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The number of dots ® is the value of an exercise. Hand in solutions for 12 points by June 8 Thu 4:15
pm. If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your
final solution to a problem has some mistake but has some potential to work, then I will give it back and

you can try and correct the mistake.

Recall the following definition. Let G, be a sequence of finite graphs. Pick a uniform random root p,
from V(Gy,), and take the ball Bg, ,,(r) around it in the graph metric, with some fixed radius r € Z,. We
get a distribution u, , on finite rooted graphs. We say that the sequence {G,,} converges in the Benjamini-
Schramm sense (also called local weak convergence) to a random rooted graph (G, p), if, for every r,
the distributions i, , converge weakly as n — oo to the distribution of Bg ,(r). The simplest case is when
the limit is a transitive infinite graph G': the measures p, , converge to the Dirac measure on a single graph,
the r-ball of G. The following exercise generalizes the examples of boxes in Z¢ and balls in the d-regular
tree T4 that we saw on class:

Exercise 1.°* Show that a transitive graph G has a sequence G, of subgraphs converging to it in the
Benjamini-Schramm (local weak) sense if and only if it is amenable.

Exercise 2.° Assuming Exercise 21 from HW2, show that our random d-regular bipartite multi-graph
M, n.a converges to the d-regular tree T4 in the Benjamini-Schramm sense. (Here the randomness for the
measure /i, , comes from two sources: we take a random root p,, in the random graph G,,, and want to show
convergence in this joint probability space.)

Exercise 3.°* Let G,, be the Erdés-Rényi random graph G(n,A/n), with any A € Ry fixed. Show that
the Benjamini-Schramm limit of G, is the PGW()) tree, the Galton-Watson tree with offpsring Poisson()),
rooted as normally. (As in the previous exercise, convergence in the joint probability space of choosing the
random graph and the random root.)

Exercise 4.° Show that the functions v (t) := %e*’“tk*1 for k =1,2,... indeed satisfy the Smoluchowski
coagulation equations
d
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—k(t) = —kvg(t) + g > wi(t)vko(t) .
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Exercise 5.° Can it happen for some iid sequence X1, Xo,... that (X7 4+ --- + X,,)/a, almost surely
converges, for some sequence a,, — oo (e.g., a, = n or a, = /n) to a random variable that is not an almost
sure constant? (Hint: think of Kolmogorov’s 0/1 law.)
Exercise 6.°* Give an example of a random sequence (M,)5%, such that E[M,11 | M, ] = M, for all
n > 0, but which is not a martingale (in its natural filtration F,, = o{My, ..., M,}).
Exercise 7. Consider a Galton-Watson tree with offspring distribution &, with E§ = u. Let Z, be the size
of the nth level, with Zy = 1, the root.

(a)*® Find E[Z, ], and using this show that p < 1 implies that the GW tree is finite almost surely.
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(b)** Extending the previous part, show that Z,,/u™ is a martingale, and using a Martingale Convergence
Theorem (non-negative martingales converge almost surely to some almost surely finite variable), show
that g =1 with P[§ = 1] # 1 also implies that the GW tree is finite almost surely.

(c)** If > 1 and E[£?] < oo, show that E[ Z2 ] < C(EZ,)? with a constant C' < co that does not depend
on n. (Hint: use the conditional variance formula D?Z,] = E[D?Z, | Z,1]] + D*[E[Z, | Zn—1]].)
Using this and the Second Moment Method, namely, if X > 0 a.s., then P[ X > 0] > (EX)?/E[ X?]
(you can look this up, e.g., in PGG Section 12.3), deduce that the GW tree is infinite with positive
probability.

(d)*® Extend the previous part to the case E{ = oo or D{ = oo by a truncation 1.« for K large enough.

> Exercise 8.° What is the critical bond percolation density for the infinite triangular ladder?

B

> Exercise 9.° We saw in class for the binary tree T that p.(T) = 1/2. Using this, show that the 3-regular
tree has p.(Ts) = 1/2, as well.

> Exercise 10. Consider site percolation on Z?; i.e., instead of deleting or keeping the edges (bonds), we are
keeping or deleting the vertices. Show that 1/3 < p.(Z?,site) < 5/6.

For Bernoulli bond percolation on any connected infinite graph G, any o € V(G), define
pr = inf {p: Ey[|€,|] = oo},
where %, denotes the cluster of vertex o. T is for the honour of Temperley. As for the critical density p.

defined in class, one can show that this does not depend on o. Obviously, pr < p. for any graph.
> Exercise 11. Consider Bernoulli bond percolation on the canopy tree A (the Benjamini-Schramm limit of
the balls B, (0) in the 3-regular tree Tj).
(a)*® Show that p.(A) = 1.
(b)** Find pr(A).
As in class, the Ising model on a finite graph G(V, E) is the random spin configuration o : V.— {+1}

defined as follows. Given an external magnetic field & € R, the Hamiltonian is
Hio)=—h Y ole)~ Y ooy,
zeV(G) (z,y)EE(G)

and then the measure, at inverse temperature § = 1/T > 0, is

Pgplo] = eXp(_ZiIih(U)), where Zg, = Zexp(—ﬁHh(a)).

> Exercise 12. The partition function Zg j contains a lot of information about the model:

(a)*® Show that the expected total energy is

0 0
Egn[H| = —% In Zg j, , with variance Varg ,[H| = —%E@h[H] .
(b)*® The average free energy or pressure is defined by f(3,h) := (8|V|)~!1n Zg . Show that for the
average total magnetization M (o) := [V|~' Y |, o(x), we have

(B, ) == BaaM] = 57 (5,1).



(c)*® The susceptibility of the total magnetization to a change in the external magnetic field is

10 1 62

= %5 F(B.h).

Relate this quantity to Varg ;,[M]. Deduce that f(5,h) is convex in h.

Exercise 13. Consider the Ising model on an interval, {o; : i = —n,...,n — 1,n}, with no boundary

condition, at any inverse temperature § € [0, 00).
(a)*® Show that {o; : i = —n,...,n — 1,n} is the trajectory of a stationary irreducible Markov chain on
{—+}
(b)** Show that S, := > .~ o; has Var[S,] ~ Cgn, as n — oo, for some Cj € (0, 00).

That is, in dimension 1, there is no long range order for any g < oo.

Here are two quite canonical random spanning tree models on finite graphs:

Exercise 14. On any finite graph G(V, E), assign iid random edge weights £ = (£.)ccr to the edges, from
an atomless non-negative valued distribution. Consider the spanning tree of G that minimizes the sum of
the edge weights — this is the Minimal Spanning Tree MST.
(a)*® Show that one can construct this tree by removing from every cycle of G the edge with the largest
label.
(b)*® Conclude that the distribution of MST, does not depend on the distribution of the &.’s. Hence we
can denote this random tree just by MST, the Minimal Spanning Tree of the graph.
(c)*® Consider the uniform distribution on all the spanning trees of G — this is the Uniform Spanning
Tree UST. Give a finite graph on which MST # UST with positive probability.

The Fortuin-Kasteleyn random cluster measure FK(p,q) on a finite graph G, with p € [0, 1] and
g > 0, is the invariant bond percolation model given by, for any w C E(G),

lwl (1 — ) BE\w| jk(w)
p“' (1-p) q
Prk(p.q)[w] =

with ZFK(p,q) = Z p“’"‘ (1 _ p)lE\w\ qk(w) ,

ZFK(?vQ) wCE

where k(w) is the number of clusters of w.

Exercise 15.°* Consider FK(p, ¢) on the n x n two-dimensional lattice torus (Z/nZ)?. Given a configuration
w, the dual configuration w* is defined on the dual torus: the dual vertices are the primal faces, and two
are connected by a dual edge iff the edge between the primal faces is not present in w. Show that for

P = Pselt-dual(q) = T\/\%, the dual configuration w* has the same distribution as w.

Exercise 16.° For any finite tree, show that FK(p,¢) is just Bernoulli bond percolation at some density
p(q), which you should identify.

Exercise 17.° For any finite graph, show that lim,_,o4 limg_,0+ FK(p,¢) = UST.



