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Hand in 5 solutions out of the 13 problems below, by May 12. In the 5, you may include at most 1 from
the first problem set (that you have not handed in earlier, of course). You may hand in partial solutions for
partial credit.

Exercise 1. For a subset A of the hypercube {0,1}", let B(A,t) := {z € {0,1}" : dist(z, A) < t}, with the
usual Hamming distance. Let e, A > 0 be constants satisfying exp(—\?/2) = €. Prove using Azuma-Hoeffding
that

|A] > €e2" = |B(4,2A\vn)| > (1—¢)2".

That is, even small sets become huge if we enlarge them a little.

Exercise 2. Prove the Bollobds-Thomason threshold theorem: for any sequence A = A,, C {0, 1}(;) of
upward closed events, let

p{(n) := inf {p : P[G(n,p) satisfies A, ] > t}.
Prove that for any e there is C < oo such that |[pf* .(n) — pA(n)| < Ce (pA(n) A (1 —pf' .(n))). (Hint: take
many independent copies of low density to get success with good probability at a larger density.)

Exercise 3. Find the order of magnitude of the threshold function p;5(n) for the random graph G(n,p)
containing a copy of the cycle Cjy.

Exercise 4. Let X, (n) be the number of isolated vertices in the random graph G(n,
(a) Show that EX)(n) ~ n!= as n — oo. Deduce that, for A > 1 fixed, with probability tending to 1
there exist no isolated vertices. For A < 1 fixed, using the 2nd Moment Method, show that there exist
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isolated vertices with probability tending to 1.

(b) Show that if & > 1— X > 0, then the probability that there exists a union of components that has total
size between n® and n —n® is going to 0. This is an indication that isolated vertices are indeed the
main obstacles to connectivity.

Exercise 5. Consider a Galton-Watson branching process with offspring distribution £, mean E£ = u. Let
Z, be the size of the nth level, with Zy = 1, the root.
(a) Show that Z,/u" is a martingale.
(b) Deduce for i < 1 that P[Z,, > 0] < exp(—cn) for some ¢ > 0, and hence P[Z,, = 0 eventually | = 1.
(c) Deduce from a MG convergence thm that if 4 =1 but P[{ = 1] # 1, then P[Z,, = 0 eventually ] = 1.

Exercise 6. Continuing the previous exercise:

(a) Assuming that 4 > 1 and E[¢?] < oo, first show that E[ Z2] < C(EZ,)?. (Hint: use the conditional
variance formula D?[Z,] = E[DQ[ZH ’ Zn_l]] +D? [E[Zn | Z1 ]] .) Then, using the Second Moment
Method, deduce that the GW process survives with positive probability.

(b) Extend the above to the cases E{ = co or D = oo by a truncation 1. for K large enough.

Exercise 7. For the GW tree with offspring distribution Poisson(1 + €), show that the survival probability
is asymptotically 2¢, as € — 0.
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Exercise 8. Using the exploration Markov chain for GW trees and a Doob transform, show that if we
condition the GW tree with offspring distribution Poisson(\) on extinction, where A > 1, then we get a GW
tree with offspring distribution Poisson () with 4 < 1, where Ae ™ = pe™".

Exercise 9. If X is a non-negative random variable with finite expectation, then its size-biased version X
is defined by P[X € A] = E[ X 1{xca ]/EX.
(a) Show that the size-biased version of Poi(\) is just Poi(A) + 1.
(b) Show that the size-biased version of Expon()) is the sum of two independent Expon(A)’s.
(c) Take Poisson point process of intensity A on R. Condition on the interval (—e,€) to contain at least
one arrival. As € — 0, what is the point process we obtain in the limit? What does this have to do
with parts (a) and (b)?

Exercise 10. Let Xj(n) be the number of degree k vertices in the Erdés-Rényi graph G(n,\/n), where
A > 0 is fixed. Show that Xj(n)/n converges in probability, as n — 0o, to P[Poi()\) = k] = e *\*/k!. (Hint:
calculate the 2nd moment or use Azuma-Hoeffding.)

Exercise 11. Consider Pélya’s urn process (G, Ry )n>0, started with Gy = g green and Ry = r red balls.
Recall that G, /(G,, + R,) is a bounded martingale, hence it converges almost surely to some v € [0, 1].
(a) Suppose that r, g > 1. Define W,, = log(G,, + R,,) —log(G,, —1). Show that (W,,),>0 is a supermartin-
gale, and deduce that the limit ~ is in fact almost surely strictly in (0, 1).
(b) Extend the argument to the case when r and g can be 1.

Exercise 12. Assume that 7 : G’ — G is a topological covering between infinite graphs, or in other words,
G is a factor graph of G'. Show that p.(G') < p.(G).

Exercise 13. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.
Consider the uniform measure on the 15 spanning trees of GG, denoted by UST, and the uniform measure
on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an
explicit monotone coupling between the two measures (i.e., with UST C UST + 1).

Question. Is there such a monotone coupling for every finite graph? (Finding the answer might lead to a
fantastic PhD thesis.)



