Applications of Stochastics — Exercise sheet 1

GÁBOR PETE http://www.math.bme.hu/~gabor

March 21, 2019

Notation. The probability measure for the Erdős-Rényi random graph G(n,p) is denoted by \mathbf{P}_p .

Subsets of a base set S will be denoted by $\omega \in \{0,1\}^S$, thinking that $\omega(s) = 1$ iff $s \in \omega$.

The comparisons \sim, \approx, \ll, \gg are used as agreed in class.

"With high probability", abbreviated as "w.h.p.", means "with probability tending to 1".

Bonus exercises are marked with a star. They can be handed in for extra points.

- Exercise 1. An event for the Erdős-Rényi random graph, $A \subset \{0,1\}^{\binom{n}{2}}$, is called *upward closed* or *increasing* if, whenever $\omega \in A$ and $\omega' \supseteq \omega$, then also $\omega' \in A$. Show that, for any such event A, other than the empty or the complete set, the function $p \mapsto \mathbf{P}_p[A]$ is a strictly increasing polynomial of degree at most $\binom{n}{2}$, with $\mathbf{P}_p[A] = p$ for $p \in \{0,1\}$. In particular, there exists a unique p such that $\mathbf{P}_p[A] = 1/2$; this value is usually called the *critical* (or *threshold*) *density*, and will be denoted by $p_c(n) = p_c^A(n)$.
- \triangleright **Exercise 2.** Find the order of magnitude of the critical density $p_c(n)$ for the random graph G(n,p) containing a copy of the cycle C_4 . (Hint: as in class, use the 1st and 2nd Moment Methods.)
- Exercise 3. Let H be the following graph with 5 vertices and 7 edges: a complete graph K_4 with an extra edge from one of the four vertices to a fifth vertex. Show that if $5/7 > \alpha > 4/6$, and $p = n^{-\alpha}$, then the expected number of copies of H in G(n,p) goes to infinity, but nevertheless the probability that there is at least one copy goes to 0. What goes wrong with the 2nd Moment Method?
- Exercise 4. Let $X_k(n)$ be the number of degree k vertices in the Erdős-Rényi random graph $G(n, \lambda/n)$, with any $\lambda \in \mathbb{R}_+$ fixed. Show that $X_k(n)/n$ converges in probability, as $n \to \infty$, to $\mathbf{P}[\mathsf{Poisson}(\lambda) = k]$. (Hint: the 1st moment of $X_k(n)$ is clear; then use the 2nd moment method.)
- **Exercise 5.** Accepting the fact that if X_1, \ldots, X_n are i.i.d. Cauchy variables, then the sum $S_n = X_1 + \cdots + X_n$ has the distribution of nX_1 , show the following:
 - (a) $S_n/n \xrightarrow{p} 0$ does not hold.
 - (b) For any $\epsilon > 0$, the expected number of returns to the interval $(-\epsilon, \epsilon)$ by the Cauchy walk S_n is infinite.
- Exercise 6. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a measurable function with $\int_0^1 |f(x)|^2 dx < \infty$, and let U_1, U_2, \ldots be i.i.d. Unif [0,1] variables. Prove that $(f(U_1) + \cdots + f(U_n))/n$ converges almost surely to $\int_0^1 f(x) dx$.
- Exercise 7.* Let $(X_i)_{i\geq 0}$ be a random walk on \mathbb{Z} , with i.i.d. increments ξ_i that have zero mean and an exponential tail: there exist $K \in \mathbb{N}$ and 0 < q < 1 such that $\mathbf{P}[\xi \geq k+1] \leq q \mathbf{P}[\xi \geq k]$ for all $k \geq K$. (E.g., the $\xi_i \sim \mathsf{Poisson}(1) 1$ jump distribution that shows up in the analysis of the critical Erdős-Rényi graph satisfies this exponential tail condition.)

Starting from $X_0 = \ell \in \{1, 2, ..., k-1\}$, let τ_0 be the first time the walk is at most 0, and let τ_k be the first time the walk is at least k. For any $0 < X_0 = \ell < k$, show that $\mathbf{P}_{\ell}[\tau_k < \tau_0] \approx \ell/k$. (Hint: first prove that $X_{\tau_k} - k$, conditioned on $\tau_k < \tau_0$, has an exponential tail, independently of k.)

Exercise 8. Flip a fair coin 60 times, and let $X \sim \mathsf{Binom}(60, 1/2)$ be the number of heads. Using Markov's inequality for e^{tX} with the best possible t, which can be found by minimizing the convex function $f(t) = \log(1 + e^t) - \frac{5}{6}t$, show that

$$\mathbf{P}[|X - 30| \ge 20] \le 2 \cdot 3^{60} \cdot 5^{-50} < 10^{-6}.$$

 \triangleright **Exercise 9.** Prove that for any $\delta > 0$ there exist $c_{\delta} > 0$ and $C_{\delta} < \infty$ such that

$$\mathbf{P}\big[\left|\mathsf{Poisson}(\lambda) - \lambda\right| > \delta\lambda\big] < C_{\delta} \, e^{-c_{\delta}\lambda},$$

for any $\lambda > 0$. (Hint: use the moment generating function of Poisson(λ).)

Exercise 10. Let $\xi_i \sim \mathsf{Expon}(\lambda)$ i.i.d. random variables, and let $S_n := \xi_1 + \dots + \xi_n$. Prove that for any $\delta > 0$ there exist $c_{\delta} > 0$ and $C_{\delta} < \infty$ (also depending on λ , of course) such that

$$\mathbf{P}[|S_n - \mathbf{E}S_n| > \delta n] < C_\delta e^{-c_\delta n}.$$

Hint: use the moment generating function of Expon or the previous Poisson exercise!

> **Exercise 11.** Let $p, \alpha \in (0,1)$ arbitrary, and let $\alpha_n \to \alpha$ such that $\alpha_n n \in \mathbb{Z}$ for every n. Using Stirling's formula, show that

$$\lim_{n\to\infty}\frac{-\log\mathbf{P}\big[\operatorname{Binom}(n,p)=\alpha_n n\,\big]}{n}=\alpha\log\frac{\alpha}{p}+(1-\alpha)\log\frac{1-\alpha}{1-p}\,.$$

When $\alpha = p$, we are getting that $\mathbf{P}[\mathsf{Binom}(n,p) = \alpha_n n]$ is only subexponentially small. In particular, roughly how large is $\mathbf{P}[\mathsf{Binom}(n,p) = |pn|]$?

The next bonus exercise contains some analytic details regarding the moment generating function. The main tool will be the *Dominated Convergence Theorem (DCT)*: if $\{X_n\}_{n\geq 1}$ and X and Y are random variables on the same probability space, with the almost sure pointwise convergence $\mathbf{P}[X_n \to X] = 1$, plus $|X_n| \leq Y$ holds almost surely for all n, where $\mathbf{E}Y < \infty$, then $\mathbf{E}|X_n - X| \to 0$, and thus $\mathbf{E}X_n \to \mathbf{E}X < \infty$.

- **Exercise 12.*** Assume that $m_X(t) := \mathbf{E}[e^{tX}] < \infty$ for some $t = t_0 > 0$, and let $\kappa_X(t) := \log m_X(t)$.
 - (a) Show that $e^{tx} < 1 + e^{t_0x}$ for all $0 \le t \le t_0$ and $x \in \mathbb{R}$. Deduce that $m_X(t) < \infty$ for all $0 \le t \le t_0$.
 - (b) Using part (a) and the DCT, show that if $t_n \to t$, all of them in $[0, t_0]$, then $m_X(t_n) \to m_X(t)$. Thus $m_X(t)$ and $\kappa_X(t)$ are continuous functions of $t \in [0, t_0]$.
 - (c) Show that $x < e^{tx}/t$ for any t > 0 and $x \in \mathbb{R}$. Deduce that $\mathbf{E}[Xe^{tX}] < \infty$ if $0 < t \le t_0/2$.
 - (d) Using that $e^b e^a = \int_a^b e^y \, dy$, show that $(e^{tx} 1)/t \le xe^{tx}$ for any t > 0 and $x \in \mathbb{R}$. Using part (c) and the DCT, show that $m_X'(0) = \mathbf{E}X < \infty$.
 - (e) Deduce that $\kappa_X'(0) = \mathbf{E}X$. Deduce that if $\alpha > \mathbf{E}X$, then $\kappa_X(t) \alpha t < 0$ for some $t \in (0, t_0)$.

The goal of the final bonus exercise is to present one way to pass from G(n,p) to the G(n,M) model.

Exercise 13.* Fix $\delta > 0$ arbitrary, and let $p_n \in (0,1)$ and $M_n \in \{0,1,\ldots,\binom{n}{2}\}$ be two sequences satisfying $\binom{n}{2}p_n \to \infty$ and $(1+\delta)\binom{n}{2}p_n < M_n$ for all n. Let $A_n \subset \{0,1\}^{\binom{n}{2}}$ be a sequence of upward closed events such that $\mathbf{P}_{p_n}[A_n] \to 1$. Prove that

$$\mathbf{P}[G(n, M_n) \text{ satisfies } A_n] \to 1, \quad \text{as } n \to \infty.$$

In more detail:

- (a) Show that $P[Binom(\binom{n}{2}, p_n) < M_n] \to 1$.
- (b) Let \mathcal{E}_n denote the number of edges in G(n,p). Deduce from part (a) that $\mathbf{P}_{p_n}[A_n \mid \mathcal{E}_n < M_n] \to 1$.
- (c) Show that, for any $M \in \{0, 1, \dots, \binom{n}{2}\}$, we have $\mathbf{P}_{p_n}[A_n \mid \mathcal{E}_n = M] = \mathbf{P}[G(n, M) \text{ satisfies } A_n]$.
- (d) Deduce from part (c) that $\mathbf{P}_{p_n}[A_n \mid \mathcal{E}_n < M_n] \leq \mathbf{P}[G(n, M_n) \text{ satisfies } A_n]$. Combining parts (b) and (d) concludes the exercise.