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The number of dots • is the value of an exercise. Please hand in solutions, at least for 12 points, by April

5 Tue. If you need an extension for some reason, April 8 Friday is OK. I hope to have two more exercise

sheets during the course.

Exercise⊲ 1. • Consider a GW process with offspring distribution ξ, with Eξ = µ > 1 and D
2ξ = σ2 < ∞.

Let Zn be the size of the nth level, with Z0 = 1, the root. Using the conditional variance formula D
2[Zn] =

E
[

D
2[Zn

∣

∣ Zn−1]
]

+ D
2
[

E[Zn | Zn−1 ]
]

, show that E
[

Z2
n

]

≤ Cµ,σ(EZn)
2.

Exercise⊲ 2. Let T be the Galton-Watson tree with offspring distribution ξ ∼ Geom(1/2)−1. Draw the tree

into the plane with root ρ, add an extra vertex ρ′ and an edge (ρ, ρ′), and walk around the tree, starting

from ρ′, going through each “corner” of the tree once, through each edge twice (once on each side). At

each corner visited, consider the graph distance from ρ′: let this be process be {Xt}
2n
t=0, which is positive

everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T .

Figure 1: The contour walk around a tree.

(a) • Using the memoryless property of Geom(1/2), show that {Xt} is SRW on Z.

(b) • Using a martingale argument, show that P[T has height ≥ n] = 1/n.

(c) • Using another martingale argument: what is the expected size of the nth generation conditioned on

being non-empty?

(d) ••• Show that for any ǫ > 0 there exists K < ∞ such that, conditioning T to have height at least n,

with probability at least 1 − ǫ the height will be at most Kn, and the total volume will be between

n2/K and Kn2. (Hint: the typical speed of an unconditioned SRW is given by the Central Limit

Theorem. But how do you compare the speed of conditioned and unconditioned trajectories?)

Recall that the α-dimensional Hausdorff measure of a metric space (X, d) is defined by

Hα(X) := lim
ǫ→0

inf

{

∞
∑

i=1

diam(Ui)
α :

⋃

i

Ui ⊃ X, sup
i

diam(Ui) < ǫ

}

.

Then dimH(X) := inf{α : Hα(X) = 0} is the Hausdorff dimension, while

dimM (X) := limǫ→0
logNǫ(X)

log(1/ǫ)
and dimM (X) := limǫ→0

logNǫ(X)

log(1/ǫ)

are the upper and lower Minkowski dimensions, where Nǫ(X) is the infimum number of subsets of

diameter at most ǫ > 0 that are needed to cover X .

1

http://www.math.bme.hu/~gabor


Exercise⊲ 3. • Show that for any metric space (X, d) there is at most one α ≥ 0 such that Hα(X) ∈ (0,∞).

Exercise⊲ 4. •• For α ∈ (0,∞), consider Xα := {n−α, n = 1, 2, . . . } ⊂ [0, 1], with the metric inherited from

R. Find the Minkowski and Hausdorff dimensions of Xα.

Exercise⊲ 5. Recall the metric d(ξ, η) = b−|ξ∧η|, for any b > 1, on the boundary ∂T of a locally finite infinite

tree without leaves that we considered in class. Also recall that to any x ∈ V (T ) we associated the clopen

(both closed and open) set Bx := {ξ ∈ ∂T : x ∈ ξ}, and if Π is a cutset between the root and infinity, then

BΠ := {Bx : x ∈ Π} is obviously a cover of ∂T .

(a) • Give a countable covering by disjoint closed sets of the boundary of the binary tree that does not

arise from a cutset between the root and infinity. (Note: this issue is completely neglected in the

Lyons-Peres book.)

(b) •• For any countable covering {Ui} of any ∂T with
∑

i diam(Ui)
α < ∞, and any ǫ > 0, construct a

finite cutset Π such that the associated covering BΠ satisfies

∑

x∈Π

diam(Bx)
α <

∑

i

diam(Ui)
α + ǫ.

(c) • Deduce from the previous item that br(T ) = bdimH (∂T ).

(d) • Show that gr(T ) = bdimM (∂T ) and gr(T ) = bdimM
(∂T ).

Figure 2: A quasi-transitive tree, the 3-1 tree, and the Fibonacci tree.

Exercise⊲ 6. Find the branching number of each of the three trees on Figure 2:

(a) • A quasi-transitive tree, with degree 3 and degree 2 vertices alternating.

(b) • The so-called 3-1-tree, which has 2n vertices on each level n, with the left 2n−1 vertices each having

one child, the right 2n−1 vertices each having three children; the root has two children.

(c) •• The Fibonacci tree, which is a directed universal cover of the directed graph with vertices {1, 2}

and edges {(12), (21), (22)}. (There are two directed covers, with root either 1 or 2.)

Exercise⊲ 7. •• Show that SRW on the 3-1 tree above is recurrent, but the Nash-Williams criterion does

not work.

Exercise⊲ 8. Consider the nearest neighbour RW on Z with P[Xt+1 = Xt + 1 ] = p > 1/2, and the function

h(i) := {(1− p)/p}i for i ∈ Z.

(a) • Show that Mt := h(Xt) is a martingale. Using the Optional Stopping Theorem for bounded MGs,

find Pi[ τa < τb ] for a ≤ i ≤ b.

(b) • From the previous part, find Pi[ τ0 < ∞ ]. Then give a simply reason why it has to be exactly

exponentially decreasing in i.

Exercise⊲ 9. • Show that a Markov chain (V, P ) has a reversible measure if and only if for all oriented cycles

x0, x1, . . . , xn = x0, we have
∏n−1

i=0 p(xi, xi+1) =
∏n−1

i=0 p(xi+1, xi).

Recall the definition of effective resistance between vertices a and z in a finite graph:

R(a ↔ z) :=
v(z)− v(a)

‖|∇v‖|
,
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where v is the voltage function between a and z with v(z) > v(a). We can then also define R(A ↔ Z) for

any two disjoint subsets A,Z ⊂ V (G), by collapsing all the points in A and Z to a single vertex a and z,

respectively, keeping all the edges leaving A and Z. We can also define C(A ↔ Z) := 1/R(A ↔ Z).

Exercise⊲ 10. •• Show that effective resistances add up when combining networks in series, while effective

conductances add up when combining networks in parallel.

Exercise⊲ 11 (“Green’s function is the inverse of the Laplacian”). • Let (V, P ) be a transient Markov chain

with a stationary measure π, associated Laplacian ∆ = I−P , and Green’s function G(x, y) :=
∑∞

n=0 pn(x, y).

Assume that the function y 7→ G(x, y)/πy is in L2(V, π). Let f : V −→ R be an arbitrary function in L2(V, π).

Solve the equation ∆u = f .

Recall Thomson’s principle:

R(a ↔ z) = inf
{

E(θ) : θ is a flow from a to z with strength ‖|θ‖| ≥ 1
}

,

where, with a slight abuse of notation, we use the notation for Dirichlet energy also for the r-energy of a

general flow: E(θ) := 〈θ, θ〉r .

Note furthermore that Dirichlet’s principle can be reformulated as follows:

R(a ↔ z)−1 = inf
{

E(f) : f is a function V −→ R with f(a) ≤ 0 and f(z) ≥ 1
}

.

Exercise⊲ 12. Using the above two principles and the methods from March 29, prove the following:

(a) • If a = (0, 0) and z = (n, n) in the square G = {0, . . . , n}2 ⊂ Z
2, then R(a ↔ z) ≍ logn.

(b) • For the square annulus {−n, . . . , n}2 \ {−k, . . . , k}2 ⊂ Z
2, if A denotes the set of inner boundary

vertices (at ℓ∞-distance k from the origin), and Z denotes the outer boundary (the vertices at ℓ∞-

distance n from the origin), then R(A ↔ Z) ≍ log(n/k).

(c) •• Consider the wedge Wh :=
{

(x, y, z) ∈ Z
3 : x ≥ 0, |z| ≤ h(x)

}

, where h(x) := (log x)α for some

α > 0. For what values of α can you prove that Wh is recurrent? transient?

Exercise⊲ 13. On any locally finite graph G, call h : V (G) −→ R infinity-harmonic if, for every x ∈ V (G),

h(x) =
1

2

(

min
y∼x

h(y) + max
y∼x

h(y)

)

.

(The reason for this name is that these functions minimize the L∞-norm of the gradient in a strong sense,

just like usual harmonic functions minimize the L2-norm, the Dirichlet energy.)

(a) • Show that every non-constant infinity-harmonic function h grows at least linearly in some direction:

there is a sequence of vertices (xi)i≥0 such that lim infi→∞ h(xi)/d(x0, xi) > 0.

(b) • Design a random walk (i.e., a time-independent Markov process) (Xt)t≥0 with nearest-neighbour

jumps such that Mt := h(Xt) is a martingale.

(c) • Show that the process ∆t := D[Mt+1 |Xt] is almost surely non-decreasing in t ≥ 0. Deduce that

D[Mt] grows at least linearly in t. (I’m not claiming that on every graph, every h, for every process

(Xt) such that h(Xt) is a MG, there is this linear growth of the variance. But for every h there is such

a process, and I bet that your construction in (b) does in fact have this property.)
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