$$
H_{n, h}(\sigma)=-\left(h M(\sigma)+M(\sigma)^{2} / 2\right) n
$$

and the number of σ 's with $M(\sigma)=x \in\left\{-1, \frac{-n+2}{n}, \ldots, \frac{n-2}{n}, 1\right\}$ is $\binom{n}{n(1+x) / 2}$. Thus,

$$
Z_{n, \beta, h}=\sum_{x} c_{n, \beta, h}(x), \quad \text { where } \quad c_{n, \beta, h}(x):=\binom{n}{n(1+x) / 2} \exp \left(\beta n\left(h x+x^{2} / 2\right)\right)
$$

$\triangleright \quad$ Exercise 5.

(a) Show that $f(\beta, h):=\lim _{n \rightarrow \infty} f_{n}(\beta, h)=\lim _{n \rightarrow \infty} \frac{\max _{x} \ln c_{n, \beta, h}(x)}{\beta n}$.
(b) Similarly to Exercise 2 (a), show that $\ln c_{n, \beta, h}(x)=n\left(\beta h x-\Phi_{\beta}(x)\right)+o(n)$, where

$$
\Phi_{\beta}(x)=\frac{1-x}{2} \ln \frac{1-x}{2}+\frac{1+x}{2} \ln \frac{1+x}{2}-\frac{\beta x^{2}}{2} \quad \text { for } x \in[-1,1]
$$

(c) Sketch the curves $\Phi_{\beta}(x)$ and $\Phi_{\beta}^{\prime}(x)$ on $x \in[-1,1]$, for some parameters $\beta<1, \beta=1$, and $\beta>1$.
(d) By choosing the appropriate root $x=x_{0}(\beta, h)$ of $\Phi_{\beta}^{\prime}(x)=\beta h$, find $\max _{x} \ln c_{n, \beta, h}(x)$. Note that part (a) gives

$$
\frac{\partial}{\partial h} f(\beta, h)=\frac{\partial}{\partial h}\left(h x_{0}(\beta, h)-\frac{\Phi_{\beta}\left(x_{0}(\beta, h)\right)}{\beta}\right)=x_{0}(\beta, h) .
$$

(e) By Exercise $4(\mathrm{~b}), m_{n}(\beta, h)=\frac{\partial}{\partial h} f_{n}(\beta, h)$. Assuming that $m(\beta, h):=\lim _{n \rightarrow \infty} m_{n}(\beta, h)=\frac{\partial}{\partial h} f(\beta, h)$ holds for $h \neq 0$ (which is indeed the case), deduce from the above that

$$
\lim _{h \rightarrow 0+} m(\beta, h)>0 \quad \text { and } \quad \lim _{h \rightarrow 0-} m(\beta, h)<0 \quad \text { for } \beta>1
$$

while the limits equal 0 for $\beta \leq 1$. Hence $m(\beta, h)$ is discontinuous at $h=0$ iff $\beta>1$.
(f) Show that

$$
\frac{1}{\beta} \frac{\partial^{2}}{\partial h^{2}} f(\beta, h)=\frac{1}{\beta} \frac{\partial}{\partial h} x_{0}(\beta, h)=\frac{1-x_{0}(\beta, h)^{2}}{1-\beta\left(1-x_{0}(\beta, h)^{2}\right)} .
$$

For $\beta=1$, deduce that $\frac{\partial}{\partial h} x_{0}(\beta, h)=\infty$. That is, $m(1, h)$ is continuous but not analytic at $h=0$. Assuming that the limiting susceptibility $\chi(\beta, h):=\lim _{n \rightarrow \infty} \chi_{n}(\beta, h)$ equals $\frac{1}{\beta} \frac{\partial^{2}}{\partial h^{2}} f(\beta, h)$, we get that the limiting susceptibility is $\chi(1,0)=\infty$. What does that mean for the variance of the average magnetization?
$(\mathrm{g}) *$ Show that $\frac{\partial}{\partial h} x_{0}(\beta, 0+)<\infty$ for $\beta>1$, so that the limiting susceptibility is finite.

