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PREFACE

"Random walks" is a topic situated somewhere in between probability,
potential theory, harmonic analysis, geometry, graph theory, and algebra.
The beauty of the subject stems from this linkage, both in the way of
thinking and in the methods employed, of different fields.

Let me briefly declare what - in my viewpoint - random walks are. These
are time-homogeneous Markov chains whose transition probabilities are in
some way (to be specified more precisely in each case) adapted to a given
structure of the underlying state space. This structure may be geometric
or algebraic; here it will be discrete and infinite. Typically, we shall use lo-
cally finite graphs to view the structure. This also includes groups via their
Cay ley graphs. From the probabilistic viewpoint, the question is what im-
pact the particular type of structure has on various aspects of the behaviour
of the random walk, such as transience/recurrence, decay and asymptotic
behaviour of transition probabilities, rate of escape, convergence to a bound-
ary at infinity and harmonic functions. Vice versa, random walks may also
be seen as a nice tool for classifying, or at least describing the structure of
graphs, groups and related objects.

Of course, random walks on finite graphs and groups are a fascinating
topic as well, and have had an enormous renaissance in the last decade:
a book written by two major experts, D. Aldous and J. Fill, is about to
appear.

Some might object that any countable Markov chain may be viewed on a
directed graph, so that our notion of random walks coincides with arbitrary
Markov chains. However, our point of view is reversed: what we have in
mind is to start with a graph, group, etc., and investigate the interplay
between the behaviour of random walks on these objects on one hand and
properties of the underlying structure itself on the other.

Historically, I believe that this spirit of approaching the theory of ran-
dom walks on infinite graphs has its roots in the 1921 paper by Polya [269],
whose nice title - translated into English - is "On an exercise in probabil-
ity concerning the random walk in the road network". There, Polya shows
that simple random walk in the two-dimensional Euclidean grid is recurrent,
while it is transient in higher dimensions. This change of behaviour between
plane and space provided inspiration for much further work. However, it
took 38 years until what I (personal opinion !) consider the next "mile-
stones". In 1959, Nash-Williams published his paper "Random walks and
electric currents in networks" [245], the first to link recurrence and struc-
tural properties of networks (i.e., reversible Markov chains). This paper -
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not written in the style of the mainstream of mathematics at that time -
remained more or less forgotten until the 80s, when it was rediscovered by
T. Lyons, Doyle and Snell, Gerl, and others. The second 1959 milestone was
Kesten's "Symmetric random walks on groups" [198], founding the theory of
random walks on (infinite) groups and also opening the door from random
walks to amenability and other topics of harmonic and spectral analysis.

Another direct line of extension of Polya's result is to consider sums of
i.i.d. random variables taking their values in Zd - this was done to perfection
in Spitzer's beautiful "Principles of Random walk" [307] (first edition in
1964), which is still the most authoritative and elegant source available.
Spitzer's book also contains a considerable amount of potential theory. Note
that Markov chains and discrete potential theory were born more or less
simultaneously (while classical potential theory had already been very well
developed before its connection with Brownian motion was revealed, and
one still encounters analysts who deeply mistrust the so-called probabilistic
proofs of results in potential theory - probably they believe that the proofs
themselves hold only almost surely). Although not being directly concerned
with the type of structural considerations that are inherent to random walks,
I consider the third 1959 milestone to be Doob's "Discrete potential theory
and boundaries" [101]. In the sixties, potential and boundary theory of
denumerable Markov chains had a strong impetus promoted by Doob, Hunt,
Kemeny, Snell, Knapp and others, before being somewhat "buried" under
the burden of abstract potential theory. Doob's article immediately led
to considerations in the same spirit that we have in mind here, the next
milestone being the note of 1961 by Dynkin and Malyutov [111]. This
contains the first structural description of the Martin boundary of a class
of random walks and is also - together with Kesten [198] - the first paper
where one finds the principal ingredients for computations regarding nearest
neighbour random walks on free groups and homogeneous trees. Indeed, it
is amusing to see how many people have been redoing these computations
for trees in the belief of being the first to do so.

It was in a paper on boundaries that Kesten [201] indicated a problem
which then became known as "Kesten's conjecture": classify those (finitely
generated) groups which carry a recurrent random walk, the conjecture (not
stated explicitly by Kesten) being that such a group must grow polynomially
with degree at most two. It is noteworthy that the analogous problem
was first settled in the 70s for connected Lie groups, see Baldi [17]. The
Lie case is not easier, but there were more analytical and structural tools
available at the time. The solution in the discrete case became possible by
Gromov's celebrated classification of groups with polynomial growth [149]
and was carried out in a remarkable series of papers by Varopoulos, who
gave the final answer in [325]. In the 80s, random walks on graphs have been
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repopularized, owing much to the beautiful little book by Doyle and Snell
[103]. However, this discussion of selected "milestones" is bringing me too
close to the present, with many of the actors still on stage and the future to
judge. Other important work from the late 50s and the 60s should also be
mentioned here, such as that of Choquet and Deny [74] and - in particular
- Furstenberg [124].

Let me return from this "historical" excursion. This book grew out of a
long survey paper that I published in 1994 [348]. It is organized in a similar
way, although here, less material is covered in more detail.

Each of the four chapters is built around one specific type of question
concerning the behaviour of random walks, and answers to this question
are then presented for various different structures, such as integer lattices,
trees, free groups, plane tilings, Gromov-hyperbolic graphs, and so on. At
the beginning, I briefly considered using the "orthogonal" approach, namely
to order by types of structures, for example, saying first "everything" about
random walks on integer lattices, then nilpotent groups and graphs with
polynomial growth, trees, hyperbolic graphs, and so on. Some thought
convinced me that this was not feasible. Thus, the same classes of structures
will be encountered several times in this book. For example, the reader who
is interested in results concerning random walks and trees will find these in
paragraphs/sections l.D, 5, 6.B, 10.C, 12.C, 19, 21.A and 26.A, tilings and
circle packings are considered in 6.C-D, 10.C and 23, and the integer grids
and their generalizations appear in l.A, 6.A, 8.B, 13 and 25. Regarding
the latter, I obviously did not aim at an exposition as complete as that of
Spitzer had been in its time. Most likely, every reader will find a favorite
among the topics in random walk theory that are not covered here (such
as random walks on direct limits of finite groups, ratio limit theorems, or
random walks in random environment).

A short word on notation. Instead of using further exotic alphabets,
I decided not to reserve a different symbol for each different object. For
example, the symbol $ has different meanings in Sections 6, 9 and 12, and
this should be clear from the context.

I started writing this book at the beginning of 1995 (one chapter per
year). Thus, Chapter I is the oldest one among the material presented here,
and so on. I decided not to make a complete updating of this material to
the state of the art of today (1999) - otherwise I could never stop writing.
In particular, the 90s saw the emergence of a new, very strong group of
random walkers (and beyond) in Israel and the US (I. Benjamini, R. Lyons,
Y. Peres, O. Schramm, ...) whose work is somewhat underrepresented here
by this reason. On the other hand (serving as an excuse for me), two of them
(Lyons and Peres) are currently writing their own book on "Probability on
Trees and Networks" that can be expected to be quite exciting.
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Many mathematical monographs of today start with two claims. One
is to be self-contained. This book is not self-contained by the nature of
its topic. The other claim is to be usable for graduate students. It has
been my experience that usually, this must be taken with caution and is
mostly true only in the presence of a guiding hand that is acquainted with
the topic. I think that this is true here as well. Proofs are sometimes a
bit condensed, and it may be that even readers above the student level will
need pen and paper when they want to work through them seriously - in
particular because of the variety of different methods and techniques that I
have tried to unite in this text. This does not mean that parts of this book
could not be used for graduate or even undergraduate courses. Indeed, I
have taught parts of this material on several occasions, and at various levels.

Anyone who has written a book will have experienced the mysterious fact
that a text of finite length may contain an infinity of misprints and mistakes,
which apparently were not there during your careful proof-reading. In this
sense, I beg excuse for all those flaws whose mysterious future appearance
is certain.

In conclusion, let me say that I have learned a lot in working on this
book, and also had fun, and I hope that this fun will "infect" some of the
readers too.

Milano, July 1999 W.W.





CHAPTER I

THE TYPE PROBLEM

1. Basic facts

Before embarking on a review of the basic material concerning Markov
chains, graphs, groups, etc., let us warm up by considering the classical
example.

A. Polya's walk
The d-dimensional grid, denoted briefly by Zd, is the graph whose vertices

are integer points in d dimensions, and where two points are linked by an
edge if they are at distance 1. A walker wanders randomly from point to
point; at each "crossroad" (point) he chooses with equal probability the one
among the 2d neighbouring points where his next step will take him, see
Figure 1. Starting from the origin, what is the probability p(2n)(0,0) that
the walker will be back at the 2nth step? This is the number of closed paths
of length 2n starting at the origin, divided by (2d)2n. (The walker cannot
be back after an odd number of steps.) For small dimensions, the solutions
of this combinatorial exercise are as follows.

Figure 1: the grids Z and Z2

d = 1. Among the 2n steps, the walker has to make n to the left and n
to the right. Hence

d = 2. Let two walkers perform the one-dimensional random walk simul-
taneously and independently. Their joint trajectory, viewed in Z2, visits
only the set of points (i, j) with i + j even. However, the graph with this
set of vertices, and with two points neighbours if they differ by ±1 in each
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component, is isomorphic with the grid Z2 and probabilities are preserved
under this isomorphism. Hence

d = 3. It is no longer possible to represent the random walk in terms of
three independent random walks on Z. In a path of length 2n starting and
ending at the origin, n steps have to go north, east, or up. There are (2^)
possibilities to assign the n steps of these three types; the other n go south,
west, or down. For each of these choices, i steps go north and i go south, j
steps go east and j go west, n — i — j steps go up and n - i — j go down.
Hence

2

Consider the function (x, y, z) \-> x\y\z\ for x,y,z> 0. Under the condition
x + y + z = n, it assumes its minimum for x = y = z = n/3, when n is
sufficiently large. Hence

2n\ n! 3 / 2

Indeed, for arbitrary dimension d, there are various ways to show that

(1.4) p ( 2 n ) ( 0 , 0 ) ~ Q n - d / 2 .

Now for the random walk starting at the origin, Y^nP^2n^(^^) *s t n e

expected number of visits of the walker back to the origin: this is infinite
for d = 1,2 and finite for d > 3. This drastic change of behaviour from two
to three dimensions stands at the origin of our investigations.

B. Irreducible Markov chains
A Markov chain is (in principle) given by a finite or countable state

space X and a stochastic transition matrix (or transition operator) P =
(p(x,y))x x. In addition, one has to specify the starting point (or a
starting distribution on X). The matrix element p(x,y) is the probability
of moving from x to y in one step. Thus, we have a sequence of X-valued
random variables Zn, n > 0, with Zn representing the random position in
X at time n. To model Zn, the usual choice of probability space is the
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trajectory space Q, = XN°, equipped with the product cr-algebra arising
from the discrete one on X. Then Zn is the nth projection Q —> X. This
describes the Markov chain starting at x, when Q is equipped with the
probability measure given via the Kolmogorov extension theorem by

FX[ZO = xo,Zi = x1,...,Zn = xn] = 6x(xo)p(xo,xi) - -p(xn-i,xn).

The associated expectation is denoted by Ex. Alternatively, we shall call
a Markov chain (random walk) the pair (X, P) or the sequence of random
variables (Zn)n>o. We write

This is the (#, y)-entry of the matrix power Pn , with P° = J, the identity
matrix over X. Throughout this book, we shall always require that all states
communicate:

(1.5) Bas ic assumpt ion . (X, P) is irreducible, that is, for every x , j / G l
there is some n G N such that p(n\x, y) > 0.

Next, we define the Green function as the power series
oo

(1.6) G{x,y\z) = J 2 p { n ) ( x , y ) z n > x , y € X , z e C .
n=0

(1.7) Lemma. For real z > 0, the series G(x,y\z) either diverge or con-
verge simultaneously for all x, y G X.

Proof. Given xi, y\, x2,2/2 € X, by irreducibility there are fc,I € N such
that p{k)(x1,x2) > 0 and p^(2/2,2/1) > 0. We have

and hence, for z > 0,

G(x1,y1\z)>p^(x1,x2)P^(y2,y1)z
k+eG(x2,y2\z). •

As a consequence, all the G(x,y\z) (where x,y G X) have the same
radius of convergence r(P) = l//o(P), given by

(1.8) p(P) = limsupp^z.y)1 /" € (0, 1].

This number is often called the spectral radius of P.
The period of P is the number d = d(P) = gcd {n > 1 : p(n\x, x) > 0} .

It is well known and easy to check that it is independent of x by irreducibil-
ity. If d(P) = 1 then the chain is called aperiodic. Choose o G X and
define Y3; = {x G X : p(nd+^')(o, x) > 0 for some n > 0} , j = 0 , . . . , d - 1.
This defines a partition of X, and x, y are in the same class if and only
if p(nd\x,y) > 0 for some n. These are the periodicity classes of (X, P) ,
visited by the chain (Zn)n>o in cyclical order. The restriction of P d to each
class is irreducible and aperiodic. See e.g. Chung [75] for these facts.
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(1.9) Lemma. p{n) (a?, x) < p{P)n , and lim p(nd> (x, x)1/nd = p{P).
n—>-oo

Proof. Write an = p(nd\x,x). Then 0 < an < 1 and gcdiV(x) = 1,
where N(x) = {n : an > 0}. The crucial property is ama n < am_|_n.

We first show that there is no such that an > 0 for all n > no- If
m,n E N(x) then m-\- n G N(x). Recall that the greatest common divisor
of a set of integers can always be written as a finite linear combination
with integer coefficients of elements of that set. Therefore we can write
1 = gcdN(x) = rii — ri2, where ni, n<i G N(x) U {0}. If n^ = 0 we are done
(n0 = 1). Otherwise, set no = n | and decompose n > no asn = qri2+r =
(q — r)ri2 + r n i , where 0 < r < ri2. It must be that q > 712 > r, so that
n G N(x). Next, fix m G N(x), let n > no+m, and decompose n = qnm+rn,
where no < rn < no + n2. Write b = b(m) = min{ar : no < r < no + m}.
Then 6 > 0 and on > <?<Vn, so that a%,/nbl/n < a\!n. If n -> 00 then
qn/n -+ m. Hence,

oi(m < liminf al/n < p(P)d for every m G iV(a;).
n—>oo

This proves the first statement. If we now let m —> 00, then lim supm am'm <
lim infn an , and al/n converges. •

(1.10) Exerc i se . Prove the following. If P is irreducible and aperiodic
then Pk is irreducible and aperiodic for every k>l, and p(Pk) — p{P)k>

Next, define the stopping time sy = min{n > 0 : Zn = y} (where the
minimum is 00 when the set is empty) and the hitting probabilities plus
associated generating functions

00

(1.11) f(n)(x,y)=W>x[sv = n] and F(x,y\z) = ^ f{n)(x,y) zn ,
n=0

where z eC Note that F(x,x\z) = 1. Finally, let
00

(1.12) tx = min{n > 1 : Zn = x} and U(x, x\z) = ^ Pa.[tx = n] zn .
n=0

The following will be useful on several occasions.

(1.13) Lemma, (a) G(x,x\z) = r-7 ;—r ,

1 — U {x,x\z)

(b) G(x,y\z) = F(x,y\z)G(y,y\z),

(c) U(x, x\z) = ^p(x, y)z F(y, x\z) and,
y

(d) ify ^ x, F(x, y\z) = V)p(a?, w)z F{w, y\z).
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Proof. Part (a) follows from the identity

<*> (a, x) = £ P* [tx = k] p(»-fc) (*,*), if n

while p^°)(a;,x) = 1 and ¥x[tx = 0] = 0.
Analogously, (b) is obtained by conditioning with respect to the first

visit to y. Parts (c) and (d) are obtained by factoring though the first step
(that is, the values of Z\). •

We shall write G(x, y) for G(x, y\l). This is the expected number of visits
of (Zn)n>o to y when Zo = x. Analogously, F(x, y) stands for F(x, y\l), the
probability of ever reaching y when starting at x, and U(x,x) = U(x,x\l) =
Px[tx < oo] is the probability of ever returning after starting at x.

(1.14) Definition. The Markov chain (X, P) is called recurrent if
G(x,y) = oo for some (<£=> every) x , j / G l , or equivalently, if U(x,x) = 1
for some (-<=>• every) x G X. Otherwise, the Markov chain is called tran-
sient.

If p(P) < 1 then (X, P) is transient. The converse is not true. The spec-
tral radius will be studied in Chapter II, with sufficient transience criteria
as by-products. There is a useful characterization of recurrence is terms of
superharmonic functions. P acts on functions / : X —> R by

(We assume that P\f\ is finite.) We say that / is superharmonic if Pf < f
pointwise, and harmonic if Pf = f.

(1.15) Minimum principle. If f is superharmonic and there is x G X
such that f(x) = minx / then / is constant.

Proof. For every n, we have f(x) > YlyP^nHxi y)f(y) • Hence, it cannot
be that f(y) > f(x) for any y such that p^(x,y) > 0. Now irreducibility
yields f = f(x). •

For harmonic functions there is an analogous maximum principle (the
minimum principle applied to —/).

(1.16) Theorem. (X, P) is recurrent if and only if all non-negative super-
harmonic functions are constant.

Proof. If (X, P) is transient then for y G X, the function x »—• G(x, y)
is superharmonic, non-harmonic and hence non-constant.
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Conversely, assume that (X, P) is recurrent. Let / > 0 be any superhar-
monic function. Set g = f — Pf. We claim that g = 0. Suppose g(y) > 0
for some y. Choose x G l . For each n,

= /(*) - Pn+1f(x) < f{x).
k=0 k=0

Consequently, G(x,y) < f{x)/g(y) in contradiction with recurrence. We
have shown that every non-negative superharmonic function is harmonic.

Now, for superharmonic / > 0, choose x G X and set M = f(x). Then
h = f AM (pointwise minimum) is superharmonic and hence also harmonic.
It assumes its maximum M, and by the maximum principle, h is constant.
Thus / is constant. •

Here are further characterizations of recurrence and transience.

(1.17) Proposition, (a) If (X,P) is recurrent then F(x,y) = 1 and

Px \Zn = y for infinitely many n] = 1 for all x, y € X .

(b) If (X, P) is transient then for every finite A C X,

Fx[Zn e A for infinitely many n] = 0 for all x € X .

Proof. First, observe that for y e X, the function x i-» F(xyy) is su-
perharmonic (Lemma 1.13). Thus, in the recurrent case, F(-,y) is constant
by Theorem 1.16, and equal to F(y,y) = 1.

Next, write V(x,y) = Fx[Zn = y for infinitely many n]. Conditioning
with respect to sy, one sees that V(x,y) = F(x,y)V(y,y) < V(y,y). Fac-
toring through the first step, one sees that x i—• V(x, y) is harmonic. By the
maximum principle, V(x, y) = V(y, y) for all x, y.

Set Vm(x,x) = Px[(Zn)n>0 visits x at least m times]. Then Vi(x,x) =
1, and conditioning with respect to tx , one sees that Vm{x,x) =
U(x,x)Vrn-i(x1x). Hence

V(x,x)= lim Vm(x,x)= lim Ufax)™-1

n—*oo n—>oo

is equal to 1 in the recurrent case and 0 in the transient case. This proves
(a). Furthermore, as A is finite,

^x[Zn € A for infinitely many n] < ^ V(x, y),
yeA
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which is 0 in the transient case. •

In particular, an irreducible Markov chain on a finite state space is always
recurrent. We shall be interested in the case when X is infinite.

A recurrent Markov chain (X, P) is called positive recurrent if Ex[tx] <
oo, and null recurrent if Ex[tx] = oo. Noting that Ex[tx] = U'(x,x\l—)
(derivative with respect to z), it is easy to prove (similarly to Lemma 1.7)
that this does not depend on the choice of x € X. Before stating a criterion,
we need another definition. P acts on non-negative measures on X by

vP(y) = ^v(x)p(x,y).

(We assume that vP is finite.) We say that v is excessive if vP < v point-
wise, and invariant if vP = v. (Irreducibility implies v(x) > 0 for all x if
this holds for some x.) We omit the proof of the following criterion.

(1.18) Theorem, (a) (X, P) is recurrent if and only if there is an invariant
measure v such that every positive excessive measure is a multiple of v.

(b) (X, P) is positive recurrent if and only if v has finite mass.

The recurrent Markov chains that we shall encounter in this book will
usually be null recurrent.

C. Random walks on graphs
We think of a graph as a finite or countable set of vertices (points) X,

equipped with a symmetric neighbourhood or adjacency relation ~ (a subset
of X x X). To view X, we draw a segment (edge), sometimes denoted by
[x,2/], between every pair of neighbours x, y (so that [x,y] — [y, x\). Note
that we do not exclude loops. We shall also write E or E(X) for the edge set.
A (finite) path from x to y in X is a sequence TV = [x = xo, xi,..., Xk = y]
such that Xi-i ~ xi; the number k > 0 is its length. (Alternatively, we shall
think of 7T as a sequence of edges.) We shall always assume that our graphs
are connected, that is, every pair of vertices is joined by a path. Thus, X
carries an integer-valued metric: d(x, y) is the minimum among the lengths
of all paths from x to y. A path from x to y is called simple if it has no
repeated vertex, and geodesic if its length is d(x,y). We denote by U(x,y)
the set of all geodesies from x to y.

The degree deg(x) of a vertex x is its number of neighbours. With a few
exceptions, we shall usually consider only graphs which are locally finite,
that is, every vertex has finite degree. We say that X has bounded geometry,
if it is connected with bounded vertex degrees, and that X is (M-)regular,
if deg(-) = M is constant.
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The simple random walk on a locally finite graph X is the Markov chain
with state space X and transition probabilities

. f l/deg(x), if y ~ a:,

(̂  0, otherwise.

The graph X is said to be recurrent (transient) if the simple random walk
has this property. The simple random walk is the basic example of a random
walk (Markov chain) adapted to the underlying structure. In the sequel, we
shall consider various more general types of adaptedness properties of the
transition matrix P of a Markov chain to the structure of the underlying
graph X, and it is in the presence of such adaptedness properties that we
speak of a random walk (instead of a Markov chain). Here is a list of some
of these properties, which will be frequently used.

We say that P is of nearest neighbour type, if p(x, y) > 0 occurs only
when d(x,y) < 1.

The random walk is called uniformly irreducible if there are so > 0 and
K < oo such that

(1.20) x ~ y implies p^k\x,y) > So for some k < K.

Note that this implies that deg(x) < {K + l)/£o for every x E X. Indeed,

K

y€X k=0

When {y : p(x,y) > 0} is finite for every x, we say that P has finite
range. In itself, finite range is not an adaptedness property. However, this
is the case for bounded range, that is, when

(1.21) sup{d(x, y) : x, y e X , p(x, y) > 0} < oo.

This can be generalized by imposing conditions like tightness, uniform in-
tegrability, etc., on the family of step length distributions on No- The latter
are given for each x G X by

(1.22) <rx{n) = Vx[d(Zl9 Zo) = n}= ^ p(x,y).
y:d(y,x)=n

Consider the kth moment Mk(ax) = £nn f ccrx(n) = Ex(d(ZuZ0)
k) . We

say that P has finite kth moment, if Mk(P) = sup x Mk{crx) is finite, and
that P has exponential moment of order c > 0, if sup x ^ n ecnax(n) < oo .
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Further adaptedness conditions of geometric type will be introduced later
on.

D. Trees

The nearest neighbour random walk on trees, and in particular the sim-
ple random walk on homogenous trees, is the other basic example besides
Polya's walk. A tree is a connected graph T without loops or cycles, where
by a cycle in a graph we mean a sequence of vertices x$ ~ X\ ~ • • • ~ xn,
n > 3, with no repetitions besides xn = XQ. One characteristic feature of
a tree is that for every pair of vertices #, y there is a unique path (geodesic
arc) 7r(x,y) of length d(x, y) connecting the two.

Let P be the transition matrix of an irreducible nearest neighbour ran-
dom walk on T. The following is a fundamental property linking tree struc-
ture and random walk.

(1.23) Lemma. Ifw€ TT(X, y) then F(x,y\z) = F(x1w\z)F(wJy\z).

Proof. By the tree structure, the random walk must pass through w on
the way from x to y. Conditioning with respect to the first visit in w, this
yields

/<n> (*, y) = Y, f{k) (*, ™)/(n-fc) (w, y). •

As another "warm up" exercise, let us now consider a particularly typical
example. The homogeneous tree T M is the tree where all vertices have degree
M. (T2 is isomorphic with Z. See Figure 2 for T3.)

Figure 2: the homogeneous tree T3

(1.24) Lemma. For the simple random walk on TM, one has

In particular, p(P) =
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Proof. Obviously F(x, y\z) = F(z) is the same for every pair of neigh-
bours x, y, so that Lemma 1.23 yields F(v,w\z) = F(z)d(v>w\ Now consider
two neighbours x,y. Applying Lemma 1.13(d) we get

F(z) = F(x, y\z)=^2 jjz F{z)d^ = ±z + ^ ± z F(z)2 .

This second order equation has two solutions. As F(0) = 0, the right one
is (by continuity)

F{Z) =

Using Lemma 1.13(c), (a) and (b), one now computes U(x,x\z) = zF(z),
G(x,x\z) and the formula for G(x,y\z).

The way in which p(P) is read from this formula is typical: G(x,x\z) is
a power series with non-negative coefficients. By Pringsheim's theorem (see
Hille [173], p. 133), the radius of convergence r(P) = l/p(P) must be its
smallest positive singularity. Thus, we have to compute the value of z > 0
where the term under the square root is equal to 0. •

As a consequence, the simple random walk on TM is transient for every
M > 3 .

(1.25) Exercise. Compute G(x, y\z) for the simple random walk on the
bi-regular tree, that is, the tree where the vertex degrees are constant on
each of the two bipartite classes. (These are the points at even or odd
distance, respectively, from a given reference vertex.)

E. Random walks on finitely generated groups
Polya's walk, besides being the simple random walk on a graph (the d-

dimensional grid), can also be interpreted in terms of groups. The same is
true for the simple random walk on TM-

Let F be a discrete group with unit element o (the symbol e will be used
for edges), and let \x be a probability measure on F. The (right) random
walk on F with law \i is the Markov chain with state space F and transition
probabilities

p(x,y) = nix^y).

(Unless F is abelian, the group operation will be written multiplicatively.)
Besides the trajectory space, in this case we may also use the product space
(F,/x)N to obtain an equivalent model of (Zn): the nth projections Xn of
FN onto F (n > 1) constitute a sequence of independent F-valued random
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variables with common distribution /i, and the right random walk starting
at x G F is

Zn = x X\ • • • Xn , n > 0.

This generalizes the ordinary scheme of sums of i.i.d. random variables on
the integers or reals. The n-step transition probabilities are obtained by

where fx^ is the n-fold convolution of /x with itself, with fi^ = <5O, the
point mass at the group identity.

Let us relate groups with graphs. Suppose that F is finitely generated,
and let S be a symmetric set of generators of F. The Cayley graph X(T, S)
of F with respect to S has vertex set F, and two elements x, y G F are
neighbours if x~xy G S. This graph is connected, locally finite and regular
(all points have the same degree \S\). If o G S then it has a loop at each
vertex. F acts as a group of self-isometries on the Cayley graph; the action
is left multiplication.

For example, in the abelian group Zd, we may choose S as the set of
all elements with euclidean length 1. The resulting Cayley graph is the
usual grid. The homogeneous tree T M is the Cayley graph of the group
F = (a i , . . . , CIM \ af = °) with respect to S = {a±,..., CLM}- This group is
the free product of M copies of the two-element group Z2 (see Chapter II
for more on free products).

Write ds for the graph metric on X(T,S), and let S' be another finite,
symmetric set of generators. Then the metrics ds and ds> are equivalent in
the sense that there are constants C, C such that

(1.26) ds < C" ds> and ds> <Cds.

Indeed, choosing C = maxjds-/ (x, 0) : x G S} we get ds> (x, y) <C whenever
(y)
The simple random walk on X(T, S) is nothing but the right random

walk on F whose law /JL is the equidistribution on 5.
For arbitrary /i, we write supp /i = {x G F : /x(x) > 0} . Then supp /J,^ =

(supp/i)n, and ji (that is, the random walk with law fi) is irreducible if and
only if

00

|J(supp/*)n = r.
n=l

In particular, irreducibility is uniform with respect to the Cayley graph
structure: for every x G 5, choose nx such that ii^nx\x) > 0. Then we may
set K = max{nx : x G 5} and e0 = mm{/j,(nx\x) : x G 5 } .
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Also, for random walks on groups, finite range coincides with bounded
range (supp/x is finite), and the step length distributions ax are the same
for every x. Indeed, the geometric adaptedness conditions listed above for
random walks on graphs can be viewed as attempts to transport typical ho-
mogeneity properties of random walks on groups to a non-algebraic setting.

As we shall see, recurrence of random walks on a group F is independent
of the particular choice of the law \x (as long as it is irreducible and symmet-
ric, and the step length distribution has finite second moment). Thus, one
speaks of recurrent (or transient) groups. The classification of the recurrent
ones among all finitely generated groups will be one of the main themes of
this chapter.

F. Locally finite graphs and topological groups
Let X be a locally finite, connected graph with discrete metric d. An

automorphism of X is a self-isometry of X with respect to d. The group
AUT(X) of all automorphisms of X can be equipped with the topology of
pointwise convergence: for a sequence (7n)n>i m AUT(X), we have

for every x G l , jnx = jx for all n>nx.

For an arbitrary subgroup F of AUT(X), we write

F* = {7 € F : jx = x}

for the stabilizer of vertex x in F. For the topology on AUT(X), a sub-
base of the neighbourhood filter at the identity 1 is given by the family
of all AXJT(X)X , x G X. The stabilizers are both open and closed, and
even compact. Indeed, we have the following simple lemma, whose proof is
omitted. (Local finiteness is crucial here.)

(1.27) Lemma. A subset B of AUT(X) is relatively compact if and only
if for some (<=$• every) x G l , the orbit Bx = {"yx : 7 G B} is finite.

Thus, the automorphism group of a locally finite, connected graph is a
locally compact, totally disconnected Hausdorff group with countable base
of the topology.

Let F be a closed subgroup of AUT(X). Then F carries a left Haar
measure dj. For a Borel subset B of F, we write \B\ for its measure.
Recall the basic properties of dj: every open set has positive measure,
every compact set has finite measure, \yA\ = \A\ for every 7 G F, and as
a Radon measure with these properties, dj is unique up to multiplication
by constants. When F is discrete, the Haar measure is (a multiple of) the
counting measure. We shall also need the modular function A = Ar of
F. Again, recall that this is a homomorphism from F to the multiplicative
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group of positive reals satisfying |JB^| = A(7)|i?| for every Borel set in F and
fr ^(7~1)A(7~1) d<y = Jr #(7) dj for integrable functions g on F. The group
F is called unimodular when A = 1. If x G X, then the stabilizer F^ is open
and compact, so that 0 < |FX| < oo. For 7 G F, we have T1X = 7F;E7~"1,
whence

Proof. (Of course, \Txy\ and \Tyx\ denote the cardinalities of the re-
spective orbits.) The open and compact subgroup F^ fl Yy is the stabilizer
of y in Fx. Writing the left coset partition, one sees that it has finite index
in Tx which is equal to \Txy\ on the one hand and to Ir^l/lra; n Fy | on the
other. Exchanging the roles of x and y, we also get |Fy:r| = | r y | / |F x D Fy|.
In dividing, IF^ n Fy | cancels. D

In Chapter II we shall see examples of graphs with non-unimodular au-
tomorphism group. The following formula will be useful:

(1.30) / /(7ar) d7 = £ / f(y) dry = \TX\ £ /(„),

whenever / : X —> R is a function for which the sum (integral) converges
absolutely. Analogously, if e = [x, y] is a (non-oriented) edge of X, then Fe

is the set of all 7 G F satisfying {jx^jy} = {x,y}. Again, Fe is open and
compact (Tx D Ty is a subgroup with index 1 or 2), formula (1.28) remains
valid, and there is a formula analogous to (1.30) for functions defined on
the edge set of X.

Let Xi, i G X, be the orbits of F on X. The vertex set of the factor graph
T\X is X, and i ~ j in T\X if u ~ v for some u G Xi, v G Xj. We obtain
a connected, locally finite graph. The graph X is called vertex-transitive
(or just transitive) if AUT(X) acts transitively on X, and it is called quasi-
transitive if AUT(X) acts with finitely many orbits. Now let P be the
transition matrix of a random walk on X. We define AUT(X, P) to be
the group of all 7 G AUT(X) which leave P invariant, that is, p(*yx, jy) =
p(x, y) for all x, y G X. For a subgroup F of AUT(X, P), we can define the
transition matrix P of the factor chain o n l = T\X by

(1.31) P(»,i)= Y,p(x,w),

where x G Xi is arbitrary. It inherits irreducibility from P. We say that
(X,P) is (quasi-)transitive, if AUT(X, P) acts transitively (with finitely
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many orbits) on X. Note that this in itself is a strong adaptedness prop-
erty. Once more, irreducibility is automatically uniform, and there are only
finitely many different step length distributions (one in the transitive case).
Needless to say, not every random walk with transitive automorphism group
arises as a random walk on a finitely generated discrete group. Examples
will be considered in §12.C.

More generally than for finitely generated groups, in this chapter we shall
give a structural classification of the recurrent ones among all locally finite,
connected quasi-transitive graphs.

2. Recurrence and transience of infinite networks

In this section we shall exhibit a variety of recurrence criteria for Markov
chains with a symmetry property (reversibility) and a comparison theorem
for reversible and non-reversible chains. Recall that we always require ir-
reducibility (1.5).

A. Reversible Markov chains

For the moment, let X be an infinite, countable set, not necessarily
equipped with the structure of a locally finite graph. The Markov chain
(X, P) is called reversible if there is a function (measure) m : X —• (0, oo)
such that

(2.1) m(x)p(x, y) = m(y)p(y, x) for all x, y € X .

In this case, a(x,y) = m(x)p(x,y) = a(y,x) is called the conductance
between x and ?/, and m(x) is the total conductance at x. Conversely, if
a : X x X —» [0, oo) is a symmetric function such that m(x) = Y^y a(x,y)
is positive and finite for every x, then p(x,y) = a(x,y)/m(x) defines a
reversible Markov chain (random walk). Note that ra(-) is an invariant
measure for P.

It will be convenient to equip X with an edge set E = E(P) such that for
the resulting graph, P is of nearest neighbour type: [x, y] € E(P) if and only
if a(x, y) > 0. Note that (X, E) is connected, but not necessarily locally
finite. In addition, for each - a priori non-oriented - edge e € E(P), out of
its two endpoints, we specify one as its initial vertex e~ and the other as
its terminal vertex e+. Nothing of what we are going to do depends on the
particular choice. (We shall think of functions on E as flows. A positive or
negative sign then stands for the flow moving from e~ to e+ or conversely.)
The resistance of e € E is r(e) = l/a(e~,e+). The triple M = (X,E,r)
is called a network. We may think of AT as an infinite electrical network,
where each edge e is a wire with resistance r(e), and several wires are linked
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at each node (vertex). Or we may think of a system of tubes e with cross-
section 1 and length r(e), connected at the vertices. We shall say that J\f is
recurrent (transient) if (X, P) has the respective property.

Later on, X will carry the structure of a locally finite graph. In this case,
the simple random walk arises from the network where a(x,y) = 1 if x ~ y
(and = 0, otherwise). However, we stress that in general E(P) does not
have to be the edge set E(X). The point is that we shall consider "adapted"
reversible random walks on the graph X which are not necessarily nearest
neighbour and may even have infinite range. For example, on groups, we
shall be interested in symmetric random walks without too many restrictions
on the law /x. For the moment, this is irrelevant, and we only consider the
graph (X, E) of the network, locally finite or not, with E = E(P).

It will be convenient to introduce a potential theoretic setup, as follows.
Consider the real Hilbert spaces £2(X,m) and £2(E,r) with inner products

(/, 9) = 2^ f(x)g(x)m(x) and (it, v) = ^ u(e)v(e)r(e),

respectively. We introduce the difference operator

V : £2{X,m) -> £2{E,r), V/(e) = ^^TJ^ ^ •

It is easily seen to have norm < y/2. Its adjoint is given by

E «(e)- E w(e)) •
e:e+=a; e:e~=x /

If we think of u as a flow in the network, then ^2e.e+=x u(e) is the amount
flowing into node x, and ^2e.e-=xu(e) is the amount flowing out, so that
m(x) V*ti(x) is the "loss" at x. Below, we shall give a more precise definition
of flows. The Laplacian is

(2.2) £ = - V V = P - J ,

where / is the identity matrix over X and P is the transition matrix of our
random walk, both viewed as operators on functions X —• R.

Consider the space T>(J\T) of all functions / on X (not necessarily in
£2(X, m)) such that V / G £2(E, r). If / is such a function, then its Dirichlet
sum (or Dirichlet norm) is

(2.3) D(/) = (v/, v/> = y ; ( / ( e + ) T {(e"})
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This is a quasi-norm, its kernel consisting of the constants. We shall
also denote the Dirichlet sum by Av"(*) o r Dp(')- The space T>(J\f) can be
equipped with an inner product by choosing a reference point o E X:

(f,9)D = {f, 9)0,0 = <V/, Vg) + f(o)g(o).

Let us gather a few standard facts.

(2.4) Lemma, (a) V(J\f) is a Hilbert space.

(b) Changing the reference point o gives rise to an equivalent Hilbert
space norm.

(c) Convergence in V(Af) implies pointwise convergence.
(d) Iffe V{M) then V*(V/) = -£ / .

Proof. For (a)-(c), we need one simple inequality. Let x G X, x ^ o.
By connectedness of the graph (X, E1), there are o = XQ, XI, . . . , Xk = x G X
such that ei = [ffi-i^i] € E. Let d(x) = £ * = 1 r(e»). Then for / 6
using the Cauchy-Schwarz inequality,

<C1(x)D(f).

Setting Ci{x) — 2max{l,Ci(a;)} , we get

f(x)2<C2(x)(f,f)D,o.

Consequently, ( / , / ) D , X < C3(x) ( / , / ) D , O , where C3{x) = C2(x) + 1. Ex-
changing the roles of x and o, there is an analogous inequality: this proves
(b).

Now let (/n) be a Cauchy sequence in V(J\f). By the above, for every
x e X, (fn{x)) is Cauchy in R and converges to some limit f(x). On
the other hand, (V/n) is a Cauchy sequence in £2(E,r). Hence, there is
u € £2(E, r) such that V / n —• u in the latter Hilbert space. It must be that
u = V / , so that D(f) < oo. This proves (a).

Part (c) is now obvious.

Part (d) is a technical remark. For every x G X, even when (X, P) is not
locally finite, the sum ^ y 52[y,x]eE \f(x) ~ f(y)\a(x^y) i s n n i t e (bounded
by D{f)). Hence, the terms in
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may be reordered to give (/ — P)f(x). •

By £o(X) we denote the linear space of finitely supported functions on
X, and by V0(Af) its closure in V{N). Note that £2(X,m) C V0(AT) (as V
is bounded), while the converse is in general not true (see Chapter II).

Note that for every k > 1, Pk is reversible with the same invariant
measure ra(-) (but may be non-irreducible). By DPk(-) we denote the
associated Dirichlet norm according to (2.3).

(2.5) Lemma. Dpk{f) < k2 DP(f) for every f G io(X).

Proof. We have, using Cauchy-Schwarz and reversibility,

(f(xk)-f(x0))

-5 E k

xo,...,xkeX
k

= IE E

Before introducing and proving a first set of transience criteria, we need
some preliminary material. If A is a subset of X, then we denote by PA the
restriction of P to X :

(2.6) PA(#, y) — p(#, y), if x, y G A, and p(x, y) = 0, otherwise.

Usually, we consider PA as a matrix over the whole of X, but we shall use
the same notation for the truncated matrix over A alone. In the same way,
we define the restriction I A of the identity matrix. The (x, y)-e\ement of
the matrix power P\ is P{A\X,y) =Fx[Zn = y, Zk G A (0 < k < n)]. In
particular, PjJ = I A- For the associated Green function we write

n=0

(N.B.: this is not the restriction of G(-, -\z) to A.) When A is finite, then it
is well known and easy to prove that GA is finite. In matrix (or operator)
notation, we have

(2.7) (IA-PA)GA = IA.
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(2.8) Lemma. Let A C X be finite, x e A and f G £o(X) be such that
supp f C A. Then

(Vf,VGA(;x))=m(x)f(x).

Proof. By (2.2) and (2.7), and as the functions involved are 0 outside A,

D

(2.9) Lemma. If(X, P) is transient, then G(-, x) G V0(Af) for every xeX.

Proof. Let A C Bbe finite subsets of X containing x. Applying Lemma
2.8 to A, B, f = GB(',X) and / = GA(-,x), respectively, we get

= m(x)(GB{x, X) - GA(x, x)).

Now let (An) be an exhaustion of X (that is, an increasing sequence with
union X) by finite sets containing x. By monotone convergence, GAn (x, x)
tends to G(x,x). Hence, by the above, {GAn(-,x))n>1 is a Cauchy se-
quence in V(J\T). By Lemma 2.4, it converges to its pointwise limit, that is,
G(-,x). Thus, G(-,x) can be approximated in V{M) by finitely supported
functions. D

B. Flows, capacity, and Nash-Williams' criterion
Given a vertex XQ G X and a real number io, a finite energy flow from x

to oo with input io on M is a function u G £2(E, r) such that

V*u(y) = ^ Sx(y) for sllyeX.

Its energy is (u, u). Thus, we may think of the network as a system of tubes
filled with (incompressible) liquid, and at the source xo, liquid is pumped
in at a constant rate of zo litres per second. Requiring that this be possible
with finite energy (u, u) is of course absurd if the network is finite (unless
i0 = 0), and we shall see that the existence of such flows characterizes
transient networks. In this sense, recurrent networks correspond more to
our intuition of the "real world".

The capacity of a set A C X is

(2.10) cap(A) = inf{£>(/) : / G £0(X), / = 1 on A} .
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Note that

(2.11) cap(A) = min{D(/) : / € V0(M) , / = 1 on A} .

Indeed, the convex set {/ G V0(Af) : /\A = 1} is the closure in V(J\f) of
{/ £ t>o(X) '- / U = !}• By a standard theorem in Hilbert space theory
(Rudin [282], Th. 4.10), there is a unique element in the set where the
norm is minimized. We write cap(x) for cap({a;}).

With these ingredients, we can formulate the following useful collection
of necessary and sufficient transience criteria.

(2.12) Theorem. For a reversible Markov chain (X, P) and the associated
network Af, the following statements are equivalent.

(a) The network is transient.
(b) For some (<=> every) x G X, there is a finite energy flow from x

to oo with non-zero input.
(c) For some (-<=>• every) x G X, cap(x) > 0.
(d) The constant function 1 does not belong to

Proof, (a) = » (b). If the network is transient, then G(-,x) G V0(Af).
Define u = - ^ j V G ( - , x ) . Then u € £2(E(P),r) and

m(x) m(x)

We have used Lemma 2.4(d) in the last identity.
(b) => (c). Suppose there is a finite energy flow u from x to oo with

input IQ 7̂  0. We may assume that zo = —1. Now let / G A)(X) with
f(x) = 1. Then

( ^ ) =/(«) = ! .

Hence, 1 = |(V/,^)|2 < D{f) (u,u). We obtain cap(z) > l/(u,u) > 0.
(c) 4=^ (d). This is immediate from (2.11). We have cap(x) = 0 if and

only if there is / G T>0{Af) with f(x) = 1 and D(f) = 0, that is, / = 1.
(c) = ^ (a). Let A C X be finite and such that x G A. Set / =

GA(-,X)/GA(X,X). Then / G P0(A/") and /(a?) = 1. Therefore, applying
Lemma 2.8,

capw ^ u(j) - r \2 \ V U Av ^ i ' V U i i ,x;; - .
yjA\tL")'L') KJAyL"fLi)

We obtain G>i(a;,a:) < m(x)/c&p(x) for every finite A C X containing x.
Now take an exhaustion of X by sets of this type. Passing to the limit,
monotone convergence yields G(x, x) < ra(x)/cap(x) < oo. •
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(2.13) Exercise. Prove the following in the transient case.

The unit flow from x to oo with minimal energy is given by
u(x) = —AG(-,x)/m(x), its energy (the resistance between x and oo) is
G(x,x)/m(x), and cap(a:) = m(x)/G(x,x),

One of the useful consequences of Theorem 2.12 is that recurrence / tran-
sience depends only on the Dirichlet norm D(-) associated with P according
to (2.3).

(2.14) Corollary. Let P\ and P2 be the transition matrices of two re-
versible Markov chains on X with associated Dirichlet norms D\ and D2,
respectively. Suppose that there is ei > 0 such that

D2(f)>s1D1(f) for all f e eo(X).

Then transience of (X, Pi) implies transience of (X, P2).
This holds, in particular, when the associated conductances satisfy

d2(x, y) > £1 Q>i{x,y) for all x,y € X, where e\ > 0.

By a subnetwork A/7 of M we mean a connected subgraph of (X,E),
together with the restriction of the resistance function to the remaining
edges. A finite energy flow in A/7 is also a finite energy flow in M.

(2.15) Corollary. Transience of a subnetwork implies transience of M.

For example, take a locally finite graph X and a connected subgraph X'
of X. Then recurrence of the simple random walk on X implies recurrence
of the simple random walk on X'. More applications of Theorem 2.12 will
be discussed later on, one right now as a preparation for Nash-Williams'
recurrence criterion.

(2.16) Nearest neighbour random walk on No. Speaking of No as a
graph, we think of a one-way infinite path where neighbourhood is given
by the edges e& = [k — l,fc], k > 1. For an (irreducible) nearest neighbour
random walk, we must specify the transition probabilities p(k — 1, k) > 0,
p(k, k — 1) > 0 for k > 1 and p(k, k) > 0 for k > 0. We see that the random
walk is reversible with

_ p(0,l)p(l,2)---p(fc-l,fc) _ p(fc-l,fc-2)--.p(l,0)
mW-p(k,k-l)...p(2,l)p(l,Q) a n d r ^ ) - p ( 0 ) i ) . . . p ( f c _ i > f c ) •

The only flow from 0 to 00 with input i$ = 1 is the unit flow, and its energy
is 2r(efc)- Thus, the random walk is

00 00

transient <=> 2~V(efc)<oo, recurrent <̂ => /]r(ek) = °° ?
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and in the latter case, it is positive recurrent if and only if ^2k>0 m(k) < oo.
Note that if in an arbitrary network we can find a one-way infinite path

along which the resistances have finite sum, then the network is transient.
Indeed, the unit flow along that path (with input 1 at its initial point) has
finite energy. •

Next, we describe the method of shorting. Let (X, P) be reversible with
associated network Af. Suppose that we have a partition of X:

(2.17) X = (J Xi, such that lXi e V0{M) Viel.
iez

(The last condition is crucial. It holds in particular if Y^xeXi m(x) < °° •)
Then we can define the shorted network Nf with vertex set X and conduc-
tance function

{
0, if J = «.

Note that m'{i) = J2j a'(hj) = ^ ( I x j < °° f°r every i. Thus, the shorted
network arises from a reversible Markov chain (7, P ') , with transition prob-
abilities p'{i,j) = a!{i,j)/mf(i).
(2.19) Theorem. Suppose that (X,P) is reversible and that (I,Pf) is
obtained from (X, P) by shorting. If (/, Pf) is recurrent then so is (X, P).

Proof. If f e V(Nf) then we set f(x) = f(i) for x e X{. Then

Next, we use the assumption lx{ € T>o{Af): if / € £o(I) then

Now, if A/7 is recurrent, then by Theorem 2.12(d), 1 e V0(Aff), and there
is a sequence (/n) in £0(I) such that Djyifn — 1) —• 0. Consequently, (/n)
is a sequence in T>o(J\f) satisfying Dj^(fn — 1) —* 0. We obtain 1 € Vo(Af),
and N is recurrent. •

Combining the theorem with (2.16), we get Nash-Williams' recurrence
criterion as a particular instance:
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(2.20) Corollary. Under the conditions of (2.17) and (2.18), suppose that
J = No and that af(ij) = 0 if \i - j \ > 2. If

then (X, P) is recurrent.

Using this criterion, there is another, instructive, way to see that the
simple random walk on the square grid Z2 is recurrent. Let d be the graph
metric of Z2, and set

Xi = {x e 1? : d(x,0) = i} = {(M) G Z2 : |fc| + \l\ = »}, i > 0.

Recall that all edges have conductance 1. For the shorted network, we get
a'(i — l,i) = Si — 4, and Corollary 2.20 applies.

We conclude this subsection with another simple example, which uses
the flow criterion and shows that very natural subgraphs of transient graphs
may well be recurrent.

(2.21) Comb lattices in Zd. We write C^ (comb lattice) for the following
spanning tree1 of Zd: the vertex set is Zd, and neighbourhood is described
by

( A ; ! , . . . , ^ ! , ^ ^ , . . . ^ ) - ^ ! , . . . , ^ - ! , ^ ^ ! ^ , . . . ^ ) ,
where j = l , . . . ,d and k{ e Z (1 < i < j). Thus, Ci = Z, and Cd

is obtained from C^-i by attaching at each point a two-way infinite path
(copy of Z).

Figure 3: the comb lattice C2

We prove inductively that the simple random walk on Cd is recurrent. This
is true for Ci. Assume that C^-i is recurrent. Suppose that Cd is transient.
Then there is a finite energy flow u in Cd from the origin to infinity. But
this flow must be 0 along all edges of each of the two-way infinite paths
which we have attached to Cd-i for obtaining Cd: otherwise, the energy
would be infinite. Consequently, u is a finite energy flow in Cd-i from the
origin to 00. This contradicts recurrence of Cd-i- •

1A spanning tree of a graph is a subgraph which is a tree and contains all vertices.
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(2.22) Exercise. Fattenings of the comb lattice C3 in Z3.
(a) Take copies of the square grid Z2 x {&}, k e Z, and connect each

point (0,0, k) with (0,0, A; + 1) by an edge.
(b) Take C3 and add all those missing edges of the grid Z3 which lie in

the (x, z)-plane, that is, the edges between (&, 0, m) and (k +1,0, ra), where
k,m e Z. The resulting graph is the square grid together with two-way
infinite paths, one going through each point of the grid.

(c) Consider the Cartesian product C2 x Z. This is the graph with vertex
set Z3 where (fci,^i,mi) ~ (^2,^25^2) if the two points are at distance 1
and either £2 = 0 or k\ = &2-

Find the type of the simple random walk on each of these graphs. (A
solution of (c) will be given in §18.)

C. Comparison with non-reversible Markov chains
Let P be an arbitrary (irreducible) transition matrix over X with exces-

sive measure v. Observe that P acts as a contraction on £2(X,v). Indeed,
denoting by (•, •)„ the inner product in this Hilbert space,

(2.23) (p/, / ) , = E E "(*)/(s)p(*, y)f(y)

Also, the adjoint P* of P on £2(X, 1/), given by p*(x,y) = v{y)p(y, x)/v(x),
is substochastic, and vP*P <v.

We want to give compatibility conditions under which the Green function
of P can be compared with the Green function of a reversible Markov chain
on X. The following Hilbert space lemma has become quite popular in
random walk theory.

(2.24) L e m m a . Let H be a real Hilbert space with inner product (-,*)>
and let T\, T2 be two invertible linear operators on H such that

(i) Ti is self-adjoint, and
(ii) (T2/, /) > (Ti/, /) > 0 for all fen. Then

( T f 1 / , / ) ^ ^ - 1 / , / ) for all feH.

Proof. Applying the Cauchy-Schwarz inequality to the positive semi-
definite quadratic form defined by Ti, we get

•
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(2.25) Theorem. Let P be an irreducible transition matrix with excessive
measure v, and let Q be reversible with total conductance m. Suppose that

(1) s\xpm(x)/u(x) < oo, and
x

(2) there is eo > 0 such that P > £oQ elementwise.
Then recurrence of (X, P) implies recurrence of (X, Q).

Proof. Set u(x) = m(x)/v{x). Then u(x) < C for some constant C > 0.
We define two new transition operators P = \ (I+P) and Q = (l — ^ )
^ , that is,

One immediately verifies that v is an excessive measure for P and that
Q is reversible with total conductance v. Also, P > £iQ, where e\ =
min{eo) 1/2}. We get that j3^-(P — S\Q) is also a stochastic transition
operator with excessive measure i/, and by (2.23),

((P - e i Q)/ , /)„ < (1 - ei) (/, f)v for aU / e ^2(Z, v).

Consequently, if 0 < z < 1, then

((I - *P)/, / ) v > ei ((/ - zQ)f, f)v > 0

on £2(X,v). On this space, the operators P and Q are contractions. Thus,
for 0 < z < 1, Xi = £i(J — 2(3) and T2 — I — zP satisfy the assumptions of
Lemma 2.24. We have

y

(analogously for Q), and setting / = 6X, we get

( 1 - %)GP(x,x\^) =Gp(x,x\z) < — GQ(X,X\Z) for every z € (0, 1).

Letting z —> 1 from below, we get Gp(x,x) < GQ(X,X)/6I for every X.
Thus, recurrence of (X, P) implies recurrence of (X, Q).

Now let / e £0{X). Then

1
: 2

1
' 2
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By Corollary 2.14, recurrence of (X, Q) implies recurrence of (X, Q). •

Together with other comparison criteria for reversible chains (which will
be deduced from Theorem 2.12 and its corollaries), the last theorem will
be used to show that on a graph with bounded geometry (or on a group),
recurrence of any "reasonable" random walk implies recurrence of the simple
random walk.

3. Applications to random walks

We shall now give various applications of the results of the last section
to random walks on locally finite graphs and groups. In particular, we shall
determine those finitely generated groups which carry a recurrent random
walk.

A. Comparison theorems for random walks on graphs
In this subsection, X will be a graph with bounded geometry. On X,

we shall compare different reversible random walks (not necessarily nearest
neighbour). We shall refer to the Dirichlet norm associated with the simple
random walk as D(-) (without subscript) or Dx(-)- In the same way, we
shall write V or Vx for the difference operator associated with the simple
random walk. Thus, V/(e) = / ( e + ) — f(e~) for every edge of X.

(3.1) Theorem. Let P be the transition matrix of a uniformly irreducible
random walk on X with excessive measure v satisfying inf x v(x) > 0. Then
recurrence of (X, P) implies recurrence of the simple random walk on X.

If, in addition, P is reversible with total conductance m = v, then there
is ei > 0 such that DP(f) > SiD(f) for all f e £o(X).

Proof. Let K and SQ be as in the definition of uniform irreducibility
(1.20). Let P = \{I + P) and P = PK. Then for 0 < z < 1,

so that P is recurrent if and only if P is. Next, if P is recurrent, then for
a; € I , at least one of the series Y^=oP{nK+r\x,x) i1 < r < K) m u s t

diverge. As P > \l, we get

71=0 71=0

Consequently, P is recurrent if and only P is. The measure v is also P-
excessive. We now show that P dominates a multiple of the simple random
walk. If x ~ y, then

v 5 y _ 2K — 2K deg(x)
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Hence, Theorem 2.25 applies with P in place of P and the simple random
walk in place of Q. (Recall that for the simple random walk, we have
m(x) = deg(x), which is bounded above.)

We now prove the proposed inequality for the Dirichlet norms in the case
when P is reversible with total conductance m = v. Then P and P are also
reversible with respect to v. By Lemma 2.5, for every / € £o(X),

If x ~ y, then as above

v{x)p(x, V)>7pc in;f I/(rr) = E > ° •

Recall that for the simple random walk, each edge has conductance 1. Set-
ting d — IE IK2, we obtain the proposed inequality. •

Next, we look for conditions under which the second statement of the last
theorem can be reversed. Recall that in this subsection we are considering
graphs with bounded vertex degrees.

(3.2) Theorem. Let P be the transition matrix of a reversible bounded
range random walk on X whose total conductances satisfy sup x m(x) < oo.
Then there is e2 > 0 such that D(f) > s2DP(f) for all f € to(X).

In particular, recurrence of the simple random walk on X implies recur-
rence of (X", P).

Proof. Let E be the set of edges of the graph X. Recall that II(x, y) is
the set of geodesies from x to y, and write ne(x, y) for all paths in II(x, y)
containing edge e. Using the Cauchy-Schwarz inequality, we have

(/(«) - HV))2 < Tfu^-n E £(V/(e))2d(zl2/).

Hence, for / € £o(X),

x,yex

where

(3.3)
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We get Dp(f) < sup^ <f)(e) D(f). Using our assumptions, we now show that
<j> is bounded above. Let M > 2 be an upper bound for the vertex degrees
in X, and let R be a bound for the range of P. Let e G E. If x, y are such
that d(x, y) < R and IIe(a:, y) ^ 0 then both # and y must be at distance at
most M — 1 from the closer endpoint of e. There are at most 2R2M pairs
(x, y) of this type. Therefore

< f (supm(x)) £ & N ^ < i*2M+1 supm(x) < oo.
X

D
The last two theorems lead us to calling a reversible Markov chain (X, P)

strongly reversible if there is a constant C € (0, oo) such that

(3.4) C" 1 < m(x) <C for all x € X.

The simple random walk on a locally finite graph X is strongly reversible if
and only if X has bounded geometry.

(3.5) Corollary. If some strongly reversible, uniformly irreducible random
walk with bounded range on X is recurrent, then this is true for every
random walk on X with these three properties.

For an integer k > 1 the k-fuzz of X is the graph X^ with the same ver-
tex set as X, where two vertices are neighbours if and only if 1 < d(x, y) < k.
With respect to the graph structure of X, the simple random walk on ^
satisfies all requirements of Theorem 3.2.

(3.6) Corollary. There is £2 > 0 such that

Dxw(/) > Dx(f) > e2 Dx(k) (/) for all f € £0(X).

In particular, X is recurrent if and only if X^ is recurrent.

Next, we want to compare different graphs. We shall use the following
notion of similarity, regarding graphs as metric spaces with their natural
discrete metrics.

(3.7) Definition. Let (X, d) and (X\ dr) be two metric spaces. A rough
isometry is a mapping y?: X —» X1 such that

< Ad(x,y) + B

for all x,y € X, and
d'(x',ipX) <B
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for every x' € X', where A > 1 and B > 0. (We shall also refer to cp as an
(A, B)-rough isometry.) In this case we say that the two spaces are roughly
isometric, and if B = 0 then we say that they are metrically equivalent

We can construct a rough inverse <p of <p: for x' G Xf, choose x G l such
that d'(x', ipx) < B, and set (pxf = x. Then one easily works out that <p is
an (Af, £ ' )-rough isometry with A! — A and B1 = {2A + l)B. Furthermore,
d((p(px,x) < (A + 1)B for every x € X, and dl(ipipx', x') < B for every
x' G X1. It is obvious that the composition of two rough isometries is again
a rough isometry. Hence, to be roughly isometric is an equivalence relation
between metric spaces.

In order to get a feeling for rough isometry between graphs, we now
present an example and a proposition.

(3.8) Example. Let X be a loopless graph with bounded geometry and
deg(x) > 3 for every vertex x. Then we can construct a graph X1 which is
3-regular and roughly isometric with X.

We describe how to modify X locally at each vertex in order to obtain
X'. Let x e X, deg(x) = fc, and let E(x) = {eo(x),. . . ,ek-i(x)} be an
enumeration of the edges incident with x. If k = 3 then nothing has to be
changed; we write x^ for the vertex of Xf corresponding to x. If k > 4
then we replace x with new vertices x^\ . . . , x^k~2^ and introduce new edges
e(<) = [x(0?x(*+i)]7 z = l,.. . ,fc - 3. In the modified graph, (copies of)
eo(x) and e\{x) are incident with a^1), (copies of) efc_2(x) and ek-i(x) are
incident with x^k~2\ and if k > 4 then (a copy of) e^(x) is incident with
x ^ , i = 2 , . . . , k - 3; see Figure 4.

eo e4

Figure 4

x \ / \ \ x e4ft
This modification is carried out at each vertex of X. Thus, we have replaced
each vertex x of X with deg(x) > 3 by a path of length deg(x) — 3. We
define (px = a^1). It is clear that distances do not decrease under (p:

d(x,y) <d'(ipx,<py).

Conversely, let d(x, y) = n, let TT = [x = xo, sci,. . . , xn = y] be a path in X
from x to 2/, and let ê  = [:ri_i,:Ei] be its edges. Thinking of ê  as an edge
of Xf, this does not necessarily connect <pxi-i = x^\ with tpxi = x\x\ but
it does connect x\_i with x\ ' for some j , k. Now
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for each x^ e X', where M is an upper bound on the vertex degrees in X.
Hence, d'((pxi-i,(pxi) < 2(M - 3) + 1, and

d'{<px,<py) < (2Af - S)d(x,y).

Consequently, if is a (2M — 5, M — 3)-rough isometry. We remark that the
natural choice for the rough inverse is given by <px^ = x. We also remark
that this construction has the following property: when X is a tree then so
is A7.

In other words, every tree with bounded geometry and minimum degree
at least 3 is roughly isometric with the homogeneous tree of degree 3. •

(3.9) Proposition. Every quasi-transitive graph is roughly isometric with
a vertex-transitive graph.

If a group F < AUT(X) acts quasi-transitively and with finite vertex
stabilizers then F is finitely generated and X is roughly isometric with a
Cay ley graph ofT.

Proof. Let F < AXJT(X) act quasi-transitively. Consider the orbits Xi,
i G l = { 1 , . . . , iV}, and the factor graph over X. The latter is connected
on N vertices and has diameter bounded by N — 1. Lifting back to X, we
see that for every x G X there is x G X\ such that d(x, x) < N — 1 (we
choose x = x when x e Xi). Now consider the (2N - l)-fuzz X ^ " 1 ) . Let
•g(2N-i) ( j e n o t e t k e subgraph induced by X\. We claim that it is connected.
Let x , y G X i , and consider a path TT = [x = xo, x±,..., Xk-i,Xk = y] from
x to y in X. Define TT = [x = xo,xi,... ,Xk-i,x~k = y]> In X, we have
d(xi-i,Xi) < d(xi-i,Xi-i) + 1 + d(xi,Xi) < 2N — 1. Hence, n is a path in
X[ ~ , except that possibly Xi-i = Xi for some i, in which case we simply
delete x\.

It is now obvious that <px = x is a rough isometry from X to X[ ~ ,
and the latter graph is vertex-transitive.

For the second statement, suppose that F has finite vertex stabilizers.
By the above, we may assume that it acts transitively on X and choose a
reference vertex o. We have that F is discrete, Haar measure is the counting
measure, and all F^ have the same cardinality and are conjugates of each
other. The (finite, symmetric) set 5 of all 7 € F with 70 ~ o generates F.
Now consider the graph X over X x Fo where (#, a) ~ (y, (3) <=> x ~ y in
X. It is obvious that X and X are roughly isometric via <p(x, a) = x. For
each x € X, choose and fix 7^ G F such that 7^0 = x. We define an action
of F on X :

if 70: = y then j(x, a) = (y, 7 1

As the mapping (x, a) 1—• ^xa is one-to-one from X onto F, one easily checks
that F becomes a subgroup of AUT(X) which acts vertex-transitively. If
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7(x,a) = (x,a) for a vertex of X then it must be that 7^"177x^ = a,
whence 7 = t. That is, the action of F is fixed point-free, and X must be a
Cayley graph of F; indeed, X = X(T, S) with S as above. •

The following is the main link between rough isometries and random
walks.

(3.10) Theorem. Let X, X1 be graphs with bounded geometry, and let
<p : X —> X1 be a rough isometry. Then there is a constant e' > 0 such that

forallfee0(X').

In particular, X is recurrent if and only if X' is recurrent.

Proof. Let ip be an (A, B)-rough isometry. First of all, note that
£o(X) for every / € £o(X'). Indeed, the preimage of x' G X' in X under </?
has diameter bounded by B. Thus, Iv?"1^'}! < M s + 1 < 00, where M is
an upper bound on the vertex degrees in X.

Now consider the graph structure on ipX induced by tp: two points
x\yf € <pX are neighbours in (pX if there are neighbours x,y in X such
that (px = x' and ipy = yf. Let a'(x',yf) be the number of all such edges
[x,y] in X. In this situation, d'(x',y') < k = A + B, so that tpX is a
subgraph of X'^ . Applying Corollary 3.6, we get that

D^x(f) < Dx,{k)(/) < -DX'U) for every / € £0(X
f),

where 62 > 0.
Now note that <pX together with the conductance function a'(-, •) is the

network obtained by shorting the network of the simple random walk on X
with respect to the partition induced by <p. By the above, a'(x', y1) < M B + 2 .
Hence (compare with the proof of Theorem 2.19)

< MB+2Dvx(f) for every / G £0(X').

This completes the proof of the inequality.
Applying the same argument to a rough inverse of y?, we get an analogous

inequality in the opposite direction. Using Theorem 2.12(c) or (d), we see
that recurrence of X and recurrence of X1 are equivalent. •

B. Growth and the classification of recurrent groups
In this subsection we shall present the quickest possible access to the

classification of those finitely generated groups which carry a recurrent (ir-
reducible) random walk. Before this, we need some general considerations
on growth of graphs.
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Let X be a locally finite, connected graph. On X, we consider a reversible
Markov chain (X, P) which is of nearest neighbour type and such that the
invariant measure satisfies infx m(x) > 0. For x e X and n > 0, the n-ball
centred at x is B(x,n) = {y G X : d(y,x) < n}. The growth function of
(X,P) at x is Vp{x,n) = m{B{x,n)). We set

(3.11) Vp(n) = inf Vp(x,n) and VP(n) = sup VP(x,n).
x x

In the case of the simple random walk, where m(x) is proportional to deg(x),
we omit P or write Vx{-)> We say that the graph X has exponential growth,
if V(n) > C rn for some C > 0 and r > 1, and that X has polynomial
growth, if V(n) <C(n+ l)d for some C, d > 0.

We shall usually use m(x) = deg(x) for the simple random walk. When
X is regular, we shall often prefer the counting measure (m(x) = 1). In
any case, polynomial and exponential growth do not depend on the chosen
normalization. If X is vertex-transitive, then V(x, n) = V(n) = V(n) is
independent of x.

Let us immediately exhibit a relation between growth and recurrence.

(3.12) Lemma. If liminfnf Vp(x, n)/n2 j < oo for some (<=> every)

x G X then (X, P) is recurrent.

Proof. We apply Nash-Williams' criterion (Corollary 2.20) to the dis-
tance partition, that is, we short each of the sets 5(#, n) — {y : d(y, x) = n} ,
n > 0, to a single point. In the notation of (2.18), a'(n, n + 1) is the sum of
the conductances of the edges between S(x, n) and S(x, n-j-1). In particular,
a'(n, n + 1) < Vp(x, n + 1) — Vp(a:, n). By Jensen's inequality,

In ., 9 9

Y^ 1 n n

Therefore the series ^ n a'(n — 1, n)"1 must diverge. •

This sheds more light on recurrence of the simple random walk on Z2.
Note that here we did not require X to have bounded vertex degrees. The
condition of the lemma cannot be replaced with lim infn(Vp(n)/n2) < oo
(unless X is quasi-transitive), as there are transient trees with V(n) = 4n-+-2,
while V(x,n) > Cx r

n with r > 1 (attach a half-line at the root of the binary
tree). On the other hand, it is also easy to construct recurrent trees with
V(x,n) > 2n. An example will be given in §6.B below. However, we shall
see that polynomial growth with degree at most 2 is not only sufficient,
but also necessary for recurrence of the simple and other random walks on
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Cayley graphs, and more generally on quasi-transitive graphs. Before that,
we need to relate growth with the structure of groups.

We start with an observation concerning rough isometries. The follow-
ing is easily obtained along the lines of Theorem 3.10 (compare also with
Theorem 4.7 below); we leave the proof as an exercise.

(3.13) Lemma. Let X and X' be two roughly isometric graphs with
bounded geometry. Then X and X' have equivalent growth functions in
the sense that there are constants Co, &o such that

Vx (n) < Co Vxf (kon) and Vx' (n) < c$ Vx (kon) for all n.

In particular, X has polynomial (exponential) growth if and only if X'
has the respective property.

If F is a finitely generated group and Si, 52 are two finite, symmetric sets
of generators, then the Cayley graphs X(F,5i) and X(F, S2) have equiva-
lent metrics. Indeed, let d^ i = 1,2, be the respective Cayley graph metrics.
If Ai = max{c?i(o, g) : g G S2}, then c?i(-, •) < A\ c^O, •)• Consequently, the
growth functions are equivalent, and when we speak of growth of finitely
generated groups (polynomial, exponential, etc.), it is not necessary to spec-
ify the generating set.

From Lemma 3.13 one deduces the following.

(3.14) Lemma. Let F be finitely generated and Fi a subgroup with finite
index. Then F and Fi have equivalent growth functions.

Proof. Given any Cayley graph X of F, we have that Fi acts on X
with finitely many orbits and trivial vertex stabilizers. By the second part
of Proposition 3.9, X is roughly isometric with a Cayley graph of Fi. Now
Lemma 3.13 yields the result. •

The structural classification of all groups with polynomial growth is a
deep topic; proofs go beyond the scope of this book. We describe the main
results. If F is a finitely generated abelian group then there is d such that
F contains a finite-index subgroup isomorphic with the free abelian group
Zd; we write rk(F) = d, the rank of F. Next, let F be a finitely generated
nilpotent group with lower central series

r = Fo > Fi > • • • > Fr_i > F r = {L} .

Each factor group F;_i/Fi is finitely generated and abelian. Set

(3.15)

The following was proved by Bass [27] and Guivarc'h [154].
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(3.16) Theorem. If F is nilpotent and V(n) is its growth function with
respect to some finite, symmetric set of generators, then there are constants
Co, Ci > 0 such that for alln>\

Thus (Lemma 3.14), finitely generated groups which have a finite-index
nilpotent subgroup have polynomial growth. The main theorem of the the-
ory is the following famous result of Gromov [149].

(3.17) Theorem. Let F be finitely generated with growth function V(n)
with respect to some generating set. If there are C, d such that V(n) <C nd

for infinitely many n, then F has a nilpotent subgroup with finite index.

(3.18) Corollary. If F is finitely generated then either V(n) > Cn3 for
all n or V(n) < Cn2 for all n. In the second case, F contains a finite-index
subgroup isomorphic with Z or 1?.

Proof. The first part follows from Theorem 3.17. Assume that V(n) <
Cn2 for all n. Theorem 3.17 implies that F has a nilpotent subgroup 9t
with finite index. It is well known that every finitely generated nilpotent
group has a torsion-free subgroup with finite index. Hence we may assume
that 9t itself is torsion-free. From Lemma 3.14 we get d(9t) G {1,2}.

We now look at the lower central series 9t = 9to > . . . > 9tr = {o}. We
see from formula (3.15) that rk(9ti_i/9ti) = 0 for all i > 2. In particular,
9t2 is finite, whence trivial, and r < 2.

If d(9l) = 1 then it must also be that rk(9ti/9t2) = 0, so that 9t2 is
trivial and r = 1. Thus, *Xt is abelian and rk(9t) = 1. Being torsion-free,

If d(OT) = 2 then it cannot be that rk(^lo/^i) = 0 and rk(9ti) = 1,
as otherwise 9t would have a finite-index cyclic subgroup. Now the only
possibility is rk(9to/9ti) = 2 and rk(9ti/9t2) = 0, so that 9ti is trivial, 01 is
abelian and rk(9t) = 2, whence (being torsion-free) 01 = Z2. •

The simplest example of an infinite nilpotent group which is not abelian
is the Heisenberg group over the integers. It consists of all 3 x 3 upper di-
agonal matrices with ones in the diagonal and integer entries. It is "three-
dimensional" in the sense that its elements are parametrized by three inte-
gers, but it has polynomial growth with degree 4.

(3.19) Exercise. Draw the Cayley graph of the Heisenberg group with
respect to a suitable set of generators.

To complete the picture concerning growth of finitely generated groups,
we mention that all non-amenable groups have exponential growth (see
Chapter II), and that a solvable group has exponential growth unless it
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contains a nilpotent subgroup with finite index. Finally, there also are ex-
amples of groups with intermediate growth: faster than any polynomial in
n, but slower than exponential; see Grigorchuk [147].

We now return to random walks. Again, let F be a finitely generated
group, and let X = X(T, S) be its Cayley graph with respect to some finite,
symmetric set of generators 5. The simple random walk on X is symmetric,
and hence reversible with respect to the counting measure (m(x) — 1).
Indeed, if // is any (irreducible) probability measure on F, then m is an
invariant measure for the associated random walk. From this and Theorem
3.1 we get that recurrence of the random walk with law /x implies recurrence
of the simple random walk on X.

We can generalize Theorem 3.2. Recall the definition of moments (§1.C).
We write M^(/x) for the kth. moment of the random walk with law /i, where
the distance d = ds is that of our Cayley graph X. It is easy to see that
finiteness of Mfc(/x) does not depend on the particular choice of S and the
resulting Cayley graph.

(3.20) Proposition. The group F carries a recurrent random walk if and
only if some (<=$• every) symmetric irreducible probability \i on F with
Mi (/i) < oo induces a recurrent random walk.

Proof. In view of what we have just said, what is left is to show that
recurrence of the simple random walk on X implies recurrence of the random
walk with law /x. As fi is symmetric, it is reversible with respect to the
counting measure just like the simple random walk. Thus, we prove that
the conclusion of Theorem 3.2 still holds under our moment condition. We
show that the function <j> of (3.3) is bounded. Let eo G E(X). Then

^o) = 2 j > ( * y)d(o,x

(setting w = x~xy)

The last identity holds because
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We know (Lemma 3.12) that the conclusion of the last proposition holds
when the group has at most quadratic growth. In order to show that other-
wise the group is transient, we shall construct a symmetric probability with
finite second moment which induces a transient random walk. We need the
following preparatory lemma.

(3.21) Lemma. Let /J, be a probability measure on F, and decompose
M = Mi + M2> where the [i\ are non-negative measures. Then for every x G F
and n G N

where ||/z2||oo = supy€r /x2(y).

Proof. The statement is true for n = 1. Suppose it is true for n. Then

3/er

which is smaller than the proposed bound for n + 1. •

Now let B(k) = B(n, k) be the fc-balls in our Cayley graph (k > 1), and
define a symmetric probability on F by

(3-22)

where Â  = l/k3 log2 k for A; > 2 and Ai = 1 — ^2k>2 ^k •

(3.23) Proposition. M2(/i) < oo, and if the growth function satisfies
V(n) > Cn3 then fi induces a transient random walk.

Proof. We have

oo A oo
Y ^ A(~ ~\2 i (^ ^ V ^

Now let m > 2 be arbitrary, and decompose [i — \i\ + /X2, where /xi(x) =

\7(fe) EfcTl1 Afc ^(fc)^) • Putting Sm = Efc>m A^' W e Se t MlC1") = X ~ S™
and ||/x2|| = T,k>mixk/V(k)) < sm/V(m). Lemma 3.21 gives
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As m —> oo, we have sm m2 log2 m —> 1/2. Using in addition that V(m) >
Cm3, we find ci,C2 > 0 such that

< expf 2 j +
^ m^ log m /log m' m5 log m

for all n and sufficiently large m. Setting m = m(n) = n2/5, we see that
2nA^nH°) converges. D

Hence we conclude:

(3.24) Theorem. Let T be a finitely generated, infinite group. Then T
carries a recurrent random walk if and only if it contains a finite-index
subgroup isomorphic with Z or1?. In this case, every symmetric random
walk with finite second moment is recurrent.

In §6.A we shall also give conditions for recurrence of non-symmetric
random walks on groups with linear or square growth. Also, we shall extend
Theorem 3.24 to quasi-transitive random walks, and we shall show in Section
5 that every transient quasi-transitive graph has a transient subtree. We
next need some preparatory results.

C. Random walks on quasi-transitive graphs

Again, X will be an infinite graph with bounded geometry and P will be
the transition matrix of an irreducible random walk on X. We shall study
the case when (X, P) is (quasi-)transitive, including in particular the case
of random walks on finitely generated groups. All subgroups F of AUT(X)
considered in the sequel are assumed to be closed with respect to pointwise
convergence. This is not a restriction, but a natural assumption, as those
properties that we shall study pass from an arbitrary subgroup to its closure.

(3.25) Lemma. Let T be a subgroup of AUT(X, P). Suppose that the
factor chain (I,P), as defined by (1.31), has an excessive distribution v.
Then

v(x) = i>(i)\rx\, xeXi,

defines an excessive measure for P on X. If v is invariant then so is v.
In particular, when T is unimodular then v is constant on each orbit.

If, besides being unimodular, T also acts transitively, then P is doubly
stochastic, that is, ^xp(x,y) = 1 for all y.

Proof. Choose a reference point Oi in each orbit Xi. Let y G Xj. Using
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(1.28) and (1.30), we compute

V~^ / \ / X V""̂  ~ / . \ \ ~ ^ l-n I / \ \ ~ ^ ~ /« \
\ / / I T 1T)I T 7/1 ^ 3 > 1/1 1 I > II ITll T* 1/1 ^= \ I/I ? I/ ^ t/\x)P\x^y) — / jv\l) / v iixiPv^'?y; — 2 ^ ^ i v

E ~ / -\ \~^

<|Fy|f>(j) = i/(2/).

If z> is invariant, then the last inequality is an equality. Furthermore, if
F is unimodular, then |FX| = |FOJ for every x G X*. •

Note that when P is reversible with total conductance m then it is not
necessarily true that v = m for the measure of Lemma 3.25. For example,
the random walk on Z with p(k,k + 1) = p , p(k, k — 1) = q (p + q =
1) has m{k) = (p/q)k, while v(k) = 1. (See also Lemma 3.30 below.)
The next theorem shows that we can eliminate non-unimodularity from all
considerations concerning recurrence.

(3.26) Theorem. Suppose that AUT(X, P) contains a closed subgroup F
which is non-unimodular. Then (X, P) is transient.

Proof. Step 1. We suppose that F acts transitively. In the following, it
will not be used that F arises as a group of automorphisms of a locally finite
graph. The relevant facts are that F is a transitive group of permutations
of X, acting continuously with respect to pointwise convergence, locally
compact with compact point stabilizers, and leaving P invariant.

First observe that for every positive z < p(P) (in particular for z < 1)
and every x € X, the measure v(y) = G(x, y\z)/G(x, x\z) satisfies vP < \v.
Now, by transitivity, G(x,x\z) = G(y,y\z) for all x,y. Using Lemma 1.13
we get, in the recurrent as well as in the transient case,

F(x, y) = lim ' = limm .
+i-G(x,x\z)

From the above and Fatou's lemma we infer that for every x, the measure
F(x, -) is excessive. On the other hand, by Lemma 3.25, y i—• \Ty\ defines
an invariant measure.

Now suppose that (X, P) is recurrent. Then, by Proposition 1.17,
F(x,y) = 1 for all x,y. Also, by Theorem 1.18, up to multiplication
by a constant there is a unique excessive measure, which has to be in-
variant. Consequently \Ty\ = cF(x,y) = c > 0 for all y. This yields
A(7) = W / l r J = 1 for all 7 € I\
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Step 2. Coming to the general case, suppose that (X, P) is recurrent.
As F is non-unimodular, all its orbits must be infinite: otherwise, V would
be compact by Lemma 1.27, whence also unimodular. Let Y C X be one
of the orbits. Define the stopping time

(3.27) tY = mm{n >l:ZneY}.

By recurrence, it is Px-almost surely finite for every x. The induced random
walk (Y,PY) has transition probabilities

(3.28) PY(x,v) = Fx[Ztv = y), x,y G Y.

Recurrence of (X, P) implies recurrence of the induced walk. Indeed, if
x,y G y , then F(x,y) and U(x, x) are the same for the original and for the
induced random walk. Now, T acts transitively on Y, and we are in the
situation of the first step. Therefore T cannot be recurrent. •

If F in Lemma 3.25 acts quasi-transit ively, then the factor chain is an
irreducible Markov chain on a finite state space. As such, it is recurrent,
and by Theorem 1.18 it must be positive recurrent and admit an invariant
probability measure v. We obtain an invariant measure v for P which in the
unimodular case is constant on each orbit, whence infx v(x) > 0. Recalling
that in the quasi-transitive case irreducibility is automatically uniform, we
obtain the following from Theorem 3.1.

(3.29) Corollary. Suppose that AUT(X, P) acts quasi-transitively. Then
recurrence of (X, P) implies recurrence of the simple random walk on X.

Now suppose that P is reversible with respect to m. Let x,y G X, and
choose n such that p^(x, y) > 0. If 7 G AUT(X, P) then

m(x)p(n) (x, y) = m(y)pM (j/, x) and m(^x)p('n) (ar, y) = m(jy)pM (y, x).

Dividing, we get m(^x)/m(x) = m(^y)/m(y), that is, the function 0(7) =
m(/yx)/m(x) does not depend on x G X. Consequently, g is an exponential
on F : it satisfies g((3j) = g{P)g{^)- We have two possibilities: either
g = 1, in which case m is constant on each orbit of AUT(X, P), or g and
m are unbounded. In particular, when (X, P) is transitive, then strong
reversibility coincides with symmetry: p(x,y) = p(y, x).

(3.30) Lemma. Let (X,P) be reversible and quasi-transitive. If P is not
strongly reversible, then it is transient.

Proof. If F = AUT(X, P) is non-unimodular then P is transient in any
case. Otherwise, by Lemma 3.25, P admits an invariant measure v which is
constant on each orbit and hence bounded. If P is recurrent, then m must
be a multiple of v by Theorem 1.18 and cannot be unbounded. •

Next, recall the definition (1.22) of the step length distributions ox on
N and associated moments.
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(3.31) Theorem. Let P be the transition matrix of a strongly reversible
random walk on X with finite second moment. Suppose that there is a quasi-
transitive subgroup F of AUT(X, P) which is unimodular. Then there are
e1,e2 > 0 such that e^lDP{f) > D(f) > s2DP(f) for all f e £0(X).

In particular, (X, P) is recurrent if and only if the simple random walk
on X is recurrent.

The first inequality is immediate from Theorem 3.1. Also, for P hav-
ing bounded range, the second inequality follows from Theorem 3.2. None
of this requires unimodularity of F, which is only needed when extending
to finite second moment. We omit the proof, which generalizes that of
Proposition 3.20. (In §6.A we shall give a criterion which does not require
reversibility.)

Let us recapitulate what we now know about recurrence in the case of
vertex-transitive graphs. Let (X, P) be transitive.

• If P is recurrent then the simple random walk on X is recurrent.
• If the simple random walk on X is recurrent and P is symmetric

with finite second moment, then P is recurrent.
• If P is reversible but not symmetric, then P is transient.

Furthermore, if (X, P) is quasi-transitive and recurrent then there is a
vertex-transitive graph which is roughly isometric with X (Proposition 3.9)
and such that the simple random walk is recurrent.

4. Isoperimetric inequalities

This section will consist only of structure theoretical considerations with
an analytical flavour. Their significance for recurrence will become clear in
the main theorems of the next section. We shall also need this material in
Chapters II and III.

A. Isoperimetric and Sobolev inequalities
Let (X, P) be reversible with associated total conductance ra, edge con-

ductance a(-, •) and network J\f = (X, E(P),r). Thinking of m as a measure
on X, m(A) = J2xeAm(x), if A C X. Similarly, if D C E(P), we write
a(D) = YleeD a ( e~> e +) • For A C X, we define dA as the set of all edges
in E(P) having one endpoint in A and the other in X \ A. Then a{dA) is
a discrete analogue for the surface area.

Let # : R+ —> R+ be a non-decreasing function.

(4.1) Definition. We say that J\f (or (X,P)) satisfies an g'-isoperimetric
inequality IS$, if there is a constant K > 0 such that

$(m(A)) <Ka(dA)
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for every finite Ac X.
If this holds for the simple random walk then we say that the graph X

itself satisfies an ^-isoperimetric inequality.

If, in particular, $(t) = t 1 - 1 / d (with 1 < d < oo) then we speak of a
d-dimensional isoperimetric inequality, for short ISd- Note that if AT has
bounded resistances on E(P) and infx m(x) > 0 (which holds, in particu-
lar, for the simple random walk on a graph with bounded geometry), then
ISi is equivalent to X being infinite. When d = oo, we intend \jd = 0
and d/(d — 1) = 1 and speak of a strong isoperimetric inequality, usually
denoted by IS (without subscript). The latter will become important in
the next chapter. We shall see that isoperimetric inequalities serve as an
important tool for linking geometrical properties with transience and other
probabilistic features of (X, P).

The isoperimetric inequality ISd is equivalent to a d-dimensional Sobolev
inequality. For a function / : X —• R, define its Sobolev norm

(4.2) SP(f)= Y, |V/(c)| = | £ \f(x) - f(y)\a(x,y)
eeE{P)

and its norm in £P(X, m)

~ \f(x)\"m(x)
.x€X /

whenever these sums converge. (If p = oo then we mean the sup-norm.)
Here, V = VA/\ We shall also write Stf(f) instead of 5p( / ) , while we shall
reserve the notation S(f) or Sx(f) for the Sobolev norm associated with
the simple random walk.

(4.3) Proposition. {X,P) satisfies ISd (I < d < oo) if and only if

ll/ll _A_ <KSP(f) for every f e to{X).

(The constant K is the same as in ISd.)

Proof. The isoperimetric inequality is obtained from the Sobolev in-
equality by setting f = 1A>

We now show that ISd implies the Sobolev inequality. As Sp(f) >
Sp(\f\), it is enough to prove this for / > 0. For t > 0, we write [/ > t] for



4- Isoperimetric inequalities 41

the (finite) set {x : /(#) > t}. First, we have

£ £
* v-f{y)>f(x)

/

= /
-70 Vx,v:/

a(s,i/) )dt= / a(

v:/(x)<t</(v) J

If d = 1 then d[f > t] ± 0 =̂=̂  0 < t < \\f\\oo , and the last term becomes

rll/lloo i

Jo ^

Otherwise, we set p = -^ and get that the above is

>-[ m[f>t]1/pdt.[
JO

Next, the function F(t) = m[f > t]1^ is non-negative and decreasing for
t > 0. Therefore

pitF^Y^Fit) < p QT F(z) dzj F(t) = jt (jf* F(z) dzj .

Integrating and letting t —• oo, we obtain

(°°ptf^FWdbK (TF(t)dt\V

(Hardy-Littlewood-Polya inequality). Thus

aoo \ 1/p

ptr-1m[f>t}dt) .
But the last term is well known to be equal to ||/ | |p. Indeed, let 0 = to <
t\ < • • • < tn be the values assumed by / . Then

t=l i=0

Observing that m[/ > t] is constant in [t^, U+i), this becomes

= / p^-^f/ >t]dt,
Jo

/
~*0 Ju

and the proof is completed. •
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We have a series of comparison results which are completely analogous
with those proved for the Dirichlet norm in the preceding sections. We
suppose that X is a graph with bounded geometry (although several of the
results hold without this assumption). The following is the analogue to
Lemma 2.5.

(4.4) Lemma. Spk (/) < k SP(f).

(4.5) Proposition. Let P be reversible with total conductance m(-).

(a) Suppose that P is uniformly irreducible and infx m(x) > 0. Then
there is cx > 0 such that SP(f) > c i£(/) for all f € £0(X).

(b) In general, SP(f) < (suP £ ; ( x ) i/>(ej)S{f) for all f e £0(X), where

m(x)v(x

(c) The following conditions are sufficient for ^ being bounded above:
m(x) < oo and (1) P has bounded range, or (2) P has finite first

moment and there is a unimodular, quasi-transitive subgroup of AUT(X, P).

For (a), compare with the second part of Theorem 3.1. For (b) and (c),
see Theorem 3.2, Proposition 3.20 and also Theorem 3.31.

(4.6) Corollary. Let (X,P) be strongly reversible and uniformly irre-
ducible. Suppose that P has bounded range, or that P has finite first mo-
ment and there is a unimodular, quasi-transitive subgroup of AUT(X, P).
Then (X, P) satisfies ISd (I < d < ooj if and only if the graph X satisfies
isd.

Finally, different graphs can be compared as follows.

(4.7) Theorem. Let X, X' be graphs with bounded geometry, and let
ip : X —> X' be a rough isometry Then there is a constant dQ > 0 such that

Sx>(f)>c'0Sx(fo<p) for all f e £0(X
f).

In particular, X satisfies ISd (1 < d < oo) if and only if X' satisfies ISd-

Proof. The inequality between Sobolev norms is proved like Theorem
3.10. Using a rough inverse (p of <p, we get an analogous inequality in the
other direction.

Next, note that with respect to the simple random walk, m(A) =
YlX£A^e^(x)' ^n particular, if M is a bound for the vertex degrees in
our two graphs, we have \A\ < m(A) < M \A\.

Now suppose that X satisfies ISd- For finite Af C Xf, consider the
enlarged set A!1 = {xf e X' : d!{x\ A') < B}. If [x7, y1} € dA" with x' e A!'
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then there is v' G A1 with d'(v', x1) = B (it cannot be that d!{v\ x') < B as
then yf G Af), and if w' is the neighbour of v' on some shortest path from
v1 to y', then [v',wf] G <9A'. Therefore

a'{dA") = SX>(1A») > c'0Sx(lA,,o<p) =

Every point in A' is at distance at most B from some point in yxp~ XA",
whence |W~XA!'\ > M" 5 " 1 \A'\ > M~B~2 m'(A'). D

B. Cartesian products
If X\ and X2 are two graphs then their direct product X\ (8) X2 is the

graph with vertex set consisting of all pairs X1X2 where Xi G l j , and neigh-
bourhood given by

i ~ 2/1 and x2 ~ 2/2 •

The Cartesian product X\ x X2 has the same vertices, while

and x2 = 2/2 or xi = 2/1 and x2 ~ 2/2 •

Note that if both factors are bipartite graphs (that is, they have no closed
paths with odd length), then the direct product is disconnected. Also, if
Fi and F2 are finitely generated groups with Cayley graphs X(I \ , Si), then
the direct product is not necessarily a Cayley graph of the group Fi x F2,
while this is the case for the Cartesian product.

Analogously, we define the direct and Cartesian products of two networks
•A/i, A/2: if Q>i, i = 1,2, are the conductance functions of the two, then
Mi 0M2 has conductances a(xix2,2/12/2) = ai(#i,2/1)^2(^2,2/2) (again, this
is not necessarily connected), while for the Cartesian product Mi x M2 we
define

(4.8) a(x1x2,y1y2) = ai{xu 2/1)^2(2/2) + ^1(2/1)^2(^2,2/2) •

Finally, for two transition matrices Pi, P2 over X\ and X2, respec-
tively, their direct or tensor product Pi <S) P2 over Xi x X2 is given by
p(xix2,2/12/2) = Pi(xi,yi)p2(x2, y2). This definition is "natural" in the sense
that in the reversible case, Pi (8) P2 is the reversible chain associated with
the direct product of the corresponding networks. On the other hand, the
tensor product does not in general preserve irreducibility. Also, it is only
for dimension 2 that the direct product of d simple random walks on Z is
isomorphic with the simple random walk on Zd.
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A Cartesian product of Pi and P2 is a transition operator of the form

(4.9) P = cPi <8> I2 + (1 - c)h <8> P2 ,

where 0 < c < 1. The simple random walk on the Cartesian product
of two regular graphs is a Cartesian product of the simple random walks
on the factors. In general, the reversible Markov chain associated with
the Cartesian product of two networks is not a Cartesian product of the
reversible Markov chains on the factors. Still, under our usual adaptedness
conditions the two are comparable. Throughout this book, we shall prefer
Cartesian products to direct products.

(4.10) Theorem. Let Mi, i = 1,2, be two networks with associated in-
variant measures rrii such that supx. rrii(x) < 00. If Mi satisfies IS^ and
M2 satisfies ISd2, then M — M\ x M2 satisfies ISd1+d2-

Proof. Recall the definition of mixed norms: let 1 < p, q < 00 and / be
a real function on X\ x X2. Define g(x2) = ||/(*, #2)Up 5 taken in £p(Xi, mi).
Then ||/||p>g = \\g\\q, the latter taken in £q(x2,m2).

Now set pi = -dj±l (so that 1 < Pi < 00). Let / G IQ(XI X X2), and
write

Then we have

< — / / \f(xi,x2)— f(xi, y2) liriiixij a2\X2, y2)
2

On the other hand,

y E

By the interpolation theorem for mixed norms, there is K > 0 such that for
every choice of s,t > 0, s + t = 1, setting (-, -) = 5 (1, -̂ -) + t ( ^ , 1) we
have

| | / | | (P, , ) < « 5 v ( / ) for all / G 4,(*i x X2).
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Choosing s = d^+d , we get p = q = rf^j.^dj.1, which proves that J\f satisfies

(4.11) Remarks. (1) Similarly, one proves the following. Suppose that for
i = 1,2, the M% are networks satisfying ISdi and that for the corresponding
transition matrices, one has Pi > Ci Ii elementwise (where Q > 0 and Ii
is the identity matrix over Xi). Then the direct product M\ <S> A/2 satisfies

(2) Usually, the interpolation theorem for mixed norms is formulated
for a linear operator, say T, taking values in a product space, such that
| |T( / ) | | ( M ) < KpJ/H for different pairs (pq).

To see that the above proof is correct in these terms, let AT = (X, E1, r)
be an arbitrary infinite network associated with a reversible Markov chain.
Let tl(E) be the space of all u : E -> R such that ||u|| = Y*E K e ) l i s

finite. For a reference vertex o, consider the subspace ^\{M) = {V//f : / €
£0(X), f(o) = 0 } - . For each u € 1\{N) there is precisely one / : X -> R
such that f(o) = 0 and u = Vj^rf. Define T(u) = / . Then JSd implies
\\T(u)\\p < K \\u\\ for all u G ^(A/*), where p = ^ p Conversely, if this holds
for any choice of the base point, then we get ISd ' indeed, every / € 4>(^0 is
0 in some o € X. Transporting this to the context of products of networks,
we see that the above proof works in the correct setting.

(4.12) Corollary. Let Xi and X2 be two infinite graphs with bounded
geometry. If X\ satisfies ISdl and X2 satisfies ISd2 then X\ x X2 satisfies
ISdl+d2' I*1 every case, X\ x X2 satisfies IS2.

In this corollary, the simple random walk on X\ x X2 may be replaced
by any Cartesian product of the simple random walks on the factors (by
virtue of Proposition 4.5).

C. Isoperimetric inequalities and growth
From Corollary 4.12, we obtain the well-known fact that the grid %d

satisfies lSd. However, in general it is not a very simple task to prove an
isoperimetric inequality for a general graph. The goal of this subsection is
to relate isoperimetric inequalities and growth.

Recall the definition (§3.B) of the growth function of a reversible near-
est neighbour random walk (X, P) on a locally finite, connected graph X.
Also recall our requirement that the invariant measure (total conductance)
satisfies infx m{x) > 0.

(4.13) Lemma. If(X, P) satisfies ISd then VP(n) >Cnd for some C > 0.

Proof. We use induction on n. If n = 1, then the statement is true
for any C < 2 minx Vp(x, 1). (As X is infinite and connected, Vp(x, 1) >
2 infx Tn(-) > 0 for every x.)
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Suppose it holds for n — 1 > 1. Observe that

nd-(n- l)d < dri*-1 < d (2(n - l))

Let x € X. Then (using that P is nearest neighbour)

VP(x, n) > VP(x, n - 1) + a(dB(x, n - 1))

> VP(x, n - 1) + -VP(x, n - l ) 1 "

>C{n-l)d + -Cl-l

>Cnd+ (-C1-1^ - 2d-1Cd) (n - I)*"1.

Hence, the statement holds for n if C is chosen such that C /
2d~lCd, that is, C < l/(2d-1K,d)d. D

Under an additional condition, there is a converse to the last lemma. For
/ : X -> R, define

; yeBP(x,n)

This is the transition operator of a nearest neighbour random walk on the
n-fuzz X^n\ We say that (X, P) (or, in the case of the simple random walk,
X itself) is quasi-homogeneous if there is a constant rj < oo such that

(4.14) \\f-Pnf\\i<vnSp(f) forall/€

With the growth function, we associate the right semicontinuous functions

f(t) = min{n : VP(n) > t} and $(t) = $P(t) = t/f(2t), t > \ inf m(x).

(4.15) Proposition. If (X,P) is quasi-homogeneous (with constant rj)
then it satisfies IS$P with constant K = 2rj.

Proof. Let A C X be finite. Then, for arbitrary n,

m(A) = m[lA > 1] < m[\lA - PnlA\ > 1/2] + m[PnlA > 1/2].

By Markov's inequality, m[\lA - PnlA\ > 1/2] < 2||1A - Pnl>i||i, which by
quasi-homogeneity is < 2nrja(dA).

Now choose n = f(2ra(A)). Then Vp(x,n) > 2m(A) and consequently
PU1A(X) < m(A)/Vp(x,n) < 1/2 for every x € X. We get

m{A) < 2rj f (2m(A)) a(dA). D



4- Isoperimetric inequalities 47

(4.16) Corollary. If(X, P) is quasi-homogeneous and Vp(n) >Cnd(C>
0) then (X, P) satisfies ISd.

In Proposition 4.15 we did not use the assumption that P is of nearest
neighbour type. However, that will be used in the next steps, where we
study quasi-homogeneity.

(4.17) Lemma. It f e io(X) then

\\f-Pnf\\i<(s*T>ri(e,n))Sp(f),
V E J

where
( ) ( ) \ ( \

Proof. Let V be the difference operator associated with our network.
Observe that for x,y G X and TT G U(x,y) we have \f(y) — f(x)\ <
Yleen \^f(e)\ r(e)- W e compute

xex
VP(x,n) E - f(v))m(y) m(x)

m(y)\Ue(x,y)\ \
| n ( ) |

For Cayley graphs and, more generally, for quasi-transitive random
walks, the situation is as follows.

(4.18) Theorem. Let P be the transition matrix of a strongly rever-
sible nearest neighbour random walk on X. Suppose that (X, P) is quasi-
transitive. Then (X, P) is quasi-homogeneous and satisfies IS$P.

Proof. We first consider the (easier) case when (X, P) satisfies a strong
isoperimetric inequality. Actually, then we do not really need quasi-
homogeneity which serves here only as a tool for obtaining isoperimetric
inequalities. However, it is easy to see that (X, P) is quasi-homogeneous.
First, use quasi-transitivity and the fact that m is constant on each or-
bit of AUT(X, P) to work out that there is a constant C > 0 such that
V(y,n) ^ Cm(y)Vp(x,n) for all x,y G X and n G N. This yields
| |Pn/ | | i<C| | / | | i , and by IS,
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So now suppose that (X, P) does not satisfy IS. Then there must be a
sequence of finite subsets Ak of X such that a(dAk) < m(Ak)/k. In view
of Lemma 4.17, we show that 7/(e, n) <nrj for some finite rj.

Let Xi (i G X) and Ej (j G J) be the finitely many orbits of F =
AUT(X,P) on X and E, respectively. For e G E and x G X, we let
d(#,e) = d(e,x) = min{d(e~,x),(i(e+,x)} and define B(e,n) = {x € X :
d(x,e) < n} and Vp(e,n) accordingly. We introduce

s = max{d(x, Ej) : x G X , j G J} and 77 = max{r(e)Vp(e, 5) : e G E} ;

s and 77 are finite by quasi-transitivity and F-invariance of ra(-) and r(-).
Now set Ejtk = {e G i£j : d(e, Ak) < s}. For each x G Ak we choose
e = e(x) G £̂ -,fe such that d(e, x) < 5. Then

m(Ak)= J2 rn({x € Ak : e(x) = e}) <

Observe that rj(e,n) = r]j(n) is constant on each Ej. Therefore

\Ue(x,y)\

In order that ne(a;, y) be non-empty for some e € -Ê ,fc, it must be that
x s A)™ s' = {w G X : <Z(«;,.<4.fc) < n + s}. Also, we have the identity
£ e € £ Illefoy)! = d(x)2/) |n(x,y)|. Hence,

m(x) v - , , ,, , ^ m(4n + s ))
{ j'k

This holds for every n, A: G N and j G J. Now

\ Ak) < \dAk\ VP{n + s) < a(dAk) supr(e) VP(n + «).
E

By the choice of the Ak, we get \imk(m(A^l'{'s^)/m(Ak)) = 1. Hence
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5. Transient subtrees, and the classification
of the recurrent quasi-transitive graphs

We shall now present a purely graph theoretical theorem which, com-
bined with the results of the preceding sections, can be used to give a struc-
tural classification of those graphs which carry a recurrent quasi-transitive
random walk, thereby extending the corresponding result on groups (The-
orem 3.24).

A. Transient subtrees

In the sequel, ra(-) and a(-) will be the measures associated with the
simple random walk on the graph X. (In particular, ra(-) is integer-valued,
and a(-) is the counting measure on E(X).) Let # • N —> R+ be a non-
decreasing function such that #(n) —» oo. Consider the following weaker
version of the #-isoperimetric inequality.

(5.1) Definition. Given a "root" o € X, we say that X satisfies IS#,O , if
there is a constant n > 0 such that

$(m(A)) <na{dA)

for every finite A C X which is connected and contains o.

(5.2) Theorem. Let X be a graph with bounded geometry satisfying IS$jO

with respect to some root o € X. If X)n ^( n )~2 < °° then X contains a
transient tree with maximum degree 3.

Besides its application to the above classification problem, this theorem
is of interest by itself: trees are a well-understood class of graphs with a
particularly simple structure, and so it is of considerable interest to know
which graphs have transient subtrees. The proof of Theorem 5.2 is going
to be "elementary", but long. As a basic graph theoretical ingredient, we
need Menger's theorem, which can be derived from the max flow-min cut
theorem (Ford and Fulkerson [119]) and is proved in most books on graph
theory.

(5.3) Theorem. Let X be a graph and U, V C X such that \U\ = \V\ = k.
Suppose that for every A C X with \A\ < k, there is a path in X from U
to V which does not meet A.

Then there are k pairwise disjoint paths in X from UtoV.

We now set up some notation for the proof of Theorem 5.2. First of all,
as usual, we write M for an upper bound on the vertex degrees in X.

Components. Let X be a connected, locally finite graph with edge set
E = E(X). Let AcXUE (usually finite), and let Y be a subgraph of X.
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Then Y \ A is defined as the graph obtained from Y by deleting A and all
edges incident with vertices in A. If U C X \ A is connected, then we write
C(£/, A) for the connected component of X \ A which contains U. The finite
(infinite) part of X \ A is the union of all its finite (infinite) components; if
A is finite then the finite part is a finite graph by local finiteness.

We shall need that the root o has the property that C(o, y) is infinite for
every y G X, y ^ o.

(5.4) Lemma. If X has bounded geometry and satisfies IS#,O, where
$(k) —• oo, then there is x G X such that IS$,X holds and C(x,y) is in-
finite for all y ^ x.

Proof. Define

(5.5) Q(t) = max{A: : ff(fc) < t} , where t > S(0).

If C(o, y) is infinite for all y ^ o, then we set x = o. So suppose that there
is x such that C = C(o, x) is finite. Then $(m(C)) < na(dC) < K(M - 1),
so that d(o,x) < m(C) < %(K(M — 1)). Hence we may choose x such that
d(o, x) is maximal. We claim that x has the desired properties.

Let y =fi x. If y G C(o, x) then C(x, y) contains the infinite set X\C(o, x).
If y £ C(o,x) then d(y,o) > d(x,o) and C(x,y) = C(o, y), which is infinite
by the choice of x. Now let A C X be finite, connected and containing x.
Then, by monotonicity of #,

3(m(A)) <5(m(AuC)) <Ka(d(AuC)) <na(dA). •

By virtue of this lemma, we may assume for the rest of this subsection
that o itself has the desired property.

Rooted trees. We shall only consider finite or infinite rooted trees T with
maximum degree 3. Unless T = {o}, the root o will have degree degr(o) = 2.
We define the levels Sk = Sk(T) as follows. S0(T) = {o}, and for k > 1, a
vertex x eT lies in Sk if degT(x) = 3 and on 7r(o,x) there are precisely k
vertices with degree 3. We write S(T) = \Jk>0 Sk(T).

The infinite subtree of X that we shall construct will be a subdivision of
the binary tree with root o, that is, the minimum degree is 2, and \Sk\ = 2fc

for all k > 0. This tree will be constructed as the limit of an increasing
sequence of finite rooted trees.

If T is finite, then the leaves of T are the elements of L = L(T) = {xG
T : degT(x) = 1}. The level height of a leaf x G L(T) is

l(x) = max{fc : Sk(T) D TT(O, a;) ^ 0} ,
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and the level height of T is l(T) = mm^T) l(x). We shall only consider
finite trees with the above features such that

(5.6) 1{T) < l(x) < 1{T) + 1 for all x € L{T),

and we write U(T) = {x € L(T) : l(x) = l(T)}.
Now suppose that T is a finite subtree of our graph X, with root o, and

satisfying the above requirements, in particular (5.6). We write D{T) for
the set of all edges in E(X) \ E(T) which are incident with some vertex in
S(T), unless T = {o}, in which case we set D(T) = 0. (D(T) is also defined
when T is an infinite subtree of X.) We say that T is expandable if either
T = {o} or the following technical conditions hold.

(a) The component C(T\ L(T), D(T) U L(T)) in X is finite, and
(b) if A C X is such that ADT C L(T) and \A\ < \L(T)\ then there

is x € L(T) \ A such that C(x, D(T) U A) is infinite.

(5.7) Lemma. IfT is an expandable subtree of X and l(T) = k then the
boundary ofC = C(T\ L(T), D(T) U L(T)) in X satisfies

a(dC) < (M - 1) 2fc+2 .

In particular, every x € L(T) satisfies d{x,6) < R^, where Rk =
fc)

Proof. dC consists of D(T) and the edges in T incident with vertices
in L(T). This proves the first part. For the second part, observe that
$(d(x, o)) < ${m(C)) < K a(dC). •

Starting with To = {o}, we shall now construct an increasing sequence
of finite, expandable trees Tn in X, n > 0, such that each Tn is a proper
subtree of Tn+i. We describe the expansion algorithm.

Suppose that we have T = Tn. Let Y be the infinite part of X \ (D U L),
where D = D(T) and L = L(T).

Case 1. T ^ {o}, and there is B C Y U L such that (i) \B\ = \L\, (ii)
B^L, and (iii) C(T \ B,D U B) is finite.

We consider the subgraph W of X induced by all paths in X \ D from
B to L which meet B U L only in the endpoints. Then W is finite and
intersects neither T\L nor the infinite part of X \ (DUB). Also, if A C W
with \A\ < k = \B\ = |L|, then by property (2) of T, it must be that
\C(x, DUA)\ = oo for some x € L\A. Now either x e B or |C(x, DUB)\ < oo
by (iii), and in both cases there is a path in W from x to B. Theorem 5.3
applies, and there are k disjoint paths in W from LtoB. We now construct
^n+i by attaching these paths to L.
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We get a larger subtree of X with L(Tn+i) = J3, S(Tn+i) = 5(Tn) and
the same level heights as Tn. Property (a) holds for Tn+i by (iii), and
property (b) is inherited from Tn. Thus, Tn+i is again expandable.

Case 2. T — {o}, or there is no set B as in Case 1.
Let x G L' = L'(T), and choose a neighbour v of x in the infinite part of

X \(D U L). If x = o, then the existence of such a v is clear. Otherwise,
existence follows from property (b), setting A = L \ {x}.

Case 2.1 There is a set B' C (LUY)\ {x} such that (i) \B'\ = \L\,
and (ii) {v} U L \ {B1 U {x}) is non-empty and belongs to the finite part of
X\(DUB'\J{x}).

Then either L\B' contains an element different from x, or B'\j{x} D L;
in both cases, T\(B'\j{x}) also belongs to the finite part of X\(D\JB'\J{x}).
By Lemma 5.7, we may choose B' such that the measure of C(T \ L, (D U
B' U {x})) is maximal.

Now consider the subgraph W of X induced by all paths in X\(DU{x})
from B' to {v} U L \ {x} which meet these two sets only in the endpoints.
Then W is finite and intersects neither T\(L\{x}) nor the infinite part of
X\(DUBfU {x}). Now let A C W with \A\ < k = \B'\ = \{v} UL\ {x}\.
Suppose there is no path in W from B' to {v} U L \ {x}. Then it cannot
be that A = L \ {x} by the choice of v. But otherwise, B = A U {x} is as
in Case 1, a contradiction. (When T = {o}, we have x = o, \B'\ = 1 and
A = V) = L\{o}.)

Again, we may apply Menger's theorem to obtain k disjoint paths in W
from {v} U L \ {x} to B'. Together with the edge [x,v], we attach these
paths to T.

Next, x must have a neighbour w in the infinite part of X\(DUBfU{x}).
Otherwise, Br would have the properties of B in Case 1. (If T = {o} = {x},
then B' = {vf} is such that C(v, {o, v1}) is finite. On the other hand, C(o, vr)
is infinite by assumption. In this situation there must also be a neighbour
w of x in the infinite part of X \ {o, v'}.) We also attach w and the edge
[x, w] to T.

This completes the construction of Tn+1 in Case 2.1. We have that
D(Tn_|_i) is the union of D and the set of all edges incident with x besides
the three lying in Tk+X. Also, L(Tn+i) = B'U {w}. The level heights of
the points in B1 coincide with those of the corresponding points in L, with
the exception of the endpoint in B' of the path in W' starting in v: this
point, as well as w, has level height l(x) + 1. As a: € L'(T), we see that
Tn+i has property (5.6). We show that Tn+i is expandable: it has property
(a) by construction. To see that (b) holds, let \A\ < \L{Tn+1)\ -1 = \B'\
and A n Tn+1 C L(Tn+i), without loss of generality \A\ = \B'\. Either we
have A = B'\ in which case w € L(Tn+i) \ A satisfies the requirement of
(b), or else A does not have the defining property of B' by the choice of
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B' (maximality). In that case, there is u G {v} U L \ (A U {x}) such that
C(u, DUAU {x}), and hence also C(u, D(Tn+1) U A), is infinite.

Case £.£ If I?' as in Case 2.1 does not exist, then x must have a neighbour
w ^ v in the infinite part of X\(DUL). Otherwise, B = (L\ {x}) U {v}
would be as in Case 1. (If T = {o}, then existence of such a w follows from
the assumption that C(o, v) is infinite; recall Lemma 5.4.) We construct
Tk+i by attaching v, w and the edges [x, v] and [x, w] to T.

Again, Tn+i satisfies (5.6). We have Z/(Tn+i) = (L \ {x}) U {v,w},
and D{Tn+1) is £) plus all edges outside Tn+i which are incident with x.
Once more, Tn+i has property (a) by construction. If A C X does not
meet interior points (non-leaves) of Tn+i and \A\ = |L(Tn+i)| - 1 = |L|,
then there are two possibilities: either A = (L \ {x}) U {v}, in which case
C(w, D(Tn_j_i) U A) is infinite, or else A cannot be of type B' as in Case 2.1,
whence C(u, DUAU {x}) is infinite for some u G (L \ {#}) U {v}. But then
also C(u, D(Tn+i) U A) is infinite, and property (b) is satisfied.

This describes the algorithm for constructing the sequence of trees Tn.
By Lemma 5.7, the expansion of Case 1 (which changes no level height)
cannot be carried out infinitely often in succession. Hence (1) we have
l(Tn) —» oo, and (2) for each k > 0 there is n(k) such that l{x) = k for each
leaf x of Tn(*.). Write Lk for L(Tn^), and consider the union (limit) T of
the Tn. Then we can summarize the essence of our construction as follows.

(5.8) Proposition. Suppose that X is a graph with bounded geometry
satisfying IS$,O , where $ is non-decreasing and $(k) —> oo. Then X has a
subtree T which is a subdivision of the binary tree and such that for each
k there is a set Lk consisting of 2/c+1 vertices satisfying

(1) Lk fl Sk(T) = 0, and there is precisely one element of Lk on each
of the 2/c+1 paths in_ T which go from Sk(f) to 5fc+i(?) ;

(2) ifo' is the root off, then the component C(o',D(T) U Lk) in X
is finite for each k.

Note that it is not necessarily true that d = o; compare with Lemma
5.4. The component in (2) is that of Tn(k) \ Lk-

Proof of Theorem 5.2. We show that T has a finite energy flow with
input 1 from the root to oo. This implies transience of the simple random
walk on f and hence also of the simple random walk on X.

Given e G E(f), we choose e~ as the endpoint closer to the root. We use
the "simple" flow u on T: at each branching (vertex in 5(f)) , it subdivides
equally between the two outgoing edges. Thus, u(e) = l/2fc on each edge
between Sk-i(T) and Sk(T). Let Sk denote the number of all these edges
(k > 1). The energy of the flow is
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e£E{T) fc=l

Now, by monotonicity of $ and the isoperimetric inequality (recall Lemma
5.4),

(m(c{</, D(f) U Lfc))) < K (M - 1) 2fc+2.

Setting C—(AK (M — 1)) , we get that (it, w)/c is bounded above by

< E E s(si+- • -+^-i+o~2 = E ^n

fc=l fc=l i = l n = l

D

B. Transient subtrees in quasi-transitive graphs
We shall now complete the structural classification of all recurrent quasi-

transitive graphs. We start with the following observation, whose (easy)
proof is omitted.

(5.9) Lemma. Suppose F < AUT(X) acts quasi-transitively and that &
is a compact normal subgroup ofT. Then X is roughly isometric with the
factor graph &\X, and the two graphs have equivalent growth functions.

Losert [216] has extended the main result on groups with polynomial
growth (Theorem 3.17) to locally compact topological groups. Let F be
such a group, generated by a compact, symmetric neighbourhood U of the
identity, and with Haar measure | • |. The growth function of F with respect
to U is V(n) = \Un\. Change to another generating neighbourhood gives
rise to an equivalent growth function. For our purpose, the following result
of Losert [216] is important.

(5.10) Theorem. Let F be locally compact, generated by some compact,
symmetric neighbourhood of the identity. If there are C, d such that the
associated growth function satisfies V(n) < Cnd for infinitely many n, then
F has a compact normal subgroup & such that r / £ is a (possibly zero-
dimensional) Lie group.

From this, we can deduce the following.

(5.11) Theorem. Let X be a quasi-transitive graph whose growth func-
tion satisfies V(n) < Cnd for infinitely many n. Then X is roughly iso-
metric with a Cayley graph of some finitely generated nilpotent group. In
particular, there are an integer d(X) and constants Co, Ci > 0 such that

Co nd{x) < V(n) < d (n + l)d{x) for all n.
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Proof. Let F = AUT(X). Given an orbit XL, consider the graph
Y = X[ ~ ' as constructed in the proof of Proposition 3.9. It is roughly
isometric with X, so that Vy (n) < C nd for infinitely many n by Lemma
3.13. Choose o G Y and let U = {7 G F : dY{^o,o) < 1}. This is a
compact, symmetric neighbourhood of the identity which generates F, and
Uno = BY\n, o). We get that

Wn\ = Yl \heT:jo = x}\ = |ro| VY(n).
xeBY(n,o)

The assumption and Theorem 5.10 now yield that F has a compact normal
subgroup such that T/R is Lie. As F is totally disconnected and compactly
generated, T/& must be discrete (zero-dimensional) and finitely generated.

Consider the factor graph X' = &\X. It is roughly isometric with X
(Lemma 5.9), and T/Si acts quasi-transitively on X' as a closed subgroup of
AUT(X;). Vertex stabilizers in T/& are open and compact, whence finite.
By Proposition 3.9, X' is roughly isometric with a Cayley graph of T/&.
Applying Theorems 3.17 and 3.16 and Lemma 3.14 now yields the result. •

For d < 2, more is known.

(5.12) Theorem. If X is quasi-transitive with polynomial growth of de-
gree d G {1,2} then every quasi-transitive subgroup of AUT(X) contains a
discrete subgroup isomorphic with Zd.

In the case of linear growth (d = 1) this is obvious: in the above notation,
there is an element with infinite order in T/& acting with finitely many orbits
on the factor graph. Any of its preimages in F under the factor map has
infinite order and acts with finitely many orbits. On the other hand, for
square growth, the theorem is not easy and has been proved very recently
by Seifter and Trofimov [296]. We will not give the proof here.

The last theorems combined with Theorem 5.2 yield the result that we
have been looking for.

(5.13) Theorem. Let X be a quasi-transitive infinite graph. If some quasi-
transitive random walk (X, P) is recurrent, then X is roughly isometric
with the one- or two-dimensional grid: AUT(X, P) has a discrete subgroup
isomorphic with Z or 1? which acts quasi-transitively and fixed-point-freely

In this case, every strongly reversible, quasi-transitive random walk on
X with finite second moment is recurrent.

Otherwise, X contains a transient subtree.

Proof. If (X, P) as given is recurrent, then F must be unimodular
(Theorem 3.26) and the simple random walk on X recurrent (Corollary
3.29). This in turn yields unimodularity of every quasi-transitive subgroup
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of AUT(X), and Theorem 3.31 now yields recurrence of every strongly re-
versible, quasi-transitive random walk with finite second moment.

Let V(n) be the growth function of X. If V(n) < Cn2 then the simple
random walk on X is indeed recurrent (Lemma 3.12), and from Theorems
5.11 (and its proof) and 5.12 we see that A\JT(X, P) must have the stated
properties. (The fact that the action of Z or Z2, respectively, is fixed-point-
free follows from commutativity of these groups.)

Otherwise, Theorem 5.11 tells us that V(n) > Cn3. Prom Theorem
4.18 we get that X satisfies IS3. We can now apply Theorem 5.2 to get a
transient subtree. •

6. More on recurrence

In this final section, we present further results on recurrent random walks
on quasi-transitive graphs, trees, and planar graphs associated with tilings
and circle packings.

A. Generalized lattices
By a d-dimensional generalized lattice we mean a locally finite graph

whose automorphism group contains the free abelian group Zd as a quasi-
transitive subgroup. Prom Proposition 3.9 we know that such a graph is
roughly isometric with the d-dimensional grid and that it has polynomial
growth with degree d. If X is a recurrent quasi-transitive graph, then we
know from Theorems 5.12 and 5.13 that X is a generalized lattice with
dimension d = 1 or d = 2.

The purpose of this subsection is to determine further recurrence criteria
(besides strong reversibility) for quasi-transitive random walks on general-
ized lattices with dimension 1 or 2.

First, we recall what is known for random walks on the abelian groups
Z and Z2 themselves.

(6.1) Theorem. Let \x be an irreducible probability measure on Zd with
finite first moment Mi(//), and write

for the mean vector or drift of the associated random walk.

(a) If m(/i) / 0 then the random walk is transient.
(b) If d = 1 and m(/i) = 0 then the random walk is recurrent.
(c) If d = 2, M2(//) < 00 and m(//) = 0 then the random walk is

recurrent.

Proof. Part (a) follows immediately from the strong law of large num-
bers.
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(b) We use the following simple inequality, valid for any Markov chain
(X,P) : for all x,y G X and N G N,

N N N-k N

\ ^ p(n) (x, y) = 2^ p (xi y) /^ f (X5 y) — F(XI y) /^ p^ (y> y) •
n=0 k=0 j=0 n=0

Now we consider the translation-invariant random walk P = P^ on Z. Fix
M G N and set e = 1/M. Then, for any k G Z and N G N,

MiV MiV MiV

n=0 n=0 n=0

Consequently

MN MN

v^p^n)(o, o)> y^ y^p^(o , fc)
n=0 fc:|fe|<iVn=O

, MiV

n=0 k:\k\<ne

Now, by the weak law of large numbers and the fact that tn(/x) = 0,

lim V^ p(n\0,k) = l.
n^°° k:\k\<ne

Hence, as N —• oo, the right hand side of the last inequality tends to M/2,
and G(0,0) > M/2 for every M G N.

Part (c) is obtained by using Fourier transformation. We postpone the
proof to Chapter III, where we shall derive the asymptotic behaviour of
P{n){x,y). •

We now consider an irreducible random walk (X, P), where X is a gener-
alized lattice and AUT(X, P) contains a quasi-transitive subgroup isomor-
phic with Zd. For k G Zd, let 7k be the corresponding automorphism of
(X, P). Let X^ i G T, be the finite family of orbits of the latter group. As
mentioned in the proof of Theorem 5.13, the action of Zd must be fixed-
point-free. (Indeed, if some 7k fixes a vertex in some X^, then by commuta-
tivity it must fix every point in Xi. If it is different from the identity, then
it has infinite order and hence must have infinite orbit in some X^, a con-
tradiction. Note that finiteness of X is crucial in this argument.) Therefore
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we may choose a "root" 0{ in each of the Xi and we can identify I x Z d

with X via the one-to-one correspondence

zk <

In this notation, we have

(6.2) p(ik, j (k + 1)) = p(iO,jl) for all i j e l and k, 1 € Zd .

The factor chain (/, P) has transition probabilities

As X is finite, it is positive recurrent and has a unique invariant probability
measure v\ see Theorem 1.18. The random walk on X can be decomposed
as a pair

Zn
 = ZnYn i

where (Zn)n is the factor chain and (Yn)n is a sequence of Zd-valued random
variables. For each i € J , define a sequence of stopping times by

t j = t* = min{fc > 0 : Zk = i} and t^+ 1 = min{k >ti
n:Zk = i};

compare with (1.12). Here Vn is the time of the nth visit of (Zk)k>i to
the orbit X\. By recurrence of P, this is a.s. finite. From the general
theory of finite-state Markov chains (e.g. Chung [75]) it is known that t i
has moments of all orders (indeed, Ej (exp(ct\)) < oo for some c > 0), and
v(i) = 1/EiiV).

Furthermore, (t^—tjl_1)n>2 is a sequence of i.i.d random variables. They
have the same distribution as t^, when ZQ e Xi. In this case we set tl

0 = 0,
and obtain the induced random walk (^t^)n>o on X{. The following is
obvious.

(6.3) Lemma. (X, P) is recurrent if and only if the induced random walk
on some (•<=>• every) Xi is recurrent.

Now, the induced random walk on Xi may be identified with the Markov
chain

on Zd. Its transition probabilities inherit from P the translation invariance
under the action of Zd. Thus, it is a random walk on Zd whose law is given
by

= Pi0[tl < oo, Zti = ik].
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(6.4) Proposition. If Mr(P) < oo (r > 1) then the rth absolute moment
Mr(jii) is also finite.

Proof. Consider the usual Cayley graph of Zd, that is, the grid. We
know from Proposition 3.9 and its proof that the mapping if : X —> Zd,
<p(ik) = k is a rough isometry. Hence,

|k|rMi(k) < oo «=> EOi(d(Z0,Zti)
r) < oo.

We know that t* has moments of all orders. Here, we shall need finiteness
of the following three quantities:

A = EOi(t
i), S=supEJB((ti)r-1), C = f2kr-1FOi[t

i>k\.

Using the inequality (ai H h an)
r < nr~1{a[ H h ar

n) (where a^ > 0),
we obtain

oo n

EOi (d(z0, zto
r) < E E n r " l E ^n = l f c = l

where

(/) = f ; V-1 EOi (d(zk.lt zky i[t<=fc])
fe=l

and

In order to bound (/), we write

" 1 = ^ , t* > A;] E p(x, y) d(rc, 2/)r < Mr(P) POi [ti > k]

We get (/) < CMr(P). Next, for n > k we write

EOi(d(Zk-UZk)
rllti=k])

= E Po i [^fc- i=«, t*> *] E P(
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substitute n-k with n in (II) and use (n + k)r~x < 2r~2(nr"1 + kr~x) to
obtain

(II) <2r~2

k=l

n=l
oo

<2r"2]T E Vot[Zk-i=x, V>k] ]T P(
k=l x€X\Xi y£X\Xi

oo

< 2r"2 J^PoJt* > fc] Mr(P) (S + A;7-1) < 2r"2 Afr(P) ( 4 5 + C).
k=i

Thus, both (/) and (//) are finite. •
In view of Theorem 6.1, we are now looking for a condition which guar-

antees xn(fii) = 0. Let us define a new transition matrix P on X:

The resulting Markov chain will in general not be irreducible, as it is ab-
sorbed after one step in the set

X = {j\: p(iO,j\) > 0 for some iel}.
The significance of (X, P) is that it keeps track of the increments in the
Zd-component of the original chain. More precisely, if we have the original
sequence of random variables Zn = ZnYn, then we define

(6.5) Zn = ZnYn, where Yo = Yo , Yn = Yn - Yn-X (n > 1).

We get that (Zn)n is (a copy of) the Markov chain with transition matrix
P and starting with ZQ.

(6.6) Lemma. Restricted to X, the transition matrix P is irreducible and
has an invariant probability distribution P, given by

Proof.^ Using that v is the invariant probability distribution of the factor
chain (/, P) , it is straightforward to show that v has total mass 1 and is
invariant for P.

To see irreducibility, let j i h , J2I2 £ X. Then there is i G T such that
p(ik,J2h) = p(iOJ2h) > 0 for all k G Zd. Using irreducibility of (X,P),
we can find n such that p(n)(jih,i0) > 0. Translating this into P , we
get that there is some k G Zd (the increment of the last step) such that
p(nHjih,ik) > 0. In combination, we get p(n+1)(jili,J2I2) > 0. •
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Now we can deduce a law of large numbers for random walks on gener-
alized lattices.

(6.7) Theorem. In the above setting, suppose that Mi(P) < oo and define
the drift of P by

Then

lim ^Yn = tn(P) Px -almost surely for every x G l , and

lim ^d(ZOi Zn) = 0 almost surely <=> m(P) = 0.

Proof. We consider (Zn)n>i as defined in (6.5). This positive recurrent
Markov chain lives on X with invariant probability distribution v (Lemma
6.6). If / : X -> Rd is any function such that ]R \f\dv < oo, then the
law of large numbers for functionals of a recurrent Markov chain (see Revuz
[276], Thm. 4.3 and remark, p. 140) tells us that

1 n f
lim — V / ( Z n ) = / f dP almost surely

n-"°° n £r[ Jx
(for every starting distribution). Setting /(ik) = k, finiteness of M\(P)
implies i/-integrability of | / | . Furthermore, J^. f dv = tn(P), and we get
that

1 n 1
-YYk = -{Yn-Y0)-> m(P) almost surely.ntl n

The statement on convergence to 0 follows from the fact that (f(ik) = k
defines a rough isometry. •

Now we can finally state the recurrence criterion that we have been
looking for.
(6.8) Corollary. Suppose that AUT(X, P) contains a quasi-transitive sub-
group isomorphic with Zd, and that M\{P) < oo.

(a) If tn(P) ^ 0, or if d > 3, then the random walk is transient.
(b) If d = 1, or if d = 2 and M2(P) < oo, then the random walk is

recurrent if and only if m(P) = 0.

Proof. Transience for d > 3 is clear. Let ^ be the law of (It^n^o*
which, as well as t^, is a sequence of sums of i.i.d. random variables. By
Proposition 6.4, /^ inherits finiteness of the first moment from P. By the
law of large numbers,

Yti t* ~ • 1
—- —• m(/Xi) and — —• Ei(t5) = ^-r almost surely.
n n v(i)
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Prom Theorem 6.7 we get that

n tl
n n v(i)

Hence, m(^) = m(P)/v(i) is equal to 0 if and only if m(P) = 0. Using
Proposition 6.4, the results now follow from Theorem 6.1. •

Consequently, in view of Theorem 5.12, if X is a graph with linear or
square growth, and if (X, P) is a quasi-transitive random walk with finite
first moment, then we can find a quasi-transitive subgroup of AUT(X, P)
isomorphic with Z or Z2, so that we can compute tn(P) and decide on
recurrence or transience. (If X has square growth then we also need P to
have finite second moment.)

B. More on trees
Here, we shall present a recurrence criterion for nearest neighbour ran-

dom walks on trees, which involves the boundary at infinity and the notion
of logarithmic capacity.

(6.9) Definition. Let (M, 0) be a compact metric space, and let v be a
Borel measure on M. The logarithmic potential of v is the function

<j>e{x\v)= I -\ogO(x,y)dv(y)
JM

on M. The logarithmic energy of v is

hiy)= I <t>e{x\v)dv{x).
JM

The logarithmic capacity of a Borel set B C M is

£ ) = s\xp{v(B) : v a non-negative Borel measure with U(y) < 1} .

Note that Cap^(-B) > 0 if and only if there is a probability measure with
finite logarithmic energy such that u(M\B) = 0.

Now let T be an infinite, locally finite tree; compare with §1.D. A (geo-
desic) ray in T is an infinite path TT = [xo,xi,£2,...] w ^ n o u ^ repeated
vertices. (We also think of TT as a sequence of edges.) Two rays TT, TT' are
said to be equivalent if their symmetric difference has finitely many vertices.
An end of T is an equivalence class of geodesic rays. The boundary of T
is the set $T of all ends of T. We set f = T U $T. If x € T and £ G #T,
then £ (as an equivalence class) has a unique representative which is a ray
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starting at x, denoted by TT(X, £). If x, y are two distinct vertices of T, then
we define the "branch" Tx>2/, its closure TXiV and its boundary by

TXtV = {wef :yen(x, w)} , Tx,y = T fl fL,y and tfTx>y = #T (1 fx,y .

T becomes a compact, totally disconnected Hausdorff space: a subbasis of
the topology is given by the family of all augmented branches TXiV ; each of
these is compact and open. Fix a root o. For v £ T, write \v\ = d(v, o). For
v, w G T, their confluent v Aw is the last common vertex on the geodesies
?r(o, V) and TT(O, M). This is a vertex of T, unless v = w G $T, in which case
v Aw = v. Now

(6.10) ^ ) W ) = {
^ exp(—\v A w\) ,

defines an ultrametric which induces the topology of T. In order to define a
Borel measure v on tfT, it is enough to specify the values v^To^), x ^ o,
consistently. As all these sets are open and compact, it is enough to check
finite additivity. The usual extension machinery (Caratheodory's theorem)
does the rest for us.

Choose the orientation of edges such that for each e G E(T), the endpoint
closer to o is e~. Measures v on $T are in one-to-one correspondence with
flows u from o tooo via

(6.11) t*(e) =

The input at o is i/(#T). No energy is yet involved; u being a flow means
X)e+=x u(e)~Yle-=x u(e) = ~V{^T) 6o(x). If we think of T being grounded
at #T, then for B C #T, the amount flowing out of T through B is i/(B).

Now let P be the transition matrix of a nearest neighbour random walk
on T. Then P is reversible with respect to the measure

( 1, x = o,
(6.12) m(x) = ^ ^

Let r : -E(T) —> (0, oo) be the associated resistance function. Think of r as a
length element, inducing a new distance dr on T by dr(x, y) = Yleen(x y) r(e)
for x ^ y. We write |v|r = dr(v,o). As in (6.9), one can use this metric to
define a new ultrametric 0r on T.

(6.13) Theorem. The random walk on T is transient if and only if
Ca P 6 , r (# r )>0 .

Proof. Let i / b e a Borel measure on $T and u the associated flow ac-
cording to (6.11). We write <f)r = 0#r and claim that for every £ G #T,

(6.14) 0r«k)= £ r(e)u(e)
e€£(T)
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Let en, n > 1, be the successive edges on the ray 7r(o, £), such that e^ = o
and e+ = e~+1 = xn. Then (with 0 • oo = 0 as usual)

= Kir * £
n=l

( JT r(en) v(#To>xJ - \xN\r v(#To,XN+1)

Set /jv(n) = r(en) max{0, i/(#TO)a;n) - v(&TOiXN+1)} • This is non-decreasing
in N, and as N —> oo, the pointwise limit is f(n) = r(en) (i/(^TO)iCTi) —
V{{£})) . By monotone convergence, we get

oo

£ r(en) (n(en)
n=l

= 0 then we see that (6.14) is true. If !/({£}) > ° a n d l^lr < oo then
5^nr(en) z/({^}) cancels with |^|r^({^})5 and (6.14) is again true. Finally,
if v({£}) > 0 and |£|r = oo then each side of (6.14) is equal to +oo.

Integrating both sides of (6.14), we see that Ior{v) = {u, u), the energy of
the flow with respect to t?(E{T),r). Consequently, there is a finite energy
flow with input i$ = 1 from o to oo if and only if there is a probability
measure v on fiT with Ie{v) < oo, that is, if and only if Cap0r(#T) > 0.
The result follows from Theorem 2.12. •

As a simple application, we can now explain recurrence of the comb
lattices in (2.21) from a more general viewpoint.

(6.15) Corollary. If $T is countable and |f|r = oo for all £ € #T, then
the random walk is recurrent.

Proof. If v is a probability measure on fiT then there must be £ G $T
with i/({f}) > 0. But then I9r{v) > |f | r i/({£})2 = oo. •

This applies, in particular, to the simple random walk on a tree with
countably many ends and also to all nearest neighbour random walks on
such trees with inf^(T) r(e) > 0.
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(6.16) A recurrent tree with exponential growth around each
point. Let T be the tree with root o constructed as follows: o has two
"sons". For n > 1, the sphere S(o,n) = {x G T : d{x,o) = n} has 2n

elements Xi,n, i = 1 , . . . , 2n. Each of these has its "father" in 5(o, n — 1); for
i = 1,... ,2n~l, the vertex x^n has the three "sons" X3i_2,n+i, #3i-i,n+i
and #3^n+i, while £2n-i_Kn

 n a s o nly o n e "son" #3.2n-i+i>n. Thus, V(o, n) =
2 n + 1 - 1. Besides the "leftmost" ray [o ,^ ! , ! , ^ !^ ,^ !^ , . . . ] , every geodesic
ray starting from o has only finitely many vertices with three "sons". In
particular, $T is countable and the simple random walk on T is recurrent.

Figure 5: a recurrent tree

(6.17) Exercise. Prove recurrence of the tree of Figure 5 by direct use of
the flow criterion (Theorem 2.12(b)).

(6.18) Trees associated with subsets of [0, 1]. Let A be a closed subset
of the unit interval [0, 1], and let q > 2 be an integer. We associate with
A a tree T = T(A,q) as follows. Set Jijfl = [(j - l)/qn, j/qn]. Then the
vertices of T are points Xj,n (n > 0, j G { 1 , . . . ,#n}), such that Jj^n has
non-empty intersection with A. Two vertices are neighbours if they are of
the form XjjU and Xk,n+i, and Jfc,n+i C J^n.

We ask when the simple random walk on T(A, q) is recurrent. For ex-
ample, if A is the "middle third removal" Cantor set, then T(A, 3) is the
binary tree, which is transient.

Take the vertex o = xi?o corresponding to [0,1] as the origin. Let
£ e 'dT. The geodesic ray TT(O,£) corresponds to a decreasing sequence
of intervals whose intersection is a point z G A. We define a mapping
<p : 'dT —* A by (p(£) = z. It is continuous, indeed

(6.19) \V(O ~ V(V)\ < 0(Z,v)losq ,

where 6 is the metric defined in (6.10). Also, ip is one-to-one except possibly
at countably many points which are mapped to g-adic rationals and where
<p is two-to-one.
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(6.20) Theorem. T(A,q) is transient if and only if A has positive logar-
ithmic capacity with respect to the metric of R.

Proof. Let v be a probability measure on $T, and let V denote its image
under (p, that is, v(B) = v{^p~1{B)^. Then (6.19) implies that for every

£e$T

- y\ du(y)[ ri) < /
J#T log Q Jo

and hence

(6.21) I{9)>Ie(y)\ogq.

For a bound in the other direction, first observe that $To,Xjn = ^>~1{Jj^n)
for Xji7l e T\{o}. Therefore we can write, using (6.14) and integrating with
respect to i/,

n=lj=l

Next note that for 0 < a < 1, we have qk~l < a~x < qk with k =
X)n>o 1[o,g—](a)^ whence

oo

- log \x - y\ < l o g ^ ^ l[0,6-n](|x - 2/|)
n=0

for x,ye[Q,l]. Now, if \x - y\ < q~n, n > 2, then

(X,y) e Jj,n-1 X J ^ n - l U Jjqin X Jjq+l,n U Jjg+l,n X ^'9,n

for some j € { 1 , . . . , ^ n ~ 1 } . Hence (using 2ab < a2 + 62)

for n > 2. Now we compute the logarithmic energy of v on [0, 1]:

lip) = / -log\x-y\ dv{x)di>{y)
Jo Jo

oo

2uxi?({(x,y) : \x - y\ < q~n})
n=0

n=2 j=l
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Hence

(6.22) I(P)<2(l + I0(v))logq.

We can now conclude the proof. We apply Theorem 6.13 (with r = 1). If
Cap0($T) > 0 then there is a probability v on $T with Ie(y) < oo. Defining
P on [0, 1] as above, we get from (6.22) that I(P) < oo, and Cap(A) > 0.
Conversely, if I(p) < oo for some probability measure supported by A, then
v carries no point mass. Hence, using the fact that <p is two-to-one at at
most countably many points, we can define a probability measure v on $T
by v(B) = p(ip(B)), and the image of v under <p is P. Thus, by (6.21),
Ie(y) < oo. •

In particular, we see that recurrence (or transience) of T(A, q) does not
depend on the choice of q. Also, if A has positive Hausdorff dimension then
T(A, q) is transient.

C. Extremal length and plane tilings
In this section we present another recurrence criterion for reversible

Markov chains with finite range, that is, giving rise to a locally finite net-
work. The criterion will be applied to the edge graphs of a class of tilings
of the plane. Let (X, P) be reversible with E = E(P), resistance r(-), total
conductance m(-) and associated network A/*.

(6.23) Definition. Let n be a set of non-empty simple paths in J\f. The
extremal length EL(U) of n is given by

EL(U) = (inf{(u,ti) : u G P+(E,r), L(U\u) > I } ) ' 1

= sup{L(n|u)2 : u G £%(E, r), <ti, u) = 1} ,

where L(U\u) = inf{L(TT\U) : TT G n } , with L(n\u) = £}e(E7r u(e)r(e).

(It is a straightforward exercise to show that the two expressions for
EL(U) coincide.) For x G X, let Ux denote the set of all one-sided infinite
simple paths starting in x.

(6.24) Theorem. If(X,E) is locally finite then cap(x) = E L ( n x ) - 1 for
every x G X. In particular, (X, P) is recurrent if and only if EL(UX) = oo
for some (4=> every) x G X.

Proof. The capacity used here is of course the one of (2.10) and Theo-
rem 2.12.

First, let / G IQ(X) be such that f(x) = 1. Define u(e) = |V/(e)|. If
7T = [x = XQ,X\,X2, . . . ] G l l x then f(xn) = 0 for all but finitely many n.
Therefore

n = 0
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Consequently D(f) = (u,u) > ^ ( I Ix )" 1 , and thus cap(x) >
The reverse inequality needs more work. Let B c X be finite and

connected, with x G B\dB, where dB = {y e B : d(y,X \ B) = 1}.
Write Iix,y(B) for the set of all simple paths in B from x to y, and
n*(£) = \Jy€dB

 n*>2/(5)- W e s h o w t h a t

(6.25) cap(x) < B I ^ J B ) ) " 1 .

Let e > 0. Then there is u G ^_(£, r) such that L(TT|W) > 1 for all n G UX(B)
and (u,u) < £71,(11^(5))""1 + e. We define a function # : £ -• [0,oo) as
follows.

g{x) = 0, and g(y) = inf{L(7r|n) : TT G 11̂

If ?/ G <£B then p(?/) > 1. If y,w G B are neighbours and TT = [x =
xo, xi,..., xn = y] G Hx,y(B), then the path [xo, ^i5 • • • ? ^n, ^] is not nec-
essarily simple but can be made simple by deleting the piece after the first
appearance of w. Hence

g(w) < L(TT\U) + u([y, w])r([y, w]),

and passing to the infimum over all n G Hx,y(B), we obtain g(w) < g(y) +
u([y, w])r([y, w]). Exchanging the roles of y and it;, we see that g(e+) —
g{e~) < u(e)r(e) for all edges with endpoints in B. Now define / G A)(^0
by

f(x) = max{l - g(x), 0} for x G B and f(x) = 0 for x G X \ B .

We get f(x) = 1, supp/ C 5 and |V/| < u. Therefore cap(J5) < D(f) <
(u,u). This proves (6.25).

Now replace B with Bn = B(x, n), which is finite by assumption, and let
n —• oo. The theorem will be proved when we show that EL(lix(Bn)) —•
EL(HX). To this end, start with u G £+(E,r) having norm 1, and consider
Ln(u) = L(jlx(Bn)\uy By local finiteness, each Ux(Bn) is finite and there
is a path -KU G IIx(i?n) such that Ln(u) = L(7rn\u). By truncating 7rn+i at
the end, we obtain a path TT^+1 G nx(J5n), and we get

Ln(u) < L(7rf
n+1\u) < L{-Kn+1\u) = Ln +i(w).

In a similar way one sees that Ln(u) < L(ILx\u).
Again using local finiteness, there must be an (infinite) path TT = [x =

xo, a?i,... ] G Hx such that 7rn —> n pointwise. That is, for every m, all but
finitely many of the ?rn start with [xo, • • •, #m]5 so that

L([x0,... ,a:m]|u) < L(7rn\u) = Ln(u) < lim Ln{u).
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Letting m —> oo, we see that L(u) < L(TT\U) < limn Ln(u). Therefore

lim Ln{u) = L(Ilx\u).
n—>-oo

We now get, using monotonicity of EL(Ux(Bn)) in n,

L{Ux\u) < lim^EL^iBn)) < EL(UX).

Taking the supremum over all u, we obtain the required limit. •

Next, we study limits along paths.

(6.26) Lemma. Let f G V(Af). For xeX, set

Wx = 17T 6 Ux : ]T |V/(e)|r(e) < oo 1 .
I eGTr J

Proof. Set u = |V/|. Then it £ ^+(^,r) and L(7r|n) = oo for all
7T € Ila; \II^. Now use the second of the two definitions of extremal length. •

In particular, / converges along each path IT = [xo,xi,.. . ] £ n^ in the
sense that limn f(xn) exists. Combining the lemma with Theorem 6.24, we
get another sufficient criterion for recurrence.

(6.27) Corollary. If there is f € £>(.A/") such that f does not converge
along any path in Ux, then the random walk is recurrent.

We shall now apply this criterion to a class of planar graphs arising from
tilings with certain properties.

Let O be an open, simply connected subset of the Euclidean plane M2.
A tiling of O is a family T of closed topological disks T C O (the tiles) with
pairwise disjoint interiors and such that (JTGT T = O. Here we shall always
assume that T is locally finite, that is, every compact subset of O intersects
only finitely many tiles. A connected component of the intersection of two or
more tiles is called a vertex if it is a point and an edge if it is an arc, in which
case it arises from the intersection of two tiles. Local finiteness implies that
the boundary of each tile is the union of a finite number of edges. With this
definition of vertices and edges, we obtain the edge graph X(T) of the tiling.
In order to avoid multiple edges, we always require that the boundary of
each tile has at least three edges. Thus, X(T) is a planar, locally finite,
connected graph. The reader is referred to the book of Griinbaum and
Shephard [152] for many figures and all basic facts concerning tilings.

Given any tile T, we denote by DT the maximal distance from the origin
to a point in T.
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(6.28) Definition. Given m G N, 0 < A < 1 and K > 0, a tile T is called
(ra, A, /s)-regular if

(1) ; the boundary of T consists of no more than ra edges,
(2) diam(T) < AflT, and
(3) diam(T)2 <*area(T).
The tiling T of O is called quasi-regular, if there are ra, A, K such that

all but finitely many edges lie on an (ra, A, «)-regular tile of T.

Quasi-regularity of tilings is scale- and translation-invariant. Soardi [304]
calls a tile quasi-normal, if (1) holds, and instead of (2) and (3) one has the
more restrictive conditions diam(T) < 6 < oo and diam(T) < ftinradius(T)
for all tiles. A picture of a quasi-normal tiling of R2 can be found on the
cover of Soardi's book [304]; its edge graph has exponential growth at each
vertex. In particular, the tiles in a quasi-normal tiling may be arbitrarily
small, and in a quasi-regular tiling they may even be arbitrarily big, as long
as (2) holds.

(6.29) Theorem. IfT is a quasi-regular tiling of the plane R2, then the
simple random walk on X(T) is recurrent.

Proof. Define the radial function

-|z|2))V zeR2

(I • I denotes the Euclidean norm). Let / be the restriction of F to the
vertices of the tiling. We claim that / has finite Dirichlet sum.

First of all calculate |VF(z)|2 < /i(|^|), where V is the ordinary gradient,
and

h(r) = 4((1 + r2)(1 + log(l + r2))2)~*.

Let ra, A, n be the constants of Definition 6.28. Call an edge good if it lies
on a regular tile (and bad, otherwise). Now consider a good edge [x,y] and
a regular tile T containing it. Then \x — y\ < diam(T), and

| / ( * ) - / ( l / ) | 2 < | * - l / | 3 / \VF((l-t)x + ty)\2dt

f1

<diam(T)2/ h(\(l-t)x + ty\)dt.
Jo

Choose a point ZT £ T such that \ZT\ = $T- Every point w on the line
segment between x and y is at distance at most diam(T) from ZT- Hence
IH > DT — diam(T). Using the monotonicity of h and condition (3), we
continue:

< diam(T)2/i(5T-diam(T)) < Karea(T) h{*T)^
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Now h(Pr) is the minimum of h(\z\) on T, while the function which maps
r to /i((l — \)r)/h(r) is bounded for r £ [0, oo). We obtain

|/(x) -f(y)\2 < Carea(T)/i(DT) < C / h(\z\)dz,
JT

where C depends only on K and A. The tile T has at most m edges, so
that summing \f{x) — f(y)\2 over all edges of T yields the upper bound
mC JTh(\z\)dz. Each good edge is common to one or two regular tiles.
Therefore, writing A for the (finite) sum of \f(x) — f(y)\2 over all bad
edges,

D(f) < A + mC^/i(|zT|)area(T) <A + mcf h(\z\)dz <oo.

To conclude the proof, in view of Corollary 6.27 we now show that / does
not converge along any infinite simple path in X(T). A (formal) simple
path [xo,#i,...] corresponds to a curve in R2 without self-intersections; it
is the union of all edges [xn>#n+i] (arcs on the boundaries of tiles). As
the tiling is locally finite, this curve is infinite and not contained in any
compact subset of M2. As the function F is radial and oscillates between
— 1 and 1, there is a sequence of points Wk on the curve such that \wk\ —» oo
and F(wk) = (—l)k> Each Wk lies on some edge [xn(k)ixn(k)+i], which in
turn lies on some tile denoted by T^. Suppose without loss of generality
that Tfc is regular, and write dk = ^Tk • As above, we use the fact that each
z eTk satisfies (1 - \)dk < $k - diam(T)fc) < \z\ < U .̂ Therefore, for each
pair of points w,z G T^,

| F M - F(z)\ < | log(l + log(l + \w\2)) - log(l + log(l + \z\2)) |

As k -^ oo, also dk —> oo, and the last expression tends to 0. Consequently

l/(*n(fc)) - (-l) f e | = \F(xn(k)) - F(wk)\ < 1/2

for all sufficiently large k. As k —> oo, it must be that n(k) —• oo, so that /
does not converge along the given path. •

D. Circle packings and random walks
A packing in the plane consists of a collection V of closed topological disks

Cx (x £ X, where X is an an index set) with pairwise disjoint interiors. The
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Figure 6:
a (finite) circle packing
and its contacts graph

contacts graph or nerve of the packing has vertex set X, and two vertices x, y
are neighbours if Cx D Cy ^ 0. Here we shall only consider circle packings,
that is, packings where each Cx is a geometrical disk; see Figure 6. (The
terminology "disk packing" might be more appropriate.)

A disk triangulation graph X is denned as the edge graph of a triangula-
tion of an open topological disk A, that is, a locally finite tiling of A all of
whose tiles are triangles. In this context, the circle packing theorem (orig-
inally stated and proved by Koebe [207] for finite planar graphs) says that
there is a circle packing in R2 = C whose contacts graph is isomorphic with
X. We can realize the contacts graph by taking the centres of all circles
and connecting two of them by an edge whenever the corresponding circles
(disks) touch each other. The new graph thus obtained is isomorphic with
X, and the union of all its triangles is called the carrier carr('P) of V. The
packing is locally finite in carr('P) (each compact subset of carr(P) intersects
only finitely many circles). For more details, see Beardon and Stephenson
[30] (for the case of bounded vertex degrees) and He and Schramm [168]
(general case), who have proved the following fundamental result.

(6.30) Theorem. Let X be a disk triangulation graph as above. Then
there is either a circle packing V with contacts graph X whose carrier is the
whole plane C, or one such that its carrier is the open unit disk ID), but not
both.

In the first case (carr('P) = C), the disk triangulation graph X is called
CP-parabolic and in the second case CP-hyperbolic. We would like to link
these properties with the behaviour of the simple random walk on X. The
latter depends only on the "abstract" graph structure and not on the par-
ticular realization of the graph, so that the study of the simple random walk
will lead to a priori criteria for CP-parabolicity or -hyperbolicity.

Let V be a circle packing whose tangency graph is X. Instead of the
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Figure 7: two triangles

with common edge z(x) z(y)
and inradii xr = x'{x, y)

z(v")

simple random walk we consider a reversible nearest neighbour random
walk with conductances a(x,y) = ap(x,y) depending on V. Given x G l ,
write z(x) = z*p{x) for the centre of the circle Cx in V, and x(x) = t-p(x)
for the radius of Cx. If x ~ y, then x and y have two common neighbours
vf and v" in X. Let x\x, y) — xf

v{x, y) and t"(x, y) = r^(x, 2/) be the inradii
of the triangles z(x)z(y)z(vf) and ^(x)z(y)z(i;//), respectively; See Figure 7.
Then we set

/ t(a;)t(y)t(t;//)
V t(*)+t(y)+t(t;"

Let P = Pp be the transition matrix of the resulting random walk.

(6.31) Proposition. The function x »-• z(x) is a complex-valued harmonic
function for P.

Proof. Let x £ X, and enumerate the neighbours yo,... ym-i, Vm — Vo
of x in circular order. Let Wj (j modulo m) be the incentre of the triangle
z(x)z(yj)z(yj+\)i and look at the closed polygon [wo, wi,..., wm = wo]. We
have Iwj-Wj-^ = x?(x,yj)+x"(x,yj). Also, rjj = l^+*[*) is the outward
normal unit vector to the segment wJZ\Wj. Therefore



74 /. The type problem

Now write Wj — Wj-i = \WJ — Wj-i\ el<fij, where <pj G [0, 2TT), SO that rjj =

3=1 3 = 1

(6.32) Corollary. If X is CP-hyperbolic then the simple random walk on
X is transient.

Proof. There is a circle packing V with carrier D and tangency graph
X. Let P — Pp be as above. Then h{x) — ~Re(z(x)) is a bounded, non-
constant harmonic function for (X, P). Hence there is a non-constant pos-
itive harmonic function, and by Theorem 1.16, (X, P) must be transient.
The conductances associated with P satisfy a(x, y) < 1. Now Corollary 2.14
implies transience of the simple random walk. •

Next, we study the CP-parabolic case under the additional assumption
that X has bounded geometry. We shall need the following simple observa-
tion regarding any circle packing V with tangency graph X.

(6.33) Ring Lemma. Suppose that X has vertex degrees bounded by M.
Then there is a constant a = CLM > 1 such that a"1 < t(x)/x(y) < a for any
pair of neighbours x,y in X.

The point is that one cannot surround a given circle by M circles, if one
of the latter is too small. For more details and an illustration, see Rodin
and Sullivan [278]. We can now prove the main theorem of this subsection.

(6.34) Theorem. Let X be a disk triangulation graph with bounded ge-
ometry. Then X is CP-parabolic if and only if the simple random walk on
X is recurrent.

Proof. The "if" is Corollary 6.32. To prove the "only if", let V be a
circle packing of the plane with tangency graph X. Then V itself gives
rise to a tiling of the plane, still denoted by V, whose tiles are the disks
of the packing and the "triangular" interstices between the circles. Using
Theorem 6.29, we first show that the edge graph X* = X(V) of this tiling
is recurrent. Each circle Cx (x G X) is subdivided into deg(x) < M arcs
between the consecutive points where Cx touches an adjacent circle. The
vertices and edges of X* are precisely these points and arcs. We now show
that all but finitely many Cx are (M, 2a/(1 -f 2a),TT"1)-regular in the sense
of Definition 6.28, where a is the constant of Lemma 6.33. Conditions (1)
and (3) are obviously satisfied.

We now assume without loss of generality that the origin is the centre
of a circle Co in V. Let x ^ o, and let $(x) be the smallest radius of a circle
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tangent with x. Then $(x) > t(x)/a by the ring lemma. Also, the open
disk centred at z(x) with radius x(x) +s(x) contains no centre of any other
circle in the packing. In particular, it does not contain z(o) = 0. Therefore
\z(x)\ > t(x) + s(x) > tr(x)(l + ^ ) . For the maximal distance from a point
in Cx to 0 we now get

(6.35) dCx = t(x) + \z(x)\ > 2r(x)(l + £ ) .

This proves (2), and all but finitely many edges of X* lie on such a Cx. By
Theorem 6.29, the simple random walk on X* is recurrent.

It is rather easy to see that this implies recurrence of X: first, observe
that X* has bounded geometry (all vertices have degree 4). Second, con-
struct a new graph Y* out of X* by drawing edges between all pairs of
distinct vertices x*,y* of X* lying on the same circle. With respect to
the graph structure of X*, the simple random walk on Y* satisfies all re-
quirements of Theorem 3.2. (Bounded geometry of X is used here!) Hence
F* is recurrent. Now let /* G 4(Y"*) = 4(X*). We define a function
/ = *( / • ) e £0(X) by

(summation over vertices of Y*). Let y ~ x in X, and let x* be the point
where Cx and Cy meet. Then (as deg(x) > 3)

(fix) - f{y)f < 2{f{x) - r(x*)f + 2(/'(*') - f{y)f

where ~ is neighbourhood in F*. Summing over all edges of X is the same
as summing over all vertices x* of Y*. Therefore Dx(f) < 2Dy* (/*)• Also,
constant functions are preserved by 3>. Using Theorem 2.12, we see that
the simple random walk on X is recurrent. •

We now give a criterion for CP-parabolicity and recurrence in terms of
the vertex degrees.
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(6.36) Proposition. If deg(x) < 6 for all but finitely many vertices then
the simple random walk on X is recurrent, and X is CP-parabolic.

Proof. Let AQ be a finite, connected subgraph of X containing all ver-
tices with degree > 6. We define inductively an increasing sequence of
subgraphs: An +i = AnU Bn, where Bn = {x e X \ An : d(x,An) = 1}.
We decompose Bn = Cn U Dn, were Cn consists of those vertices having
precisely one neighbour in An, and Dn is the rest.

Let x G Bn be a vertex having some ("forward") neighbour in X \ An+\.
This x has a neighbour y0 in An. Let y0, y\,..., ym-u Vm = Vo denote all the
neighbours of x in cyclic order, with m < 6. Let j(1) and j(2) be the minimal
and the maximal index such that yj £ An+\. Then 2/?(i)_i,2/?(2)+i € Bn

must be different from y0, so that 2 < j ( l ) < j(2) < m — 2. Also, y^x) and
2/̂ (2) lie in Dn+i.

Case 1. x e Dn. If j ( l ) < j(2) then x has two neighbours in An, two
neighbours in Bn and two in Dn+\, and there can be no further neighbours
of x. If j(l) = j(2) then y^ is the only neighbour of x outside of A n + i ,
and it lies in Dn+i. Thus, x has one or two neighbours in -Dn+i and none
in Cn+i.

Cose £. x G Cn. In the same way as above, we conclude that x has
one, two or three neighbours in Z}n+i and one or no neighbour in Cn+\.

Combining the two cases, we infer that the number of edges between
An+i and -Bn_|_i satisfies |cM.n+i| < 2\Dn\ + 3|Cn| and that

|Cn+i |< |Cn| and 2 | D n + i | < 2 | D n | + 3 | C n | .

We obtain

Shortening each of the finite sets AQ and Bn (n > 0) to a single point, we
can now apply Nash-Williams' criterion (Corollary 2.20) to get recurrence
of the simple random walk on X. D

We remark that X being infinite, it cannot be that deg(#) < 5 for all but
finitely many n. This is obtained by modifying the above counting argument
in the obvious way. In the next chapter, we shall also provide conditions
on the vertex degrees which imply p(P) < 1 for the spectral radius of the
simple random walk, and hence transience.
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Notes and remarks

1. Basic facts

§A. In his original article, Polya [269] uses characteristic functions to deduce (1.4).
§B. For the general theory of Markov chains, see e.g. the monographs of Chung [75],
Kemeny et al. [197] and Revuz [276]. Lemma 1.9 is due to Kingman [205].

It has been pointed out to me that the non-probabilist reader might appreciate the
following clarification regarding the measures Px . The transition matrix contains no
information on the distribution of ZQ. Hence the latter has to be specified when one
constructs the probability measure on the trajectory space. If it is <5X, i.e., ZQ = x, then
one obtains Px. If one wants to avoid the introduction of an infinity of different Px (one
for each x), then one may also use a starting distribution v supported by all of X. For
the resulting P = Fu one gets Px = P[ • \Z0 = x].

§C. Uniform irreducibility first appeared in Picardello and Woess [258] and Ancona [5]. In
the mid 80s, it appeared to be a new idea to replace algebraic with geometric adaptedness
conditions.
§D. Lemma 1.24 and related computations are recurrent: they have been repeated by
many authors in the illusion of making a new discovery. The first traces can be found in
Kesten [198] and Dynkin and Malyutov [111]. To my knowledge, it first appears explicitly
in the context of free groups in Gerl [130] (for M = 4) and in Levit and Molchanov [215].

§E. The theory of random walks on groups was founded by Kesten [198].
§F. I first learned the nice formula of (1-28) and Lemma 1.29 for the modular function
from Trofimov [319]; previously, it had appeared in Schlichting [293]. Besides [319],
Woess [346] also contains an exposition of some basic facts concerning the topology of
the automorphism group of a graph.

2. Recurrence and transience of infinite networks

§ A. This potential theoretic framework is a special case of the theory of Dirichlet spaces,
see Fukushima [123].
§B. Theorem 2.12 is the discrete analogue of a set of "hyperbolicity" (= transience) crite-
ria for Riemannian manifolds equipped with the Laplace-Beltrami operator (= Brownian
motion). For example, the flow criterion (b) corresponds to the Kelvin-Nevanlinna-
Royden criterion. In the context of reversible Markov chains, it became popular through
the paper of T. Lyons [222]. The capacity criterion appears in Varopoulos [323], see
also Gerl [136]. Before that, these criteria had been proved for locally finite networks by
Yamasaki [354], [355] without any use of probabilistic notions. (Yamasaki's work seems
to have been unknown to random walk people until 1988, when I "discovered" one of his
papers.) For the non-locally-finite case, see also Soardi and Yamasaki [306].

First variants of Corollary 2.14 appeared in Griffeath and Liggett [146] and Doyle
and Snell [103]. The first to use shorting for recurrence was Nash-Williams [245], who
proved Corollary 2.20. Extensions were given by Griffeath and Liggett [146], Doyle and
Snell [103], McGuinness [230] and Woess [348].

In the literature there are many concrete examples of applications of the above criteria;
not all are reported in this book. See e.g. Doyle and Snell [103] (among others for certain
radial trees which can be embedded in Z2 or Z3, respectively), T. Lyons [222] (a class of
sublattices of Zd, also explained in Soardi [304]) or Markvorsen et al. [226] (in connection
with the classification of Riemannian manifolds). The comb lattices were considered by
Gerl [138] and Cassi and Regina [69].
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Concerning the material of this subsection, until the late 70s the only source had
remained Nash-Williams [245], but since then there has been a growing number of con-
tributors. I do not claim that the references given here cover every single step of the
development.

§C. This technique goes back to Baldi et al. [18], who proved Lemma 2.24 and used
it for the classification of recurrent (connected) Lie groups. Generalizations are due to
Varopoulos [321], [322] and Chen [71]. Theorem 2.25 is taken from Woess [350] and
extends the corresponding result of Chen [71]. (In the proof of the latter, the final
inequality is unclear.)

3. Applications to random walks

§A. As stated here, Theorems 3.1 and 3.2 may appear new, but I do not deserve any
credit. I am unable to trace back all references which should be considered as forerunners.
One of them is Ancona [6], Thm. 3.1, whose part a) is our Corollary 3.5. For the fc-fuzz,
see Doyle and Snell [103].

The definition of rough isometry goes back to Gromov [150], [151] (using the terminol-
ogy "quasi-isometry") and Kanai [192], [193], [194]. Example 3.8 modifies a construction
explained to me by C. Thomassen; compare with Thomassen [315], Thm. 3.3. For the
first part of Proposition 3.9, see e.g. Salvatori [288]. The second part is taken from
Sabidussi [284]. For Theorem 3.10, see Kanai [193] and Markvorsen et al. [226].

§B. Growth was first introduced for finitely generated groups by Efremovic [112] and
Schwarcz [294], and later on independently by Milnor [236] in relation to Riemannian
manifolds. Since then, growth of groups and graphs has been attracting considerable
interest. I will not give an exhaustive bibliography here. For groups, see e.g. Bass [27],
Gromov [149], Grigorchuk [147] and the references therein. For graphs, see the survey
by Imrich and Seifter [179], and for groups, the more recent one by Grigorchuk and de
la Harpe [148].

I learned Lemma 3.12 from the anonymous referee of the paper by Rigoli et al. [277].
The present simple proof was communicated to me by N. Pintacuda. Theorem 3.16 is
usually attributed to Bass [27], but Guivarc'h [154] proved it independently at about the
same time; see also his earlier note [153]. Regarding Theorem 3.17, the version stated
here is in fact due to Van den Dries and Wilkie [104]; the original result of Gromov is
stated with "for all n" in place of "for infinitely many n". Proposition 3.20 was first noted
by Varopoulos [325]. Lemma 3.21 and Proposition 3.23 are also due to Varopoulos [325]
and constitute the final and surprisingly simple step in the solution of Kesten's problem.
A nice exposition is also contained in Ancona [6].

§C. Most of these results were "born" in the preparatory work for this book, see Woess
[350], which also contains a proof of Theorem 3.31. For (3.30) and part of (3.31), see
Salvatori [289].

4. Isoperimetric inequalities

§A. It was the merit of Varopoulos [323] to realize the importance of isoperimetric in-
equalities in the study of reversible Markov chains, not only for the question of recurrence.
The paper by Dodziuk [98] appeared at about the same time and introduced the strong
isoperimetric inequality ($(t) = t) in connection with the spectral radius; see Chapter
II. Many references can be found in Varopoulos et al. [326], some more in my survey
[348]. For the purpose of §A and §C, I found that the most useful and readable source
was Saloff-Coste [285]. Theorem 4.7 is due to Kanai [192], [194].



Notes and remarks 79

§B. The version of Theorem 4.10 for direct products (see Remarks 4.11) is due to Varopou-
los [323]. For clarifications and the adaptation to Cartesian products, I am most grateful
to Vadim Kaimanovich.

§C. To my knowledge, the Poincare type property (4.14) that I call "quasi-homogeneity"
here was first introduced by Coulhon and Saloff-Coste [86], who also proved (4.15) and
(4.16). The principal part of Theorem 4.18 (when IS does not hold) is due to Saloff-Coste
[285]. For another proof, see Woess [350].

5. Transient subtrees, and the classification of the recurrent quasi-
transitive graphs

§A. These "elementary" results, which left me very impressed, are due to Thomassen
[315] (for graphs with maximum vertex degree 3) and [316] (general case). With few
modifications, they also work for unbounded (finite) vertex degrees; see Thomassen [316].
Note that it is not even simple to find a transient subtree in the grid Z3; see Doyle and
Snell [103] and Gerl [135] and the figures there.

Hyperbolic graphs and their boundaries will be studied in Chapter IV. There is an
interesting result regarding transient subtrees, due to Bowers [47]: if X is a hyperbolic
graph whose boundary contains a non-trivial continuum, then X admits a roughly iso-
metric embedding of the binary tree. Thus, X contains a subtree that satisfies IS. This
applies, in particular, to one-ended hyperbolic graphs with non-trivial hyperbolic bound-
ary. (One-ended means that X\A has only one infinite component for every finite Ac X;
see §21 for more on ends.)

§B. Theorem 5.11 is originally due to Trofimov [318]. The present proof, based on Losert
[216], is adapted from Woess [346]. Theorem 5.13 was outlined in Woess [348] and proved
by Saloff-Coste [285]. Five different proofs are outlined in Woess [350].

6. More on recurrence

§A. For Theorem 6.1, see Chung and Fuchs [76], Chung and Ornstein [77] and Spitzer
[307]. Statement (c) can be directly deduced from the recurrence criterion of Kesten and
Spitzer [203]: the random walk with law /J, on the abelian group F is recurrent if and only

— - dz = oo ,

where F is the dual of F, p, is the Fourier transform of /x and dz is Haar measure on
F. Many results concerning random walks on abelian groups ans, in particular, integer
lattices, are very well documented in Spitzer's book [307] and in the fundamental paper
of Kesten and Spitzer [203]. For this reason, and in order to save space, we "sacrifice"
this material here.

The remaining results of §A are taken from Salvatori [289] (some previous results are
due to Hammersley [165], Bender and Richmond [32], McGuinness [229] and Guivarc'h
[157]). For Proposition 6.4, see Kaimanovich [185]. Salvatori's proof of Theorem 6.7 has
been simplified thanks to Vadim Kaimanovich who suggested the use of P and the law
of large numbers for functionals.

§B. These results are due to R. Lyons [219] and Benjamini and Peres [36], with Fursten-
berg [125] as a common root.

§C. Theorem 6.24 was proved by Yamasaki [354]; extremal length was introduced into
the context of (finite) networks by Duffin [106]. (Note that in my survey [348], I made two
mistakes regarding extremal length: first, in the definition I forgot the edge resistances,
and second, criterion (f) in [348], Thm. 4.8, is known only for locally finite networks.)
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Theorem 6.29, one of my favourites in Chapter I, is a slightly simplified and extended
version of a theorem of Soardi [303] (see also [304]), one of the first significant results
concerning random walks on planar graphs.
§D. It was a "last minute" decision (in 1996, when this chapter was completed) to include
some aspects of circle packings, an area rather new to random walks. There are several
proofs of Corollary 6.32 and Theorem 6.34. A forerunner of these results which might
have deserved more attention was DeBaun [89]. The most general version is due to
He and Schramm [169], considering packings of more general sets than ordinary disks.
Another variant is due to McCaughan [228]. The ingeniously simple proof of (6.32) via
Proposition 6.31 is due to Dubejko [105]. The proof of recurrence in Theorem 6.34 is a
modest contribution of my own with the aim of integrating packings with tilings; I am
grateful to O. Schramm for pointing out a simplification. Dubejko's slightly less general
proof in [105] is from about the same time. Both are of course preceded by the stronger
result of [169].

Still more on recurrence
There are various further interesting results which have not been expounded here only

because of lack of space. Rather complete references up to 1994 can be found in Woess
[348]. Let me outline two recent topics which are particularly appealing.

R. Lyons [219] gives an analytic definition of the branching number of a locally finite,
infinite tree in terms of cuts between a root o and infinity. It does not depend on the
choice of o. Put resistance An on all edges at distance n from o, where A > 0. For the
resulting reversible random walk, the one-step probability of moving backwards towards
the origin increases with A (the random walk becomes more and more "homesick"). The
supremum over all A for which the random walk is transient is called the branching
number of the tree. For larger values, the random walk is recurrent. This is directly
related to the Hausdorff dimension of the space of ends (compare also with Furstenberg
[125]), and also to the critical probability of bond percolation on the tree. In R. Lyons
[220] this is applied to "homesick" random walks on Cayley graphs of groups via natural
spanning subtrees, thus relating the critical value of A to the growth rate of the group.
These random walks are not group invariant but capture much of the group structure.
Homesick random walks are studied in detail for a particularly interesting group by R.
Lyons et al. [221].

The other topic is concerned with an application of recurrence in statistical mechanics.
Regarding the Ising model on grids and other graphs, the notes of Kindermann and
Snell [204] provide an excellent introduction for mathematicians. Given the grid Zd

with homogeneous nearest neighbour interactions, it is known that no phase transition
occurs in one dimension, while it may occur for d = 2. The situation is different for
the Heisenberg model, where no phase transition occurs in dimensions 1 and 2, while it
may occur for d > 3. The same holds, more generally, when the spins, instead of values
±1 (Ising model), take their values in a connected, compact Lie group (or homogeneous
space thereof); see Mermin and Wagner [235] and Mermin [234]. Now consider the latter
class of models on a general graph X, with interactions induced by the conductances of a
reversible nearest neighbour random walk (X, P). Then Cassi [68] and (generalizing his
result) Merkl and Wagner [233] have shown that recurrence of (X, P) implies absence of
phase transition. These impressive results would merit a careful mathematical exposition.
Unfortunately, this goes well beyond the scope of the present book.



CHAPTER II

THE SPECTRAL RADIUS

7. Superharmonic functions and p-recurrence

Recall the definition (1.8) of the spectral radius

of our irreducible Markov chain (X,P). The terminology (although com-
mon) may be slightly misleading when we do not specify a suitable space
where P acts as a linear operator. When (X, P) is a random walk on a
group and \x its law, then we also write p(fi).

A. The spectral radius and superharmonic functions
We start with a characterization of p(P) in terms of t-superharmonic

functions, that is, functions / : X —» R satisfying Pf < t • / , where t > 0.
Analogously, t-harmonic functions are those satisfying Pf — t-f. We write
<S(P, t) and W(P, t) for the collections of all t-superharmonic and t-harmonic
functions, respectively, and <S+(P, £), ?^+(P, i) for the corresponding positive
cones. By the minimum principle (1.15), extended to this situation, we have
that a function in <S+ (P, i) is either strictly positive at each point or constant
equal to 0. Now fix a reference point o G l and define

B(P,t) = {f€S+(P,t):f(o) = l}.

This is a base of the cone <S+(P, t).

(7.1) Lemma. If B(P,t) is non-empty then it is compact in the topology
ofpointwise convergence, and <S+(P, t) is a convex cone with compact base.

Proof. By Fatou's lemma B(P,t) is closed. If x G X then by irre-
ducibility there is nx such that p(Ux\o,x) > 0. Set Cx = tn/p(Ux\o,x). If
f eB{P,t) then

Pw{p,x)f{x) < Pnf(o) < tn • f(o) = tn .

Hence f(x) < Cx for all / G B(P,t), and compactness follows. •

(7.2) Lemma. p(P) = min{t > 0 : <S+(P,£) ^ {0}}.

Proof. If there is / ^ 0 in <S+(P,£), then p(n\x,x)J(x) < Pnf(x) <
tn • f(x), so that p(P) = limsupnp(n)0z,201/n < t.

Conversely, if t > p(P), then the function f(x) = G(x, o\l/t) is non-zero
and in <S+(P, t). Hence, £+(P, t) ^ 0. If h < t2 then tf+(P, *i) C #+(P, t2).
By compactness, it must be that #+(P, p) = f]t>p ^ + ( P , t) ^ 0. •

81
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(7.3) Exercise. Let P = cP\ <g> h + (1 - c)/i 0 Pi be a Cartesian product
of two irreducible transition operators. Then p(P) = cp(P\) + (1 — c) p{Pz) •

[Hint: see formula (18.2) in Chapter III.]

B. p-Recurrence
From Lemma 1.7 we know that the series G(x,y\l/p) either converge or

diverge simultaneously for all #, y. In the first case we say that (X, P) is
p-tmnsient, and in the second that it is p-recurrent; p-recurrence is further
subdivided into positive and null, according to whether U'(x,x\l/p—) is
finite or not (this is also independent of x).

If (X, P) is recurrent in the ordinary sense, then p(P) = 1 and the chain
is p-recurrent. If (X, P) is transient, then each of the following cases is
possible: (1) p{P) = 1 (for example, the simple random walk on Z3); (2)
p(P) > 1 and p-transience (the simple random walk on T M - see Lemma
1.24); (3) p(P) > 1 and p-null-recurrence (the random walk on Z with law
fjL given by /i(l) = p, /z(-l) = 1 - p, where p ^ | ) ; (4) p(P) > 1 and
p-positive-recurrence. Examples of (3) and (4) for simple random walks on
graphs will be given at the end of §9.A.

We have the following analogue of Theorem 1.16.

(7.4) Proposition. (X, P) is p-recurrent if and only if there is a non-zero
function h in H^ (P, p) such that every function in <S+ (P, p) is a constant
multiple of h.

Proof. If {X,P) is p-transient then f(x) = G(x,o\l/p) is in «S+(P,p),
but not p-harmonic.

Conversely, assume p-recurrence and choose h ^ 0 in «S+(P, p). (Exis-
tence follows from Lemma 7.2.) Setting g = p • h — Ph, a straightforward
modification of the argument used for Theorem 1.16 yields g = 0, and h is
p-harmonic. We introduce the transition matrix Ph of the h-process on X:

(If h G W+(P, t), where t > p, then the /i-process is defined in the same way
with t in place of p.) We compute

( n ) , , _ P < - n H , y ) (
Ph {X'V'~ p»-h(x)

so that the Green function of the /i-process is

Gfe(x)2/|l) = G(x,y\l/p)Hy)Mx).

By our assumption, the /i-process is recurrent. Now one checks that / G
<S(P, p) if and only if f/h G S(Ph, 1), so that / / / i must be constant. •
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Concerning positive eigenfunctions of P, the infinite case is significantly
different from finite Markov chains:

(7.6) Lemma. If X is infinite and P has finite range, then there are non-
zero positive t-harmonic functions for every t > p{P).

Proof. The p-recurrent case, with t = p(P), is covered by Proposi-
tion 7.4. So assume that t > p and G(x,y\t~1) < oo. Choose a se-
quence of distinct points yn in X, and consider the functions gn(x) =
G(x, yn|*~1)/G(o, 2/nl^"1)- They are in S(P, £), which is compact, and hence
must accumulate. So assume without loss of generality that gn(x) —+ h(x)
pointwise. Because of the finite range, we may exchange limit and appli-
cation of P. Now observe that for every x, Pgn(x) = t • gn{x) for all but
finitely many n. Therefore

Ph(x) = lim Pgn(x) = t • h(x). •
n—•oo

In all that has been said so far in this section, we may replace positive
t-superharmonic and t-harmonic functions with t-excessive and t-invariant
measures, that is, measures satisfying vP < t • v or vP = t • is, respectively.
Checking this is a straightforward exercise. For a t-invariant measure z/, the
i/-process is (by abuse of the above notation)

If a is any ^-excessive measure for P, then the function (density) ojv is in
S(PV', 1), and conversely.

In conclusion, we show that only graphs which grow at most quadratically
may carry a p-recurrent, quasi-transitive random walk.

(7.8) Theorem. Let X be a graph, and suppose that (X, P) is quasi-
transitive. If P is p-recurrent, then the simple random walk on X is recur-
rent, and X is a generalized lattice with dimension 1 or 2.

Proof. According to Proposition 7.4, S(P, p) consists of a unique p-
harmonic function h. The associated /i-process is recurrent. In view of
Theorem 5.13, all we have to show is that (X, Ph) is quasi-transitive. Choose
7 € AUT(X,P). Then h^(x) = h(jx) is also p-harmonic, whence /i7 =
0(7) • h for some constant ^(7) > 0. The function <j): AUT(X, P) -> R+ is
a positive exponential (multiplicative homomorphism). But then
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8. The spectral radius, the rate
of escape, and generalized lattices

In this section, we shall show that p(P) < 1 implies for a typical random
walk that it tends to oo at linear speed at least. This is the right occasion
for an intermezzo on the behaviour of d(Zn, ZQ)/TI, that is, variants of the
law of large numbers. We shall then show how the first of these results leads
to a method for calculating the spectral radius of random walks on Zd and
on generalized lattices.

A. The rate of escape
Recall Lemma 1.9, where we showed that p(n\x,x) < p{P)n. For ran-

dom walks on graphs, we now extend this in two ways.

(8.1) Lemma, (a) If (X,P) is uniformly irreducible then there is A > 0
such thatp^\x,y) < Ad<<x^p(P)n.

(b) If{X,P) is strongly reversible then p(n\x,y) < C p(P)n with C as
in (3.4).

Proof. For (a), let e0 be as in (1.20). Let x,y € X, d(x,y) = r > 0.
Applying (1.20) to the successive neighbours on a path of length r from
y to x, we find fci,...,fcr > 1 such that p(fcl+'"+kr\y,x) > er

0. Set k =
ki-\ h kr. Then, using Lemma 1.9 and the fact that p(P) < 1,

P{nHx,y)er
0 < p(n\x,y)p(k\y,x) < p<<n+k\x,x) < p(P)^k < p(P)n+r .

We may set A = p(P)/£0. To see (b), write

•

Note that in (a) we did not use the K from uniform irreducibility (1.20).
While (b) will be used in Chapter IV only, we shall give a simple, but useful,
application of (a).

(8.2) Proposition. Suppose that (X, P) is uniformly irreducible and that
p(P) < 1. Then there is a constant m > 0 such that

¥x liminf —d(Zn, ZQ) > m = 1 for every x, and
[ n->oo n J

lim Fx inf —dlZk, ZQ) < m = 0 uniformly in x G X.
n—>-oo [k>n k J

Proof. Let M be an upper bound on the vertex degrees, and let A be
the constant of Lemma 8.1 (a). We may suppose MA > 1, and choose m > 0
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such that (MA)m-p(P) < 1. The events An = [inffe>n \d(Zk,Z0) < mrc] in
the trajectory space satisfy

k=n y:d(y,x)<mk
oo

^ E E ^ ' ^ ( ^ <
fc=n 2/:d(2/,rc)<mA:

where c > 0. Thus 2 n F x ( A i ) converges uniformly in x, and the two
statements follow. •

Next, we look for upper bounds on d(Zn,Z0)/n. It is clear that this
will require a moment condition. The step length distributions (1.22) are
tight, if their tails crx(jn, oo)) are bounded above by the tails of a single
distribution a on No. If in addition a has finite mean, then we say that
(X, P) has uniform first moment. This means that

oo

(8.3) m = ^ <j>{n) < oo , where <t>(n) = (j)p(n) = sup ax([n, oo)) .
n=l x£X

(If (8.3) holds, then we can find a by setting a(n) = 4>(n) — <j)(n +1), n > 0.)
Tightness allows us to compare d(Zn,Zo) with Sn = Yi + • • • + Yn, where
the Yi are i.i.d. No-valued random variables with distribution a. This can
be achieved by coupling the random walk (X, P) with (Yn)ne^. That is,
instead of the trajectory space, we define a bigger probability space where
we can define and compare both sequences of random variables. By abuse
of notation, we write (f2, P) for this probability space, with ft = [0, 1)N

carrying the usual Borel product sigma-algebra, and P the infinite product of
Lebesgue measure on [0, 1). We subdivide [0,1) into consecutive intervals
/o = [0 = ao , a i ) , I\ = [ai, 02 ) , . . . , with lengths 0^+1 —â  = a(i), i > 0.
We define Yn : ft -> No as follows. If u = {u;n)n^ € ft, then

(8.4) Yn(u) = i ^ uneli.

Then the Yn are i.i.d. with distribution a. Next, given x € X, we choose
an enumeration X = {xk : k G No} of X (depending on x), in such a way
that x0 = x and k' > k implies d(xk>,x) > d(xk, x). As above, we subdivide
[0, 1) into successive intervals JXjXk of length p(x,Xk), k > 0. We do this
for each x € X.

By construction, the set (J{Jx,y '• V £ B(x,ri)} is an interval [0, bx,n) of
length bx,n = crx([0, n]) > cr([O, n]), and must contain the interval [ji<n 1%.
In other terms,

00

(8.5) d(y, x)>n implies Jx,y C ( J / ; .
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We now define Z% : ft -> X by

(8.6) ZS(LJ) = x and, for n > 1, Z£(u;) = y ^ a ; n G JX n . l t y .

It is then straightforward to show that Z* is (a model of) the Markov chain
on X with transition matrix P starting at x.

We now arrive at the goal of this construction. Let u> € Q, and xn =
Z%(u>), n>0. Suppose that d(xn_i, xn) = L Then ujn G JXn-uxn C Ui>* £
by (8.5), and (8.4) yields Yn(u>) > L We have shown that

(8.7) d(ZZ_t, Z%) < Yn for all x G X and n G N.

(8.8) Proposition. Suppose that (X,P) has a uniform first moment.
Then we have the following.

(a) lim —d(Zn-i, Zn) = 0 and limsup - sup d(Z0, Zk) < m
n->oo n n-KX> n fc<

Pjc-aimost surely for every x G X.

(b) lim Px I sup \d{Zh-UZk) > e 1 = 0,
n^°° U>n « J

lim P* - supd(Zk-i,Zk) > e\ = 0, and
n-oo Ln fc<n J

lim P* -supd(Z0,Zf c) > m + e = 0 ,
oo [n Jn—oo

uniformly in x G X for every e > 0.

Proof. Using the above construction, the law of large numbers
yields limn ^Yn = 0 and limn ^Sn = m almost surely. By (8.7),
s\ipk<nd(Z§JZ^) < Sn for all n and x. This proves (a) and the first and
last statements of (b). For the second statement of (b), with (j)(n) as in
(8.3) we have

P \- supd(ZJ_!, Z%) > e] < f p [ l i > en] < n4>(\en\),e] < fp[li

which tends to 0, as 0 is decreasing and Y^n ^(n) ^ °°* ^

In particular, we get the following variant of the law of large numbers
for the rate of escape (setting \x\ = d(x, o) for x G X).

(8.9) Corollary. If(X, P) is uniformly irreducible and has a uniform first
moment, and p(P) < 1, then

0 < m < liminf ~\Zn\ < limsup -\Zn\ < m < oo Px-a.s. for every x G X.
n—oo n n—oo Tl



8. The spectral radius, the rate of escape, and generalized lattices 87

The uniform estimates of Propositions 8.2 and 8.8 will be used in Chap-
ter IV. For random walks on groups there is a more precise result than (8.9).
The basic tool is Kingman's subadditive ergodic theorem; see Kingman [206]
and - in the formulation that is most suitable for us - Derriennic [94].

(8.10) Theorem. Let (ft,P) be a probability space and T : ft -> Q be a
measure-preserving transformation. If Wn is a subadditive sequence of non-
negative real-valued random variables on Q, that is, Wn+fc < Wn + Wk o Tn

for all k, n G N, and W\ is integrable, then there is a T-invariant random
variable W^ such that

lim —Wn = WQC F-almost surely and in L1.
n—>oo 71

We want to apply this in the vertex-transitive case. Recall the considera-
tions of §1.F regarding the topology of AUT(X). Let F be a closed subgroup
of AUT(X) and \i a regular probability measure on F. Consider a sequence
(Xn)n£N of i.i.d. F-valued random variables with common distribution \x.
The Xn may be modelled as the projections of the product space FN onto F,
where FN is equipped with the product Borel cr-algebra and the probability
measure P = /xN. (We are using yet another probability space!) The left
and right random walks on F with law // are given respectively by

(8.11) Ln = Xn'"X2X1 and Rn = X±X2 • • • Xn (Lo = Ro = t).

Contrary to finitely generated groups acting on their Cay ley graphs, in
general there is a significant difference between studying Rn and Ln in
terms of their action on X. We shall use Rn. The reason is that, when
considering Rnx, where x € X, we can cancel on the left: d(RkX, Rnx) =
d(x, Xk+i - - - Xnx), when k < n.

Now let F be a closed subgroup of AUT(X, P) which acts transitively
on X. We lift the random walk P on X to one on F, as follows. Choose a
reference point o € X. As the stabilizer Fo is open and compact, we may
normalize the Haar measure dj on F so that |FO| = 1. It will be convenient
to choose and fix, for every x € X, an automorphism j x G F such that
7xo = x. We also write F* = ^XTO = {7 G F : 70 = x}. Note that X can be
identified with F/Fo via x «-• Tx. With the random walk we now associate
a measure // on F, absolutely continuous with respect to Gfy, by

(8.12) / i (d 7 )=p(o , 7 o)d7 .

If F is finitely generated, X a Cayley graph of F, and \i the measure that
defines P via p(x,y) = ii(x~lfy), then of course (8.12) reconstructs /z.

(8.13) Proposition. The measure /J, is a probability measure on F. For
every a G F, the sequence (aRno) is a model of the random walk (Zn) on
X starting at ZQ = ao. In particular, |Jn > 1(supp/i)n = F.
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Proof. First, /x has total mass 1:

= E / p(°' i°) ̂  = E p(°>*)

Next, we prove that

F[aRi = xi,..., aRn = xn) = p(ao, x1)p(x1,x2) • • -p(xn_i, xn)

for every choice of a € T and # i , . . . ,x n € X. Note that it is enough to
prove this for a = i. For n = 1, F[Ri — X\) = ^(TXl) = p(o,xi). By
induction,

= Xn] =

Jrxi
2 , • . . , Rn-1 = 7~1»n

We have \TX\ = 1. It is now obvious that Un>i( s uPP/ i) n = ^- ^

(8.14) Theorem. If (X, P) is transitive and has finite first moment, then
there is a constant m such that

lim —d(Zo, Zn) = m Fx-a.s. for every x e X.
n—»oo n

When p{P) < 1 then m > 0.

Proof. Set T = AUT(X, P). Let /x be as in (8.12), and i?n = Xi • • • Xn

the random walk lifted to T according to Proposition 8.13. We use the
model fi, = FN with P = /iN and Xn the n-th projection. For T we choose
the shift on Q. Given the starting point x € X, we set Wn = d(Zn,x) =
d(>yxRnyx) = d(RnO,o). Now

d(Rn+ko,o) < d(Rno,o) + d(Xn+1 • • • Xn+ko,o) = Wn + WkoTn
1

and we may apply Theorem 8.10. As E(Wi) < oo by assumption, also
E(Woo) < oo, and by the zero-one law, Woo must be constant a.s. Propo-
sition 8.2 implies that m > 0 when p(P) < 1. •

B. Application to generalized lattices
Let X be a generalized lattice of dimension d, written in "coordinates"

ik, where i G l (finite) and k € Zd; see §6.A. Suppose that P is adapted to
the structure of X by (6.2), and recall the definition of the drift xn(P) given
in Theorem 6.7. From the latter and Proposition 8.2, we get the following.



8. The spectral radius, the rate of escape, and generalized lattices 89

(8.15) Corollary. If P has finite first moment and zero drift, then

We now want to apply this result in order to find a general formula for
p(P). For the sake of simplicity, we assume that P has finite range. For
any non-negative, finite-range irreducible matrix Q over X which satisfies
(6.2) (invariance under Zd), we define matrices Q over X and Qc over X by

(8.16) q(iJ) = J2q(iOJk) and <fc(tk,jl) =

where c E Rd and the " •" in the exponent is scalar product. By Qc we
shall mean (Qc)~- The number p(Q) = l imsupn^n^(z,j)1/n is the largest
positive eigenvalue of Q, and we can choose the associated positive left eigen-
vector VQ, normalized to become a probability measure on X. Analogously,
TJQ stands for the associated positive right eigenvector, normalized to have
value 1 in i\ EX. (This is the Perron-Frobenius theorem; see Seneta [297]).
Verification of the following relations is a straightforward exercise.

where P, Q are Zd-invariant as in (6.2). Below, we shall also use that for
any irreducible matrix P one has p(A 1 + (1 — A)P) = A + (1 — A)p(P), where
/ is the identity matrix. (This follows from Lemma 7.2.)

Now let P be Zd-invariant as in (6.2), with finite range and stochastic.
Let vc = vpc and 7jc = 7jpc. For c € M.d define

(8.18) <pp(c) = p{Pc), i/c(ik) = ^c(«)e~ck and #c(*k) = gc{i)eck.

Note that </?p(0) = 1 and go = 1. We call gc an extended exponential
on X. When \X\ = 1 and X = Zd, this is a (pure) exponential, that
is, a homomorphism from Zd to the multiplicative group M+. Extended
exponentials will be important in Section 25.

(8.19) Lemma. vcP = <pp(c) vc and Pgc = (fp(c) gc .

Proof. This is straightforward:

ucP(jl) = ]T>c(z)e-c-kp(ik, jl) = e^^^cW^Pct ik , jl)
z,k i k

= e~c'l^2vc(€)pc(ij) = <pP(c)vc{j)e-c'1.
i

The second identity is analogous. •
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(8.20) Proposition. If P satisfies (6.2) and has finite range, then the
function ip = <pp : Rd —• (0, oo) is infinitely differentiate and strictly
convex on Rd,

lim (p(c) = oo, grad (p(0) = m(P),
|c|->oo

and the matrix E = £(P) of second order derivatives oftpp at 0 is given by

Here, Y\ is the Zd-component of Zi, as in §6.A. Note that we usually
think of elements y € Rd as column vectors, so that yy* is the matrix with
elements yifjj.

Proof of Proposition 8.20. The mapping c i—• Pc is convex from Rd

to R'xl . By the Perron-Frobenius theorem [297], the largest eigenvalue
(p(c) is a simple root of the characteristic polynomial det(A/ - JPC), which
is analytic in (A,c). By the implicit function theorem, (p(c) is infinitely
differentiate. The same is true for the mapping c H-» VC.

Next, let efc be the fc-th unit vector in Zd. Then irreducibility yields that
there are m and £0 > 0 such that q(iO,j(±ek)) > e0 for all i,j € X and
k = 1 , . . . , d, where Q = ( | ( J + P))m (with / = the identity over X in the
last expression). Therefore, writing c = (c i , . . . , c^),

which tends to oo as |c| -» oo. Consequently, 1^^1^00^(5(0) ^> 00. By
(8.17) and the remark thereafter, <PQ = ( | (1 + <pp)) . This shows that

( ) tends to 00 as |c| —• 00.
For the second identity, use the definition of uc and write

Thus

i0, j k ) e c k ,

and, as 2 j ?<•(*) = 1 f°r a ^ c?

= m(P) + J^(gradc J/C(i)) = m(P).
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The computation of the matrix E is analogous. We now show that E is
positive definite. Let x G Rd \ {0}. Then

which is certainly non-negative. Suppose this is = 0. Then Y\ is orthogonal
to x almost surely for every starting point iO. Inductively, we now get the
same for all Yn. But this contradicts irreducibility.

To complete the proof of strict convexity, we now show that the same
holds for the matrix of second order derivatives at any Co G Md. Fix Co and
consider the new transition matrix R defined by

It is Zd-invariant, and stochastic by Lemma 8.19. Passing to i l c and Re as
in (8.16), we find that the latter is given by

~ / . .x _ Pco+c(hj)9co(j)
rcV"i3) — 7 7^3—777— j

¥ > P ( C O ) 0 ( O

whose left Perron-Frobenius eigenvector (up to normalization) has i-th com-
ponent i?co+c(«)5co(*) 5 with corresponding eigenvalue

(8.22) (pR(c) = <Mc0 + c)/v?p(c0).

Therefore the matrix of second order derivatives of (fp at Co coincides with
<£p(co) S(i2), which is positive definite. •

From the last proposition, we obtain the following two facts: (1) If C > 0
and {c : y>p(c) < C} is non-empty, then this is a compact, convex set;
(2) ifp assumes its minimal value at its unique stationary point. We can
now determine p(P)-

(8.23) Theorem. If P satisfies (6.2) (Zd-invariance) and has finite range,
then p(P) = min{(pP(c) : c G Rd}.

Proof. Let Co be the minimum and hence stationary point of y?p. Define
R as in (8.21) with respect to this c0. Then R = yp^Co)J?"1PZ?, where D
is the diagonal matrix over X with entries ^Co(*k), so that

On the other hand, (8.22) implies grad^H(O) = 0. Consequently m(R) = 0
by Proposition 8.20, applied to R. Now Corollary 8.15 yields p{R) = 1, so
that p(P) = <PP(CQ). •
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For the following exercise, we remark that Proposition 8.20 remains valid
without assuming finite range or a moment condition. The only difference
is that ifp will be finite not on the whole of Rd, but on a convex subset
containing the origin, and infinitely differentiate in its interior (when the
latter is non-empty).

(8.24) Exercise. In Theorem 8.23, the finite range assumption may be
dropped.

(1) Define p£(ikj\) = p(ik,jl) e"£|1~kl2. Check that, although P£ is not
stochastic, ipPe is in C°°(Rd).

(2) Let c£ be the point where <ppe is minimal. Then Theorem 8.23
remains true for P e , that is, p(Pe) = ippe(c£).

(3) Since P > P£ elementwise, p(P) > p{PE).

(4) On the other hand, p(P) < <pp(c) for any c G Md by Lemma 7.2.
Thus, it will be sufficient to show that liminfg;_>o ¥>P£ (ce) > <AP(CO) for some
Co G Ed; this is then necessarily the minimum of (pp, and the ">" must be
an "=".

To prove the inequality, consider the normalized left Perron-Frobenius
eigenvector v£ associated as in (8.18) with the matrix P£

£. Choose a se-
quence en —> 0 that realizes the liminf, such that c£n —• c0 (note that c£

lies in the compact set {c : (fPi/2(c) < 1} when e < 1/2), and also such
that vEn tends to a limit probability v on X. Then show that

V(J) lim cppen (c£n) > V v(j) Pco(h3) ^ all j ,
n—>-oo * *

i€X

whence limn_>oo ^p^n(c£n) > p(PCo). This will conclude the proof. Com-
pare with Stone [310], where random walks on Zd are considered. •

We now give a simple example in order to illustrate the use of Theorem
8.23.

(8.25) Example. Consider the grid Z2. Choose po?Pi € (0, 1) and set
qi = 1 — pi. Consider the following nearest neighbour random walk on the
grid: in a point whose coordinates have even (odd) sum, the probabilities to
go one step East or North are po/2 (pi/2), respectively, and the probabilities
to go West or South are qo/2 (<?i/2), respectively; see Figure 8.

Po/2 pi/2

even / odd ,

Figure 8 90/2 -< > >• po/2 qi/2 -< . >- Pl/2

qo/2 qi/2
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P is Z2-invariant with two orbits. Before applying Theorem 8.23, we
have to introduce the right "coordinates". We set X = {0,1}. With the
point (mi,m2) € Z2, we associate the pair zk € X x Z2, where i = 0, k =
(m*+m2, m*~m2) if mi + m2 is even, and i = 1, k = ("u+^a-i , ™i-™a-i)
if mi + m2 is odd. We then have

p(0k, Ik) = p(0k, l(k - e2)) = po/2,

p(0k, l(k - ei)) = p(0k, l(k - ei - e2)) = ^ 0 /2 ,

p(lk, 0(k + ei)) = p(lk, 0(k + ex + e2)) = Pl/2,

p(lk, Ok) = p(lk, l(k + e2)) = qi/2.

We now compute Pc, where c = (ci, c2):

i " ( )(

Thus <£P(C)2 = (po + ^oe~Cl)(PieCl +^i)(l + e-C2)(l + eC2), which attains its

minimum for c\ = log \ ^ \ and c2 = 0. We get p(P) = y/PoQ.i + y/PiQo- D

(8.26) Exercise. A finite-range quasi-transitive random walk on a gener-
alized lattice is p-recurrent if and only if the dimension is 1 or 2.

(The "only if" is Theorem 7.8.)

9. Computing the Green function

In this section we use computations with generating functions, involving
the Green function (1.6), for finding the spectral radius and some of its
properties. A prototype of this way of reasoning is Lemma 1.24 in the
introductory section. Later on, in Chapter III, we shall extend the methods
developed here in order to determine the asymptotic behaviour of transition
probabilities.

A. Singularities of the Green function
For our irreducible Markov chain (X, P), the Green function G(x,y\z)

is a power series with non-negative coefficients and radius of convergence
r(P) = l/p(P). By Pringsheim's theorem (Hille [173], p. 133), r (P) is a
singularity - the smallest positive singularity - of G(x,y\z). We shall now
look for further singularities on the circle of convergence \z\ = r(P) , or,
conversely, we shall study where G can be analytically extended beyond the
circle of convergence.

Recall the definition (§1.A) of the period d = d(P) of P . We say that
(X, P) is strongly periodic, if for some integer no

(9.1) inf{p(nd)(x, x) : x € X} > 0 for all n>n0.

If this holds with d = 1, then (X, P) is called strongly aperiodic.
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Typical examples where (9.1) holds are random walks on groups: if \i is
the law of the random walk, then p^ (x, x) = fi^ (o) is independent of x.

The simple random walk on a bipartite graph with bounded geometry
is strongly periodic with period 2. If the graph is not bipartite, then it has
an odd cycle but the simple random walk does not necessarily have to be
strongly aperiodic; see Example 9.6 below. The simple random walk will be
strongly aperiodic if and only if odd cycles with bounded length are nicely
distributed in the graph, or equivalently, if there is an odd £ such that every
vertex is contained in a closed (not necessarily simple) path with length £.

In the following lemma, we do not suppose that the transition matrices
P and Q are irreducible. We set px,y(P) = \imsnpnp^(x,y)1^n.

(9.2) Lemma. If P = cl + (1 - c)Q, where 0 < c < 1, and x,y € X
are such that Gq(x,y) > 0, then px y(P) = c + (1 - c)px y(Q), and for
\z\ < l/pXty(P),

Proof. We have

Assuming q(k°\x,y) > 0, we get p(n\x,y) > cn~k°(l - c)k°q{-k°\x,y) for
n > fc0, so that px,y{P) > c. For real t € [0, 1/c),

(9.3) $>">(*,, ,)*" ^ )
n=0 k=0 ° n=k

k=0

and all terms in the series involved are non-negative. The last series con-
verges if iZtf < —To) a n d diverges if ±Zct > —To)* This implies the
first identity of the lemma. If z G C, \z\ < l/pX)2/(P), then this yields

1-CZ 1-C\Z\

We now see that the calculation (9.3) is valid with z in the place of t, and
the proof is complete. •

(9.4) Theorem. If (X, P) is irreducible and strongly periodic with pe-
riod d, then the singularities ofGp(xyy\z) on the circle of convergence are
precisely the numbers r(P)e27rifc/d, k = 0 , . . . , d - 1.
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Proof. We first show that the numbers r (p)e
2 7 r i / c /d are indeed singu-

larities of Gp(x,y\z). Let j G {0,. . . ,d - 1} be such that p^k\x,y) > 0
only if * = j(d); see §1.B. Then GP(x,y\z) = zj H(zd), where H(w) =
^2np(nd~*~^(x,y)wn. Now, the power series H(w) has non-negative coeffi-
cients, and by Pringsheim's theorem its radius of convergence R = r (P) d is
a singularity of H(w). Therefore the d-th roots of R must be singularities
of Gp(x,y\z).

We prove that there are no other singularities. With no as in (9.1), let
m = nod and c = infxp(m\x, x). We can write P m = c J + (1 — c)Q, where
Q is a transition matrix over X. Let x, y G X, and write Y$ for the periodic
class of x with respect to P; see §1.B. Now P m is a power of an irreducible
transition matrix. Therefore pXiW(Pm) = p(P)m — c + (1 — c)Px,w(Q)
whenever u? G Hb> and we may write r(Q) = 1/'px,w{Q)> If |z| < r(P) then,
using Lemma 9.2,

GP(x,y\z) =
n=0 fc=0

m-1
= X! J2 Gprn (x'

Consider the sets

where 0 < t < r (P) . Then hi is the union of the sets Uu and it is an open
set containing {z G C : \z\ < r (P)} \ {z G C : zm = r ( P ) m } .

If z G Ut then (subdividing into the cases \z\ < t and \z\ > i) one
checks that \zk/(l - czm)\ < tk/{l - ctm) for k = 0 , . . . , m - 1. For z = t,
all terms occurring in (9.5) are non-negative, and their sum Gp(x,y\t) is
finite. Thus, the series in (9.5) converges absolutely and uniformly in Ut>
and so defines an analytic function there. We conclude that (9.5) defines an
analytic function in U, whence Gp(x,y\z) extends to an analytic function
on U. This reasoning shows that if \z\ — r (P) and z is a singularity of
Gp(x, y\z), then it must be that zm = r (P ) m . We can replace m by ra+d =
(n0 + l)d, and it must be that z m + d = r ( P ) m + d too, so that zd = r (P) d . •

This applies, for example, to random walks on groups and to quasi-
transitive random walks on graphs. In particular, for the simple random
walk on a quasi-transitive graph X, either — r(P) is a singularity and X is
bipartite or else — r(P) is not a singularity of the Green function; there are
no complex singularities.



96 //. The spectral radius

For general irreducible P, we can also define the strong period by ds =
gcd{n : mlxp(n\x,x) > 0} , if the latter set is non-empty. The proof of
Theorem 9.4 shows that the singularities of the Green function on the circle
\z\ = T(P) are contained in {r(p)e

27rifc/d* : k = 0 , . . . ,d - 1}. Strongly
periodic means that d = ds.

(9.6) Example. Take the half-line No with edges \j,j + 1] and add a loop
at 0, so that each vertex has degree 2. The simple random walk on this
graph is aperiodic, but its strong period is 2. Using Lemmas 1.13 and 1.23,
we compute

|z) J .
1 - z + v 1 — z2

We have p(P) = 1, and the singularities of G(0,0\z) are z = ±1 . D
In conclusion, we give a class of examples which show how p-recurrence

may arise for graphs which are not quasi-transitive.

(9.7) Connecting graphs at a common root. Let (Xj,Pj), j £ X, be
irreducible Markov chains (finite or infinite). We choose a root in each Xj,
and we link the Xj by identifying all these roots while keeping the rest of
the Xj disjoint. This gives a set X = | J . Xj with root o, {o} = p| • Xj. We
also choose constants otj > 0 such that ^ otj = 1 and define a transition
matrix P on X by

!

<*jPj(o,v), ifx = o, yeXj\{6},
2j otjPj{o, o), if x = y = o,

while p(x, y) = 0 in all other cases. When each Xj is a graph and Pj is the
simple random walk on Xj, then X is the graph obtained by connecting the
Xj at the common root o, and the simple random walk on X is obtained
by choosing cy = degx,.(o)/degx(o).

By decomposing according to the first step, it is immediate that
(9.9) UMz) = ̂ jUjMZ) and ^ = E ^ ) .

where U and G refer to (X,P) and Uj and Gj to (Xj,Pj) (compare with
Lemma 1.13).

Suppose that each Pj is reversible with conductances dj{x,y) (x,y e
Xj) and associated invariant measure rrij(x) = ^2y^x aj(x^y)^ s o ^na^
Pj(x,y) = aj(x,y)/m,j(x). Then we can consider the network over X ob-
tained by linking the networks over the Xj, leaving the conductances as they
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are. (We do not admit a loop at o.) We get m(x) = rrij(x), if x G Xj \ {o},
and m(o) = ^ . rrij(o). Thus, the associated P on X is obtained as above
with otj = mj(o)/m(o). For z = 1, the second formula in (9.9) now reads
cap(o) = Y^j caPj(°)? o r m other words, the conductance from o to oo in X
is the sum of the conductances from o to oo in the Xj (the parallel law).

Returning to the general setting of (9.8), let us now determine p(P).
Let Sj and s denote the radii of convergence of the power series Uj(o,o\z)
and U(o,o\z), respectively. Then T(PJ) < Sj and r(P) < s. From (9.9),
s = min^Sj. Recall that G(o,o\z) = l / ( l - U(o,o\z)) and that r(P) is
the smallest positive singularity of this function. Also, for 0 < z < s, the
function U is strictly increasing. Thus, we have the following.

Case 1. U(o, o\s—) < 1. Then G(o, o\z) is analytic for 0 < z < s, so that
it must be that r(P) > s. Therefore p(P) = s"1 and (X, P) is /9-transient.

Case 2. (7(o, o|s—) = 1. Then p(P) = s"1, and (X, P) is p-positive- or
p-null-recurrent according to whether Uf(o, o\s—) is finite or infinite.

Case 3. U(o, o|s—) > 1. Then p(P) = t"1, where t is the unique solution
of t/(o, o\i) = 1 in the interval (0, s), and (X, P) is p-positive-recurrent.

We consider a concrete class of examples of simple random walks on trees.
Let Xi be the tree where each vertex has degree M > 3, with the exception
of the root o, which has degree M — 1. As X2 = X2 , we choose the finite
path [0 ,1 , . . . , k], where k > 1. The graph X is obtained by identifying o
with 0. This is a tree with a "hair" of length k sticking out at o. The simple
random walk on X is obtained from the simple random walks on the Xj by
setting OL\ = ^j^ and 0^2 = jf- We have

Ui(o,o\z) = 2 ( M - 1)

_1 and U\{s\) = 2(M-I) > c o m P a r e w i t n Lemma 1.24. Us-

ing Lemmas 1.13 and 1.23, we can determine U2 = U2 recursively

as follows. For k > 2, *72
(*°(0,0|;z) = zF^k\l,0\z) and F^k)(l,0\z) =

f + fF2
(/e)(2,l|^)F2

(fc)(l,0|z). Now F2
(fc)(2,l|z) = ^ " ^ ( l , 0 | « ) , and

2

| ) ^ r ^
2-t/2

(fc-1)(O,O|0)

This means that one can obtain ?72 as a (finite) continued fraction, but
we shall not pursue this here. We shall only consider k = 1,2,3:

f/«(0,0|z) = z> , C/f (0,0|*) = 2^2 ' f ^ ^ ^ f
fe = 1: We have S2 = 00, so that s = si , and compute U(s) = | +

* Therefore p(P) = M~X an(^ *^e r a n ( iom walk is p-transient.
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k = 2: We have 82 = ^ and U2(s2) = 00. We get s = si for 3 < M < 6
and s = s2 for M > 7. For M = 3, U(s) < 1, p(P) = s^1 and the random
walk is p-transient. For M = 4, U(s) = 1, p(P) = sj"1, [/'(0,01s-) = 00,
and the random walk is p-null-recurrent. Finally, for M > 4, U(s) > 1, and
the random walk is p-positive-recurrent. In order to compute p{P) in this
last case, we have to solve (7(0,0|£) = 1 in t > 0. Elementary computations
yield the result:

M l for M = 3,4 and p{P) = K\ "' \s f o r M > 5 .

A; = 3: We have s2 = 2/V3 and U2(s2) = 00. Therefore s = si only
when M = 3, while s = s2 for M > 4. For all M, t/(o,o|s-) > 1, and the
random walk is p-positive-recurrent. We omit the elementary, but boring,
computation of p(P).

For k > 3, one always gets s = s2 and J7(s) = U2(s2) = 00, and the
random walk is p-positive with U(o, o\p~1) = 1. D

B. A functional equation
Let (X, P, o) be an (irreducible) Markov chain together with a root o G

X, fixed throughout this subsection. We shall describe the function G(z) =
G(o, o\z) in terms of a functional equation which is going to be very useful.
In the sequel, ila (0 < a < 00) will indicate an open neighbourhood of
the real interval (line segment) [0, a) in the complex plane. We define
0 = 6{P) = TG(T) £ (r, 00], where r = r(P). Of course, 6 also depends
on o in general (but not for random walks on groups and vertex-transitive
random walks on graphs).

(9.10) Proposition. There are sets il r and iig and a function <£(•), ana-
lytic in ilfl, such that zG(z) G il# whenever z G ilr and

G(z) = *(zG(zj), z e i l r .

The function $(•) is unique up to analytic continuation.

For t in the real interval [0, 0), $(t) is strictly increasing and strictly
convex, $(t) < 1 + p(P) t, $'(()) = p(o, o), and $'(#-) < p(P).

Proof. Consider the function

(9.11) W(z) = zG{z).

For real z G [0, r), it is analytic and strictly increasing, and W'{z) >
Wf(0) = 1. Therefore the inverse function V(t) satisfying V(W{z)) = z
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(z e ilr) exists, is analytic in a il#, non-zero except for t = 0, and unique up
to analytic continuation. We define $(t) = t/V(t), <£(0) = 1. This function
is analytic in iie and satisfies the proposed equation. Uniqueness of $(•)
follows from uniqueness of V(-).

We have $(W(z)) = G(z), whence &(W(z)) = G'(z)/W'(z), in par-
ticular $'(0) = G'(0) = p(o,o). If t = W(z), 0 < z < r, then
V(t) = G'{z)/W'(z) = l/(z + §$) > 0. Using tf(*) = 1 - 1/G(z),
where £/(;&) = £/(o, o|z) is the generating function of first return prob-
abilities as in (1.12), one computes $"(*) = (G(z)/W'(z))3U"(z) > 0.
Hence, $(t) is strictly increasing and strictly convex for t € [0,0). For
* € [0, r ) , ^'(WX*)) < l/z9 and $ ' (0-) < p(P). Convexity now yields
$(t)<p(P)t. D

Thus, for real z G [0, r ) , we can describe G(z) by a figure in the real
(t, ^)-plane (0 < t < 0): we obtain G(z) as the ordinate of the point of
intersection of the line y = \t with the curve y = $(£). See Figure 10 in
the proof of Theorem 9.22 below. In particular,

(9.12) p(P)= limlim
t—*u— Z

We shall need to know where the tangent to y = $(t) at a point (£o>
intersects the y-axis in this figure. This is at y = S&(to), where

(9.13) 9(t) = *(t) - t&(t).

If t = W(z), 0 < z < r, then one computes

(9.14) T"N l

' zU'(z) + 1 - U(z) 1 + £~=1(n - l)Po[t° = n] zn '

Therefore 9(t) is strictly decreasing and positive for 0 < t < 0 (recall that
U(x) < 1). We shall be particularly interested in the limit value 9(0-). If
(X,P) is p-recurrent then 0 = oo. In the p-null-recurrent case, 9(0-) = 0.
In the positive recurrent case (p = 1, 0 = oo), we have 9(0-) = i/(o), where
v is the invariant probability measure for (X, P); compare with Theorem
1.18. We now give some examples, including finite graphs, which will be
useful later on.

(9.15) Examples. (1) Let Km be the complete graph on m vertices, that
is, all pairs of distinct points are neighbours. On Km, we consider the
simple random walk. Choose o G Km. The stabilizer of o in AUT(lKm) acts
transitively on the remaining vertices, and the corresponding factor chain
has two states 0 and 1 corresponding to {o} and Km \ {o}, respectively. Its
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transition probabilities are p(0,1) = 1, p(l,0) = ^ - j - and p(l, 1) = ^5 j •
We have G(o,o\z) = G(0,0|z). We compute

2 \ m — 1 V m-1 Vra — 1 / / m

Note that the Cayley graph of any finite group F with respect to F \ {o} is
Km, where m = |F|.

(2) The cycle of length £ can be seen as the Cayley graph of the cyclic
group Ze of order £ with respect to the generator and its inverse. We write Z^
for this graph as well. For the simple random walk on Z^ we cannot calculate
$(t) explicitly. With some standard harmonic analysis, one computes

y H w(
£ * 1 - * COS(2TTJ/£) Vcosh(Sy " sinh(£S) sinh(s) '

as £W{\) = T£(t)/(T£(t) - l ) , where Te is the £-th Chebyshev polynomial
(and using coshs = cos is). Once more, 6 = oo and \I>(0—) = l /£ Indeed,
for any random walk on a finite group F, the invariant probability measure
is equidistribution on F.

(3) For the simple random walk on Zd, we also cannot compute <&{t)
explicitly unless d = 1. We have p(P) = 1 and, via Fourier transformation,

\Z7r) J(-TT , n]d a — Z } v f r — 1 COS Sk

where s = ( s i , . . . , Sd)> For d = 1,2, the random walk is recurrent, 0 = oo
and tf (0-) = 0. For d > 3, 0 < oo. We know that p(2n>(0,0) - Cd n"d/2 (a
complete computation will be done in Chapter III). Therefore, for d = 3,4,
U'(l) = G/(1)/G(l)2 = oo and tf (0-) = 0. Cartwright [56] has used Fourier
analysis and numerical integration to compute some values of 0 (for d > 3)
and W(0-) (for d> 5):

d 1 2 3 4 5 6 7 8 9

0 oo oo 1.517 1.239 1.156 1.117 1.094 1.079 1.067
#(0- ) 0 0 0 0 0.691 0.824 0.876 0.903 0.920

In [56], he also shows that \£(0—) —> 1 as d —> oo.
(4) Consider the random walk on the additive group Z whose law is

[i = p . Si + q - 6-i, where p + q = 1. Then 0 = oo,
1 /

G(z) = —==== , $(£) = V1 + 4p<7t2 and \£(0-) = 0. •

In the next subsection, we shall see how $(•) may become useful for
computing p(P), while in Chapter III it will be useful for studying the
asymptotic behaviour of transition probabilities.
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C. Free products
Let (Xi,Oi), i G I , be a family of sets with roots Oi G Xi. Here we

shall assume that X is finite, but most of what we are going to do remains
valid for countable X. We construct the free product (X, o) = * (Xi, oA as

iex
follows. We identify all the oi with o, as in (9.7), and write X[ = Xi\{oi}; if
x G X[ then we write \{x) = i. We think of X as all "words" with "letters"
from the X[, such that no two successive letters come from the same X[.
Thus,

(9.16) X = {Xlx2 • • • xn : n > 0, Xj G U X,', i ( ^ ) ^ i fo - i ) } ;

for n = 0, we intend the empty word o. In particular, Xi C X. Write
Xj = {xi • • • xn as in (9.16) : i(xn) ^ i} U {o} and X/- = {xi • • • xn : n >
1, i(xi) 7̂  z} . If x̂ G XT" and x G l i , then ux stands for their concatenation
as words in X, in particular uo = u.

If the Xi carry a #rap/& structure (without loops, for simplicity), then
neighbourhood in X is given as follows: if x, y G Xi are neighbours in Xi
then ux ~ uy in X for all w G X^. Thus, X looks like an infinite "cactus"
whose leaves are copies of the X^ At the root o, the Xi are joined by their
respective roots, as in (9.7). At each other point of Xi, we attach copies
of all the Xj, j ^ i, by their roots. At each of the new points XiXj we
then attach copies of the X^, k ^ j , and so on (inductively). Thus, the
whole "branch" attached at any x G X[ is isomorphic with X±-. If the
Xi are vertex-transitive then so is X, and one does not have to specify
the roots. This does not remain true with "quasi-transitive" in place of
"vertex-transitive".

If the Xi = Ti are groups, then we always choose for Oi the respective
group identities. The free product * Ti carries a natural group structure:

the identity element is o, and the product is concatenation with possible
cancellation in the middle to reach the normal form as in (9.16). The Ti
are subgroups of T. If Xi is the Cayley graph of Ti with respect to Si, then
X is the Cayley graph of T with respect to (JieX Si.

The homogeneous tree T M is the free product of M copies of K2 (the
two-element graph); it is the Cayley graph of the group Z2 * • • • * Z2 (M
times). Also, T2M is the free product of M copies of Z and the Cayley
graph of the free group ¥M = Z * • • • * Z (M times). Figure 9 shows a
piece of the graph K2 * K2 * Z4, which is the Cayley graph of the group
F = (ai, a2, b I a\ = a2 = 64 = o) with respect to S = {ai, a2, b, b~x}.

Starting from irreducible transition matrices Pi over Xi, i G X, we now
want to define their free "sum" (more precisely, convex combination) on X.
We lift Pi to a (non-irreducible) transition matrix Pi over X: if u G Xj
and v,w G Xi then pi(uv,uw) = pi(v,w), while pi(x,y) = 0 in all other
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Figure 9: the graph
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cases. Now choose ai > 0 such that Yli cti = 1 and define

(9.17) P = YaiPi.

This defines an irreducible Markov chain over X which is adapted to the
free product structure and arises naturally from the Pi. It is for chains of
this type that the function 3> will reveal its usefulness.

If the Xi are regular connected graphs with degrees M», then X is regular
with degree M — ^2i Mi, and the simple random walk on X arises from the
simple random walks on the Xi as in (9.17) by choosing ai = Mi/M. Let
the Xi = Ti be groups and each Pi a random walk arising from a probability
measure /i*. Then Pi arises from the same /i*, seen as a probability measure
on the free product F with /^(F \ F*) = 0. Thus we obtain a free-sum-type
random walk on F as in (9.17) with law ji = J ^ ai • \±i.

In the setting of (9.17), we now want to describe G(z) = Gp(o, o\z) and
$(£) = $P(t) in terms of Gi(z) = GPi{ouOi\z) and $<(*) = $P<(*). We also
write U(z) = UP(o,o\z), Ut(z) = UPi(ohOi\z), Fi{x,y\z) = FPi(x,y\z),
^r(t) = tyP(t) and Vi(t) = VPi(t). It will be useful to think of the random
walk (Zn)n>o given by P as follows: at each step, we first select a random
i G l subject to the probability distribution (ai)iez and then choose the
next state according to Pi. We write i(Zn) = i for the element of J chosen
at step n. Now let t° be the "first return" stopping time at o in 1 , as
defined in (1.12), and consider

and

(9.18) Proposition. If\z\ < x(P) then \d(z)\ < r(Pi),

H.{z)

and

(c) foru,v€Xi, F(u,«|z) =
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Proof. Relation (a) is obvious. The proof of (b) and (c) needs more
work. We remark that we do not exclude p{x, x) > 0, which causes slight
complications in the formulation of the proof. We start with (c). We fix
i G X and omit it in the notation for the stopping times

s(0) = 0, s(fc) = min{n > s(fc - 1) : Zn G X{ and i(Zn) = i} ,

defined as long as they exist; the starting point is ZQ = u G Xi. Thus,
(Zs(k))k>o is the "shadow" in Xi of the random walk. Our key argument
is the following: if at time n the random walk is at some x G Xi, then it
may take a "detour" into the copy of X±- attached at x before performing
the next step within Xi subject to oci Pi. By the free product structure, the
walk has to return to x before performing this next step. That is,

Zs{k)-i = ^s(fc-i) if s(fc) < oo .

As the transition probabilities within the copy of X^~ attached at x are
the same for each x £ Xi, we see that the increments &(h) — s(k — 1) are
i.i.d. Also, ¥u[Zn = u, s(l) > n] is the probability of returning to u G Xi
at time n without allowing steps within Xi that are subject to otiPi. The
generating function associated with first return probabilities to x of this
type, in analogy with (1.12), is U(z) — Hi(z). Therefore, as in Lemma

Now let n > 1 and x\,..., xn G Xi. Write

w(xi , . . . , a? n ) = M

Then the above considerations show that [s(l) = n + 1, Zn+i = x\]
[Zn+! = xi, i(Zn +i) = i, Zn = u, s(l) > n], and

oo

w(n) = ^ z"+1 WMl) = n + 1, Zn+1 = n ]
n = 0

nFu[Zn = u, s(l) > n] = &(z)Pi(u,a?i),
n=0

and inductively
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Now let v G Xi, v ^ u. The time sv of the first arrival of the random walk
at v must coincide with some instant s(n), with random n. (Indeed, the last
step must take place within Xi.) Therefore, writing s? for the first arrival
time at v of the Markov chain (Xi, Pi),

n=l n=l xi,...,xneXi
xn=v, Xfĉ v (fc<n)

oo

= 5 ] <,(*)» Pu[s« = n] = F(«, v\Q(z)).
n=l

Statement (b) follows quite easily from (c). This time, ZQ = o, and
conditioning on the first step as in Lemma 1.13(c),

o\z) = a{z ^ pi(o,x)Fi(x,oi\()i(z))
xeXi

= (1 - U(z) + Hi

When z is real, 0 < z < r (P) , all the above are manipulations with
series with non-negative terms. Hence (a), (b) and (c) are true for such
z and both Ci(z) a n d Ui(^(z)) must be finite and non-negative. We have
£i(0) = 0, and this function is strictly increasing for z < T(P). AS G(Z) =
1/(1 - U(z)) < oo, it must be that U(z) < 1, implying that (/»(&(*)) < 1
which in turn yields Gi(Q(z)) < oo and d(z) < r(P»).

If z G C is arbitrary, then |J7(z)| < U(\z\), \F(o,x\z)\ < F(o,x\\z\) and
10(^)1 ^ 0(1 ̂ D? showing that all the series involved in our computations
converge absolutely for \z\ < r (P) , making sure that (a), (b) and (c) hold. •

We can now deduce the main theorem of this section.

(9.19) Theorem. For P = ̂ i^xai^i we

is analytic for t in a ii§, where

9 = mm{6(Pi)/ai :iel}> 9(P).

Proof. Multiplying numerator and denominator in (9.18.b) by G(z), we
obtain 1 - l / ( l + Hi(z)G(z)) = Ui(&(z)), so that by (1.13.a)

l + Hi(z)G(z) = Gi(b(z))=i
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Therefore

f Ci(*)G«(C<(*)) = CiW(l + #«(*)<?(*)) = <**<?(*), and
1 ' j \Hi{z)G(z) = *i{aizG{z))-\.

Now (9.18.a) gives £ieX#i(z)G(,z) = U(Z)G(Z) = G(z) ~ l> s o t h a t

*{zG(z)) - 1 = G{z) - 1 = £(*,(<**<?(*)) - l) .
ii

All these relations are true for z in a Ur(P) • I n particular, setting t = zG(z)
for 0 < z < r (P) it must be that a»t < 6(Pi), so that 0(P) < 9 as asserted,
thus completing the proof. •

We now explain the use of this theorem for computing p(P). We suppose
we have good knowledge of the functions $»(•) and of 9(Pi), i G X. Thus we
can find £ and subsequently 0(P) in the interval (0, §]. The point is that in
many typical cases, we will have 9 > 9(P), so that $(t) extends analytically
beyond 9(P). From Theorem 9.19 we also get

(9.21) tt(t) = i + £ (*<(€*<*) - l ) , teu$-

(9.22) Theorem. The following two cases can occur.

(i) If^(9-) < 0 then 9(P) is the unique solution in (0, 9) ofW(t) = 0,

p(P) = min{Q(t)/t: 0 < t < 9} = <f>'(9) < 1,

and (X, P) is p-transient.
(ii) IfV(8-) > 0 tlien 9(P) = 9, p(P) = lim ($(t)/t), and (X,P) is

t>0
t0

p-recurrent if and only if§ = oo.

Proof, (i) Once more, we use the fact that r(P) is the smallest positive
singularity of G(z). Let r be the unique solution in (0, 9) of ̂ (t) = 0 and
let s = T/$(T).

Start with small z € (0, s). The line y = \t intersects y = $(t) at a
unique point of the first quadrant; see Figure 10. This is (zG(z),G(z)).
The angle of intersection is non-zero because the tangent to y = <f>(t) at
this point intersects the ordinate axis at ty(zG(z)) > 0. By the theorem on
implicit functions, G(-) is analytic at z. Increasing z, from a certain point
onwards we will find two intersection points, again with non-zero angles,
one to the left and the other to the right of r. By continuity, it is the left
one which determines G(z). On reaching z = s, the two points coincide,
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and the angle of intersection becomes 0, which means that s is a singularity
of G(-). Indeed, consider the complex function

(9.23) T{z, w) = ${zw)-w.

It is analytic in {(z,w) G C2 : zw 6 il#}, and

(9.24) T{z, G(z)) =0 for z €

By the theorem on implicit functions, singularities of G(z) are determined
by F(z,G(z)) = 0 and Jr

w(z,G(z)) = 0, that is, V(zG(z)) = 0, and (as we
are looking for a positive singularity) z = s.

Figure 10

For z > s, the line y = ^t does not intersect y = $(t), so that we
find no real solution for G{z). This shows that r(P) = s, 0(P) = r and
G(r(P)) < oo, as asserted. Finally,

P(P) =

(ii) The function $(t)/t is decreasing and V(t) > 0 in [0, 0). Set s =
limt_^_(t/$(t)). Then for 0 < z < s, the angle of intersection of y = \t
with y — $(£) is always non-zero, giving rise to an analytic solution for
G(z). Therefore r(P) > s and 6 > 0. Inequalities cannot be strict, and
T(P) = s, as asserted. In particular, G(r(P)) = oo if and only if 6 = oo. •

We now give various applications.

(9.25) The free product of identical pieces. An interesting special
case arises when Xi = XQ, O{ = o$ and Pi = Po all coincide and OLI = 1/M,
where M =\T\. We write $* = $0 , ^t = ^o and 0O = 9(P0). Thus,

0 = M00 , = M$0(t/M)-(M-l) and V(t) = MV0(t/M)-(M-l).
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(i) If M is sufficiently large then we will have \£o(0o-) < ( M - 1)/M, that
is, V(0-) < 0. Then 0(P) is found by solving V0(t/M)_ = (M - 1)/M. One
may also set t/M = W0(z) = zGo(z), where 0 < t < 0 and 0 < z < r(Po),
and substitute this into $(i)/t to obtain

(9.26)

(ii) If tfo(0o-) > (M - l ) /M then 9{P) = M0o and

When in addition (XO,PQ) is p-recurrent we get p{P) =

(1) For the simple random walk on Bm,M = ^m * • * • *Km (M times), we
have ^o(^o-) = l/m> which is equal to (M - 1)/M only when M = m = 2.
In this case, we obtain K2 * IK2, which (as a graph) is isomorphic with the
two-way-infinite path Z (on the group level of course Z ^ Z2 * Z2, the
infinite dihedral group). In this case, p(P) = 1. In all other cases, one may
use Example 9.15(1) to compute ^o(^) and solve the equation &o(t/M) =
(M — 1)/M. However, there is a simpler way of computing G(z) and p(P):
the stabilizer of o in AUT(DM,m) acts transitively on each sphere S(o,k),
and the factor chain becomes a nearest neighbour random walk on No with
transition probabilities p(0,1) = 1 and, for k > 1, p(k,k — 1) = M(m-i) '

p(k, k) = jj^-i) an(* P(^' ^ + 1) = H ^ - We leave the easy computations

of £/(0,0|z) and G(^) = 5(0,0|^) as an exercise. The result is

^ ; M(m - 1)

For m = 2, Om,M = T M and we recover the formula of Lemma 1.24.
(2) For the simple random walk on Z^ * • • • * 7Li (M times), with £ > 3

and M > 2, we have ^0(00-) = l/£ < (M - 1)/M. We use (9.26) and
substitute z = 1/coshs, where 0 < z < 1 and 0 < s < 00, to obtain

(M - 1 ) sinh(^s) sinh(s) 1

For £ = 3, this coincides with the preceding example (m = 3). For fixed M
and £ —» 00, p(P) —> ^2w 1 . Here are some numerical values of p(P).

M = 2:
M = 3:

£

P(P)
P(P)

3
0.957
0.833

4
0.919
0.785

5
0.896
0.764

6
0.884
0.754

7
0.877
0.749

8
0.872
0.747

9
0.870
0.746
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(3) An interesting example is the simple random walk on Zd * Zd. Prom
Example 9.15(3) we know that ^o(^o-) = 0 for d < 4, and p(P) = min{± -
2wo(z) '• 0 < z < 1} • For d = 1, we have the simple random walk on T4, and
p(P) = \/3/2. For d = 2,3,4, the minimum can be evaluated numerically.
On the other hand, for d > 5 we have \£o (#()—) > 1/2; see the table in
Example 9.15(3). In these cases, p(P) = 1- 1/20O :

d 1 2 3 4 5 6 7 8 9

p(P) 0.866 0.728 0.646 0.596 0.568 0.553 0.543 0.537 0.532

In the same way, one can compute p(P) for the simple random walk on
Z d * - - - * Z d (M times). •

(9.28) Exercise. On the circle Z^, consider the (deterministic) walk PQ
which goes one step clockwise with probability 1. Compute WQ{Z). NOW

take the free product of M identical copies and calculate p(P) explicitly.

(9.29) Other examples involving groups. Suppose that /m defines a
random walk on the group Fj, i G I . Let F = * F^ and /JL = ^2iex

 ai ' fa ,

as explained after (9.17). Suppose that for each i € X, either 0i — 00
(p-recurrence) or ^i(0i-) = 0. Then #(#-)_ < 0, unless \1\ = 2 and
Yi = T2 = 1>2- Indeed, if 0$ = 00 for all i then 6 = 00 and

unless F = Z2 * Z2. If some Oi is finite then there is i0 such that 0
0io/aio < 00, and

In these cases, 0(P) < 0, and p(P) is obtained according to case (i) of
Theorem 9.22.

(1) Let F = (a^i G X \ a? = 0), and define the random walk law 11 by
Mai) — Pi- Then F is the free product of M = \X\ copies of Z2, where the
i-th copy is generated by a .̂ The corresponding Cayley graph is T M , and

Sat- From Example 9.15(1) (with m = 2) we get 0 = 00 and

If M = 2 then \I>(0-) = 0, p(ii) = 1, and the random walk is recurrent. If
M > 3 then p(/x) = min($(t)/t).
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(2) A very similar example is that of the free group ¥M = (a*, i G X | ),
(with M = |J|), where we write a_i for a"1. If fi is defined by fi(a±i) = p±^,
then we have // = 2 i G j ai' Vii w n e r e Vi is supported on {a±i} in (a*) = Z:
Mt(a±i)_= P±t/(Pi + P-t) and a* = p* + P-*. Using Example 9.15(4), we
obtain 6 = oo,

and p(/i) = min($(t)/t) whenever |X| > 2.
(3) Let Fj, i G I , be finite groups, and let \ii be equidistribution on

Ft \ {oi}. This gives the simple random walk on Kmi, where m^ = |Ft|.
Thus fi = Y^i ai' Hi describes a nearest neighbour random walk on * Kmi,

which is the corresponding Cay ley graph of * IV Using Example 9.15(1),

we compute

+ 5 Z
Once more, unless \X\ = 2 and both | I \ | = 2, we get p(fi) = (
In the particular case when |X| = 2, we can solve \I>(£) = 0 and obtain

( +

+ «1
2y V m i - l

(4) Finally, consider F = Z2 * Z2 = (a, 61, fr2 | a2 = o, &i&2 = 626i). Let
/xi be the point mass at a and /x2 the law of the simple random walk on
(61? 62) = Z2. Setting /x = a i -/xiH-^*^? we cannot compute $(t) explicitly.
Substituting a2t = VF^z), 0 < 2; < 1, where VF2(^) is as in 9.15(3), we get

so that

For the simple random walk, OL\ = 1/5 and a2 = 4/5, and numerical ap-
proximation gives p = 0.89416. •

The graph of Figure 9 (and more general versions) will be considered
in Section 11. The reader is encouraged to "invent" a variety of further
examples.
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(9.30) Exercise. Recurrence and p-recurrence.
(1) Show that p(P) < Y^i otip{Pi) when 0 = oo. [Hint: use the shapes of

$ and #.]
(2) Show that recurrence of (X, P) implies recurrence of all (X{, P{) and

that Yliex' ui(°i) ^ |2T| — 1, where T is the set of i e 1 for which (X*, Pi) is
positive recurrent, and Vi is the corresponding invariant probability measure
on Xi.

(3) Show that these conditions are also sufficient for recurrence of (X, P).
(4) Characterize positive recurrence of (X, P) in these terms.

10. The spectral radius and strong isoperimetric inequalities

The main topic of this section will be the question whether p{P) = 1 or
< 1, and how this is related to the underlying structure. In what follows,
p{P) will be a "true" spectral radius.

A. The spectral radius of reversible Markov chains
Before turning our attention to reversible Markov chains, we start with

a lemma on non-negative matrices. Let Q = [q(i,j))i eT be a non-negative
real matrix over a finite or countable index set, not necessarily with finite
row sums. We assume that Q is irreducible in the sense of (1.5). Even
if some power Qn = {q^n\i,j))i eX has some infinite entry, the argument
of Lemma 1.7 shows that p(Q) = limsupng(n)(z,<7)1/n *s independent of
i,j € J . If p(Q) < oo then all Qn are finite in each entry. Q acts on
functions (vectors) X —• M in the usual way by matrix multiplication on the
left.

(10.1) Lemma. IfQ is symmetric and p(Q) < oo then Q acts on £2(1) as
a bounded linear operator with norm \\Q\\ = p(Q).

Proof. Denote by (•,•) the standard inner product in £2(1). Let / G
£ be non-zero. Then {Qnf,Qnf) = (f,Q2nf) is finite for each n, and

(Qn + 7,Qn + 7)2 = (Qn/,Qn+2/)2 < (Qn/,

so that the sequence (a*/on*) is increasing. Its limit is the same as

that of (Qnf,Qnfy/n. The latter must be p(Q)2. Hence

(Qf,Qf) ^ (Qn+1f,Qn+1f)

life eo(I) is arbitrary, then (Qf,Qf) < (Q\f\,Q\f\) < p(Q)2(f,f)-
Consequently, Q is bounded on £2(X) and ||Q|| < p(Q). It is clear that this
must be an equality. •
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Now let (X, P) be a reversible Markov chain with associated invari-
ant measure ra(-) and conductance a(-, •). Recall from §2.A that P acts
as a self-adjoint bounded operator on £2(X, m). By using the isomor-
phism £2(X1m) -> £2(X) which sends / e £2(X,m) to the function
x •-• f(x)y/m(x), we transform P into the symmetric operator (matrix)
with entries ^m(x)p(x, y)/\/m(y) with the same norm and spectral ra-
dius. Thus, Lemma 10.1 yields the following.

(10.2) Corollary. The operator P on £2(X,m) satisfies

\\P\\= lim ||Jpn||i/n = p ( p ) .
n—+oo

Next, recall from §4.A that (X, P) satisfies a strong isoperimetric in-
equality IS, if there is K > 0 such that m{A) < Ka(dpA) for every finite
A C X, where dp A is the set of edges in E(P) going out of A. Also, recall
the definition (4.2) of the Sobolev norm of a function on X.

(10.3) Theorem. The following statements are equivalent for reversible
(X,P).

(a) {X, P) satisfies a strong isoperimetric inequality.

(b) (Dirichlet inequality) There is R > 0 such that

\\f\\2
2<R Dp(J) for every f € £0(X).

(c) The spectral radius p(P) is strictly smaller than 1.
(d) The Green kernel defines a bounded linear operator on £2(X,m) by

Proof, (a) => (b). We know from Proposition 4.3 that IS is equivalent
to the Sobolev inequality ||/||i < KSP(f) for all / € £0(X). We show that
this implies the proposed inequality for 2-norms. Let / € £Q(X). Then

x,y€X

<K2DP(f)

<K2DP(f)

(We have used Cauchy-Schwarz in the third inequality.)

(b) = > (a). This is obvious, setting f = 1A for finite A C X.
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( b ) = > ( c ) . ftom ( 2 . 2 ) , w e g e t ( / , / > / ) = | | / | | | - DP(f) < (1 - « ) |
for / € A>(-20- H e n c e , P b e i n g se l f - ad jo in t , i t s n o r m o n £2{X, m) sa t i s f ies

(c) = > (b). In the same way, if ||P|| = p(P) < 1 then DP(f) =
( )

= \\f\\2

(c) *=» (d). Since (/ - P)Gf = f for / G £0(X), we have ||G|| < oo on
£2(X, m) if and only if I - P is invertible, that is, ||P|| < 1. •

For use in the next subsection, we remark that the implications (a) 4=>
(b) =$> (c) <=> (d) also remain valid when P is reversible with a(x,y) =
m(x)p{x,y) = m(y)p(y,x), but only substochastic. In this case, ra(-) is
excessive, but not necessarily invariant. The main ingredients of the above
proof, that is, Proposition 4.3 and Lemma 10.1, remain valid in this setting,
but (2.2) is different: one gets V*V/(x) = p(x)f(x) - P / (x) , where p(x) =
J2yP(xi V) ^ !• Hence (/, Pf) < | | / | | 2 - J D F ( / ) , but we do not have equality,
as needed in (c) = > (b).

B. Application to random walks on graphs
Now let X be a locally finite, connected, infinite graph. Theorem 10.3

applies to the simple random walk. We say that X itself satisfies a strong
isoperimetric inequality, if IS holds for the simple random walk. Recall that
this means existence of K > 0 such that \dA\ > K • m(A) for every finite
A C X, where dA is the set of edges in E(X) going out of A, and m(A) is
the sum of the vertex degrees in A. This implies that X has exponential
growth:

(10-4) Vx{n)>(l + ±)n,

where K is the constant appearing in IS. If X has bounded geometry, then
IS is equivalent to the existence of H > 0 such that

(10.5) \A\ < K \dA\ for every finite A C X ,

where dA is the set of vertices in A having a neighbour in X \ A. A graph
which does not satisfy IS is often called amenable. The converse of the
statement about (10.4) is not true: there are amenable (Cayley) graphs
which contain an infinite binary tree; see Rosenblatt [280]. This also shows
that amenability is not inherited by subgraphs in general. On the other
hand, it is follows from Theorem 4.10 that the Cartesian product of two
graphs is amenable if and only if this holds for both factors.

Three classes of examples of graphs satisfying IS will be provided in the
next subsection; groups and vertex transitive graphs will be considered in
Section 12.

We now look for adaptedness properties for more general random walks
(X, P) such that p(P) < 1 implies IS for X and conversely. In the next
theorem, we do not assume that P is reversible.
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(10.6) Theorem. Let P be the transition matrix of a random walk which
is uniformly irreducible, and which has an excessive measure v satisfying
C'1 < v(x) < C for all x e X (C > 0). If p(P) = 1 then X is amenable.

Proof. Recall that the assumptions imply that X has bounded geome-
try. As in the proof of Theorem 3.1, P = ( | ( / + P ) ) has excessive measure
v and satisfies p(x, y) > i0 > 0 for every pair of neighbours x, y. If p(P) — 1
then p(P) = 1 and consequently ||P|| = 1 on £2(X, v). The adjoint P* of P,
given by p* (x, y) = ^(y)p(y, x)/v(x), is substochastic by excessiveness of the
measure v. Let Q = P*P. Then Q is substochastic and strongly reversible
with respect to the excessive measure i/, and q(x, y) > SQ/2 whenever x ~ y.
This implies 8QAD dA for every finite A C X (the index Q referring to the
associated network). Also, using Lemma 10.1, p{Q) = \\Q\\ = 1. Now the
remarks after the proof of Theorem 10.3 yield that (X, Q) does not satisfy
IS. That is, if e > 0 then there is a finite set A = A£ C X such that

aQ(dQA) <ev{A).

Now,

aQ(dQA) > aQ(dA) > ^\dA\ and u{A) <C\A\.

Hence the ratio |<M|/| A\ becomes arbitrarily small, when A varies over finite
subsets of X, and the graph is amenable. •

More generally, the last theorem remains valid when instead of p(P) = 1,
one has that P2(P) = 1, where

(10.7) P 2 (P )=p 2 (P , I , ) = lim||P"| |1/"
n

is the "true" spectral radius of P on £2 (X, v). Indeed, this still implies
p(Q) = 1. Note that in general (unless P is reversible - see Corollary 10.2),
each of the inequalities p(P) < P2{P) ^ ||P|| may be strict. Later on we
shall see an example which shows that the boundedness condition on the
excessive measure cannot be dropped.

For the following, recall the definitions (1.22) of the step length dis-
tributions ax, x £ X, and that the latter are tight, if (j)p(n) =
swpxeX GX ([n, oo)) - 4 0 a s n - > o o .

(10.8) Theorem. Suppose that (X, P) is irreducible and has an invariant
measure v satisfying C~x < v{-) < C, and that both P and its u-adjoint P*
(that is, p*(x,y) = v{y)p(y,x)/v{x)) have tight step length distributions.

If the graph X has bounded geometry and is amenable then \\P\\ = 1 as
an operator on £2 (X, v). If in addition P is strongly reversible with respect
to v, then p(P) = 1.



114 //. The spectral radius

Proof. The transition operator Q = | ( P + P*) is irreducible and re-
versible with invariant measure v. Also, <\>Q(U) < (<t>p{n) + </>p*(n))/2, so
that Q has tight step length distributions. As operators on £2(X, z/), we
have (applying Corollary 10.2 to Q)

We now show that (X, Q) does not satisfy IS. Theorem 10.3 then yields
p(Q) = 1, so that ||P|| = 1.

We use (10.5): given any e > 0, there is some finite A = A£ C X such
that \dA\ < e \A\. For k > 0, define the k-th "interior" of A

Ak = {xe A:d{x,X\A) > k} .

Let M be an upper bound on the vertex degrees in X. If x € A \ Ak,
k > 1, then d(x, A\A1)<k-l. Hence

\A\Ak\<Mk\A\A1\<Mk\dA\<Mke\A\.

For x € 4 ) we have (setting 4* = 4>Q)

q(x,X\A)< ] T q(x,y)<<Kk + l).
d{y,x)>k+l

Let a(x, y) = i/(x)q(x, y) be the conductance associated with Q. Then for
any k > 1,

a(dQA) = J2 "(x)qfa X\A)<cj>(k + 1) v(Ak) + i/

4-1) i/(A) + C |A \ Afc|

By tightness, fc, e and A (in this order) can be chosen such that the ratio
a(dQA)/u(A) becomes arbitrarily small. •

C. Examples: trees, strongly ramified graphs, and tilings
In this subsection we give three classes of examples of graphs satisfying

IS. We start with trees.

(10.9) Theorem. A locally finite tree with minimum degree 2 satisfies IS
if and only if there is a finite upper bound on the lengths of its unbranched
paths.
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By an unbranched path with length n we mean a path [xo,xi,.. .,xn]
such that deg(xi) = 2 for 1 < i < n — 1. Note that we do not assume that
the tree has bounded vertex degrees.

Proof of Theorem 10.9. Write T for our tree. If [XQ,X\, . . . ,xn] is
an unbranched path in T, then set A = {# i , . . . , x n _ i } . With respect to
the simple random walk, we have m{A) = 2(n - 1) and a(dA) = \dA\ = 2.
Thus, T is amenable when n can be arbitrarily large. (T does not have to
be a tree for this argument.)

Now suppose that T has bounded unbranched paths. Apply to T the
construction described in Example 3.8: every vertex x with degree k > 4 is
replaced with a path [x^\- • • ,x(fc~2)], whose first (last) vertex is incident
with the first (last) two edges originally incident with x, while each other
vertex is incident with one of the remaining edges originally emanating from
x. We obtain a new tree T', which has minimum degree 2, maximum degree
3 and bounded unbranched paths. Contracting each maximal unbranched
path to a single edge gives rise to a rough isometry T" —> T3. By Lemma
1.24, p(T3) < 1, and T3 satisfies IS by Theorem 10.3. Theorem 4.7 (with
d = oo) now yields that T" satisfies IS.

The natural projection <p' : T' —> T, with ip'x^ = x, is not a rough
isometry (unless T has bounded geometry). However, it is a contraction:
each of the paths [x^\ . . . , x^k~2^] is contracted to a single point. Thus, <pf

is finite-to-one onto vertices and one-to-one onto edges of T (the contracted
edges disappear). With this in mind, let / € ^o(^) and / = / o ^ . Then

ST>{f) = ST(f) and l l / l i > H/lli

(as ^2(p/xr=zxdeg^(xi) > deg(x)). Therefore, using Proposition 4.3, we see
that together with T", T also satisfies IS. •

It should be clear that the above method of comparing Sobolev (and
Dirichlet) norms applies more generally to contractions of arbitrary graphs
which are finite-to-one onto vertices and bounded-to-one onto edges of the
contracted graph. This is of course closely related to shortening of networks;
see §2.B. We shall also use this method in the following result, where, how-
ever, it works only when vertex degrees are bounded.

(10.10) Theorem. Let X be a graph with bounded geometry. Suppose
that there is r > 0 such that X \ B(x,r) has at least three connected
components for each x G X. Then the graph satisfies IS.

Proof. We start by supposing r = 0, that is, deletion of any vertex
leaves at least three components. We choose an origin o and define a map
r : X —> X as follows. We set r(o) = o, and if d(x,o) = n + 1, then we
choose y ~ x such that d(y, o) = n and define r(x) = y.
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Let y G X, n = d(x, y) > 0. If we delete y, then one of the components
of X \ {y} contains o, and there must be at least two other components.
Each of them contains a neighbour of y at distance n + 1 from o, which
must be mapped onto y under r. Thus, |T~1{2/} | > 2 for every y G X.

Now let A C X, and consider A0 = A\dA. Then I T " 1 ^ 0 ) ! > 2\A% and
T - ^ A 0 ) C A by construction. Therefore 2|A°| < |A|, and \dA\ > \A\/2.

Next, suppose that r > 1. We can find a subset V of X which is maximal
with respect to the property that d(y, w) > 2r + 1 for all v,w eV, v ^ w.
This means that adding any x e X\V, this property fails, and d(x, w) < 2r
for some w G V. Now, the balls B{w,r), w G V, are all pairwise disjoint.
We can expand each of them to obtain a system of connected subgraphs
Aw (w G V) of X such that (1) B(w,r) C Aw C B(w,2r), (2) the Aw

are pairwise disjoint, and (3) LLev Aw = X. (For each x not contained in
some B(w,r), one has to decide to which Aw it will go. One may proceed
by induction on d(x, V) = r + 1 , . . . , 2r.) Now construct a new graph V by
contracting each Aw to a single point w; two vertices v, w are neighbours if
there is an edge between Av and Aw. The contraction mapping y>: X —> V
is obviously a rough isometry (if dy{y>x, (py) = 1 then dx(x, y) < 8r + 1).

By construction, V splits into at least three components when deleting
any vertex. Therefore V and consequently (Theorem 4.7) also X satisfy
IS. •

The last theorem applies, in particular, to finitely generated groups and
quasi-transitive graphs with infinitely many (4=> more than two) ends; see
Section 21.

The third class of examples regards tilings in the plane. Recall what we
have said in §6.C about tilings, and let T be a locally finite tiling of an
open, simply connected set O c l 2 , with at least three edges on each tile.
Consider the associated edge graph X = X(T). We shall also think of a
tile T as the subgraph induced by its vertices, so that x £T will mean that
x is a vertex, \T\ is the number of vertices (= number of edges) and E(T)
the set of edges of T.

We define the characteristic numbers of edges e and vertices x of X by

see a e g ^ ^ T:E(T)Be ^ l Z TBx ^ '

(10.11) Theorem. Each of the conditions

(a) inf{(j)(e) : e G E(X)} > 0, (b) inf{tp(x) : x e X} > 0

implies that the edge graph of T satisfies IS.

Proof. As usual, we identify subsets of X with induced subgraphs. We
first reduce the class of finite subgraphs A for which IS needs to be verified.
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(1) If A is disconnected, with components Ai,...,Ak, then ^ T J T >

ra(^\ H h m(Afc) • Hence, it is sufficient to work with connected graphs.

(2) Now assume that A is connected. We set V = V(A) = {T G T :
E(T) C .E(A)}. The infinite face i7^ of A is the closure of the component
of oo in C \ E(A). We say that A is simply connected, if every tile T G T
that is not contained in F^ belongs to V. Now, if A is connected, but
not simply connected, then we can fill in the "holes", that is, the tiles not
contained in i7^, to obtain a new subgraph AD A. Then dA C dA, so that
mMT — mi A) ' Therefore it is enough to consider only simply connected,
finite subgraphs.

Let A be such a subgraph. We shall use Euler's formula, which says that
\A\-\E{A)\ + \V{A)\ = l.

Suppose that condition (a) holds: 0(e) > e > 0 for all e G E{X). Recall
that dA is the set of vertices in A having a neighbour outside A. For x € A,
we write deg^(x) for the number of neighbours of x in A. Then x G dA if
and only if deg^(x) < deg(x). We calculate

Now note that m(A) = 2\E(A)\ + a(&4). Hence,

a(dA) > e • |£(A)| = 6-{m{A) - a{dA)),

and IS holds with « = e/(e + 2).
Next, assume that (b) holds: ip(x) > e > 0 for all x G X. In the same

way as above,

deg(a;)-des^(a;)
 +1^(^)1 - \ A \ - I P I - E

TeT\V

Since |E(T)| > 3 for «very T e V and each e € E(A) lies on no more
than two T £ V, we have 3I73! < 2|£(A)|, so that Euler's formula yields
|A| > \E(A)\/3,

a(6A) >2s-\A\>j- \E(A)\ = i(m(A) - a(dA)),
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and IS holds with K = e/(e + 3). •
Prom Theorem 10.11 we obtain the following simple condition. Let k =

min{deg(x) : x € X} and m = min{|T| : T 6 T} . We have k,m > 3.
If km > 2(k + m) then X(T) satisfies IS. Indeed, we then have (j){e) >
1 - | - ^ > 0 for every edge. Thus, if k > 7 or m > 7, then IS must hold.
For tilings quadrilaterals, this condition becomes k > 5, and so on.

We illustrate the use of Theorem 10.11 with the tiling of the upper half
plane shown in Figure 11. We have \T\ = 5 for each tile. We get k = 3
and m — 5, so that km < 2(k + m). However, for any edge e, either both
endpoints have degree 4, in which case </>(e) = ^ , or one of them has degree
4 and the other degree 3, so that 0(e) = ^ . The lower bound in condition
(a) is ^ . Also, for a vertex x, we have I/J(X) = | — 1 — | = | when
deg(x) = 4 and ip(x) = ^ when deg(x) = 3, so that condition (b) holds
with lower bound ^ .

Figure 11: a tiling of
the upper half plane

1 1 1 1 1 1 1 1

11. A lower bound for simple random walks

Applying Corollary 10.2, in this section we derive a lower bound
where P is the simple random walk on a graph with bounded geometry. For
vertex-transitive graphs we then use coverings and Theorem 9.22 to show
that the bound is attained precisely when the graph is the homogeneous
tree.

(11.1) Theorem. Let X be a graph with degrees bounded by M. Then
the simple random walk on X satisfies

P(P)> M

Note that the lower bound is just the spectral radius of the simple random
walk on the homogeneous tree TM> Preparing for the proof of the theorem,
we introduce the function g : No —• M,
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Now let o be a reference vertex in our graph X, and define / = fx : X —> R
by/(*) = 3 ( ^ , 0 ) ) .

We remark that / arises naturally from the tree: if X = T (with T = TM)
then fj is the unique function on T which (i) is radial {fj(x) depends only
on d(x,o)), and satisfies (ii) fj(o) — 1 and (iii) Pfj = j|f—-/T» where P
is the simple random walk on T. This is a straightforward combinatorial
exercise, but these facts will not be needed here. We shall meet fj again in
§19.C and §28.B as a spherical function.

(11.2) Lemma. With respect to the simple random walk on X, the func-
tion f = fx satisfies Pf > 2 V ^ - 1 / .

Proof. We have Pf{o) = g(l) = 2V^Zl' f(o). Let x G X with d(x, o) =
n > 1. Let deg~(x), deg°(x) and deg+(x) denote the numbers of neighbours
of x at distances n — 1, n and n + 1 from o, respectively. Then

n - 1) + (deg(x) - l)g(n + 1))

(g(n - 1) + (M - l)g{n + 1)) =

1))

as g is decreasing inn. •

Proof of Theorem 11.1. In the graph X, let Bn = B(o,n), Sn =
Bn \ Sn_i, and write fn = f • lB n. If re G 5 n- i then P/n(x) = P/(x). If
x G 5 n then Pfn(x) = Pf(x) - *&**$ g(n + !)• Recall that the invariant
measure is given by the vertex degrees. Therefore, using Lemma 11.2,

(Pfn,fn)= £ Pf(x)f(x)deg(x)-
xesn

Now observe that (/n,/n) ^ Sfc=o l̂ fcl̂ C )̂2- Dividing, and using g(n) >
g{n + 1), we now obtain

The proof will be completed when we show that the last ratio tends to 0 as
n —• oo. Now for k < n,
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Therefore
\Sn\9{nf < (M + (M-2)n)2

which tends to 0 as required. •

(11.3) Exercise. Let T be a tree with minimum degree m. Then the
simple random walk on X satisfies p(P) < 2y/m — l /ra.

[Hint: To prove this, first read about horocycles in (12.13) below. Con-
sider the functions g(x) = A~^x\ where A > 1, and apply Lemma 7.2.]

Before turning to vertex-transitive graphs, we briefly introduce coverings.
For the rest of this subsection, we only consider graphs without loops. For
a graph X and a vertex x G X, we write N(x) = Nx(x) = {v G X : v ~ x}.
Given two connected graphs X,Y, we say that Y covers X if there is a
mapping <j> : Y —> X such that

(i) y ~ w in Y implies <py ~ (f>w in X, and
(ii) for any y G Y, the restriction of <j> to Ny(y) is bijective onto

Nx(<Py).

The covering map 4> is necessarily surjective (x G <j>Y = > N(x) C <j>Y).
The universal cover of X is a tree T (it covers every cover of X) which

can be constructed as follows. A non-reversing path in X is a path n =
[#o,£i, • • • >#fc] such that £j+i ^ Xj-i for all j . Choose a root o G X and
define (the vertex set of) T as the set of all non-reversing paths in X starting
at o, including the trivial path [o]. In T, two paths ir,ir' are neighbours if
one of them extends the other by one vertex (edge). The covering map onto
X is then given by (j)[o = XQ, X±, . . . , Xk] = Xk-

(11.4) Lemma. Let Px and Py denote the transition matrices of the
simple random walk on the graphs X and Y, respectively. If Y covers X
then p(PY) < p{Px).

Proof. Let y,w G Y. If py(y,w) > 0 then the two are neighbours
in y , whence px{4>y,<j>w) = deg(<fc/) = Py(Viw)i w n e r e 0 is the covering
map. If py(y,w) = 0 then it may still be that cj)y ~ 4>w in X. In any
case, py(y,w) < Pxi^y^^)- By induction, and using (ii), one now proves
immediately that

P y ; (y, w) < pK
x
} (0y, (f)w) for all y, w G Y, n G N .

Taking n-th roots and limsup, we obtain the proposed inequality. •

We now want to show that the simple random walk on a vertex-transitive
graph X with degree M which is not a tree must have spectral radius strictly
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larger than 2 j ^ " 1 - Such a graph must have a cycle of length £ > 3. We
first construct a "universal" graph with degree M and a cycle of length
£, which covers every vertex-transitive X with these properties. Then we
shall show that the simple random walk on this universal graph satisfies

P > M '
Given M, £ > 3, consider the group with presentation

(11.5) TM,£ = (ai,...,aM-2,b I a? = o,b£ = 6)

and its "natural" set of generators S = {a i , . . . , aM-2, b, 6"1} . We write
XM,^ for the Cayley graph of TM,£ with respect to 5. TM,£ is the free product
of the M — 2 two-element groups generated by the a; and the cyclic group
of order £ generated by b. The graph XM,£ is the Cayley graph of the group
with respect to 5, that is, XM,e = K2 * • • • sKq^Zi. It has infinitely many

M-2

cycles of length ^ whose edges are of the form [x,xb] (x G FM,^), which we
call the 6-edges. In addition, there are the a-edges, i.e., those of the form
[x,xai]. Each vertex lies on a cycle and M — 2 a-edges. If we contract
each cycle to a single point, then we obtain a homogeneous tree with degree
£(M - 2). Figure 9 (in §9.C) shows a piece of X4,4.

(11.6) Theorem. If X is a vertex-transitive graph with degree M and
without loops, and the minimal length of a cycle in X is £ (3 < £ < oo),
then X is covered by

Proof. Throughout this proof, "cycle" will always indicate a cycle of
length £. For y,w G X ^ , we write da(y,w) for the minimum number of
a-edges on a path from y to w. Thus, da(y,w) = 0 if the two lie on the
same cycle, da(y,w) = 1, if they lie on different cycles which are linked by
an a-edge, and so on. By Cy we denote the (unique) cycle containing y.
Consider the following finite subgraphs of XM,£ and their boundaries:

Bn = {yeXM,e:da(y,o)<n} and dBn = {y G Bn : y - X \ Bn} ,

where o is the identity of TM,£- We shall inductively construct a sequence
of mappings 4>n : Bn —> X such that for each n,

(i;) (j)n preserves neighbourhood,
(ii;) for any y G Bn, the restriction of <j)n to NBn(y) is injective into

(ii") each cycle in Bn is mapped bijectively onto a cycle in X, and
(in7) (j)n coincides with 4>n-\ on Bn-\.

Note that in (ii'), injectivity automatically becomes bijectivity, if y G Bn \
dBn. The direct limit </> of the 0n (i.e., <j>y = <pny, if y G Bn) must satisfy
(i) and (ii).
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n = 0: We have that Bo is the cycle in XM,£ containing o. We can choose
a cycle in X and map Bo bijectively onto that cycle, so that (i') holds. This
gives 0O.

n — 1 —> n: On i?n_i, 4>n is defined by (in7)- Bn \ Bn-\ is a collection
of disjoint cycles C. Each of them is connected by precisely one edge (an
a-edge) to -Bn-i5 and there are no further edges between them.

Pick y e dBn-i. We have the edges [y, yai] — [y, Wi] (i = 1 , . . . , M - 2)
with Wi G Bn \ Bn-\. We have to say where <j)n maps the cycles CWi.
Consider x = 4>n-iy (= <t>ny) and the cycle <f)n-\Cy in X. Two of the M
neighbours of x lie on (j)n-\Cy. Let v±,..., VM-2 be the remaining neigh-
bours of x in X. None of the Vi can lie on (pn-iCy: otherwise, we would
get an edge cutting the cycle 4>n-iCy into two pieces, giving rise to cycles
of length < £ in X.

We claim that for each v^ there is some cycle Ci in X which contains
Vi, but not x. Indeed, let cy(x) denote the number of cycles in X going
through x and cy(x,Vi) the number of cycles going through both x and
V{. By vertex-transitivity, cy(x) = cy(vi), and cy(x,Vi) < cy(x), as 4>n-iCy

does not meet vi. Thus, cy(x,Vi) < cy(vi), as proposed.
We now define (j)nWi = Vi, thereby mapping CWi onto Ci in such a way

that neighbourhood is preserved (i = 1 , . . . , M — 2).
Because of the "tree-like" structure of XM/ and Bn, we can do this for

each y £ dBn-\ independently without any violation. This completes the
construction of </>n. •

One now has to study the spectral radius of the simple random walk on
XM,£. By combining Lemma 11.4 with Theorem 11.6 we obtain the main
result of this subsection:

(11.7) Corollary. If X is a vertex-transitive graph with degree M and a
cycle of length £ (£ > 3, minimal) then, setting g(t) = (\/l +1 2 -l)/t,

/o w • fM~2 ( l + cosh(&0 \ 2 \
p(Px) > mm \ —— gl . \ + — cosh(s) : s > 0 }

Proof. We first show that the middle term is p(P\Me). Using the
method of Section 9, we can write the function $(£) corresponding to the
simple random walk on XM,^ in terms of the one corresponding to Z2 (Ex-
ample 9.15(1) with m = 2) and the one corresponding to Z^. We write 3>̂ (£)
and We(z) for the functions given for %t in Example 9.15(2). Then 0 = 00

and Q(t) = ^ ( y i + (2t/M)2 - l) + &i(2t/M).
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In <£(£)/£, we substitute 2t/M = W^(l/cosh(s)). Passing to the mini-
mum in t > 0 (<=$> s > 0), we obtain the proposed expression for p(PxM e)-

Lemma 11.4 now yields the first inequality. To see that the second
inequality is strict, observe that g(-) is strictly increasing, while the ar-
gument is strictly decreasing with increasing £ for fixed s. Therefore
P(P&M,I)

 > P(P&M,e+i)i which is > p(TM), because TM covers each of our
graphs. As a matter of fact, P ( T M ) = lim^oo p(PKM,e) • ^

12. The spectral radius and amenability

We shall now see how geometric (IS) and analytic/probabilistic (norm
and spectral radius) features are related to the algebraic structure of groups.

A. Amenable groups

(12.1) Definition. A discrete group F is called amenable if there is a
finitely additive probability measure defined on the family of all subsets of
F which is invariant under left multiplication by elements of F.

This is the original definition, going back to von Neumann. We next list
classes of countable groups which are known to be (non-)amenable.

(12.2) Theorem, (a) Finite groups and abelian groups are amenable.
(b) If F is the union of an increasing sequence of amenable subgroups

then F is amenable.
(c) Every subgroup of an amenable group is amenable.
(d) If F has an amenable subgroup with finite index then F is amenable.
(e) If Fi < F then F is amenable if and only if both Fi and F/Fi are

amenable.
(f) Solvable groups are amenable.
(g) Finitely generated groups with subexponential growth are amenable,

that is, groups with limn ^(n)1/71 = 1 for the growth function with respect
to some (<=> every) finite symmetric set of generators.

(h) For every s > 2, the free group Fs = (a i , . . . , as | •) is non-amenable.

Within the class of discrete groups, (b) and (c) reduce the problem of
amenability to the finitely generated ones, and (f) follows from (a) and
(e). Finitely generated solvable groups either are nilpotent-by-finite or have
exponential growth (Rosenblatt [280]). An example of a solvable group
with exponential growth is (a, b | ab2 = ba). Regarding (h), we remark
that the Cayley graph of Fs with respect to S = { a i , ^ 1 , . . . ^as^aj1}
is the tree T25-1. Prom (c), it follows that every group having F2 as a
subgroup is non-amenable. This applies to groups with infinitely many
ends and to groups which are hyperbolic in the sense of Gromov and are
"non-elementary" (with infinite boundary). We shall study this in detail
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in Chapter IV. In particular, Fuchsian groups (discrete groups of Mobius
transformations of the unit disk) with infinite limit set contain F2 and are
non-amenable. On the other hand, there are non-amenable groups which do
not contain F2 - the Burnside groups B(ra, n) = ( a i , . . . , am | xn = o\/x)
for certain ra, n (Olshansky [250] and Adyan [1]).

We shall not prove Theorem 12.2, but with the exception of (b) and
(e), the reader should be able to do this as an exercise at the end of this
subsection. Good sources for amenability are, for example, the books by
Greenleaf [145], Wagon [334] and Pier [264].

Usually, the "construction" of an invariant measure as in (12.1) requires
use of the axiom of choice (the Hahn-Banach theorem), while there are
various amenability criteria which do not need this. In our context, the
most useful one will be the following; see [118].

(12.3) F0lner's criterion. A discrete group P is amenable if and only if
for every £ > 0 and every finite K C P there is some finite U = UK,E C P
such that \Uy A U\ < £ \U\ for every y G K.

Here (as usual), UK = {xy : x G £/, y G i f} , and A is symmetric
difference. The next proposition explains a posteriori why a graph which
does not satisfy IS is called amenable.

(12.4) Proposition. A finitely generated group is amenable if and only if
its Cayley graph with respect to some (<F=^- every) finite symmetric set of
generators is amenable (does not satisfy IS).

Proof. Let S be a finite, symmetric set of generators of the group P. In
the Cayley graph X(P,5), one has ^2seS \Us A U\ = 2\dU\ for any finite
U C P. Thus, if F0mer's criterion is satisfied, then no Cayley graph of P
satisfies IS.

Conversely, suppose that some Cayley graph of P is amenable. As all
Cayley graphs of P with respect to finite, symmetric generating sets are met-
rically equivalent, Theorem 4.7 tells us that they are all amenable. Hence
F0lner's criterion holds for all these generating sets. As every finite K C P
is contained in some generating set, the criterion is satisfied for all K. •

Prom Theorems 10.6 and 10.8 we now deduce the amenability criteria of
Kesten and Day for finitely generated groups. If fi is a probability measure
on a (so far, discrete) group P, then we write L^ and R^ for the left and
right convolution operators on £2(T) induced by /i, that is, L^f = \i * /
and R^f = / * ji. For the transition operator P = P^ of the right random
walk induced by /z, we get P = R^,, where fi(x) = ^(rc"1). The counting
measure is always P-invariant. In the irreducible case, we write p(P) = p(/i).
The latter coincides with p((i). The respective adjoint operators are those
induced by fi in place of /x.
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(12.5) Corollary. Let F be a finitely generated group and p, a probability
measure on F.

(a) If fi defines an irreducible random walk with p(fi) = 1 then F is
amenable.

(b) If F is amenable and fi is irreducible and symmetric, then p(ii) = 1.

Proof. Part (a) follows from Theorem 10.6 and Proposition 12.4, and
(b) is immediate from Theorem 10.8. •

In fact, the last corollary holds under less restrictive assumptions. The
most general statement is the one which is formulated without proof in
Theorem 12.7 below in the context of locally compact groups.

B. Automorphism groups and the spectral radius
We now want to study what can be said about IS and p{P) in terms of the

group AUT(X, P) or suitable subgroups, in particular when the latter act
transitively or quasi-transitively. To this end, we need some facts concerning
amenability of locally compact groups, which we shall state without proof.

In analogy with Definition 12.1, a locally compact group F is called
amenable if there is a finitely additive probability measure on the family
of Borel subsets of F which is invariant under left multiplication by group
elements. Properties (a)-(g) of Theorem 12.2 remain valid on replacing
"finite" with "compact" and considering only closed subgroups. In the
topological version of F0mer's criterion, K is compact, counting measure is
replaced with right Haar measure and U has to have positive finite measure.
When working with left Haar measure, as we usually do, one has to replace
UK With KU.

Any finite Borel measure on F induces left and right convolution opera-
tors L^ and R^ on L2(F). The last denotes the Hilbert space of (equivalence
classes of) measurable functions on F with integrable squares with respect
to left Haar measure | • | = | • | r . One has always

(12.6) HLJ < fi(T) and | | ^ | | = ||LA||, where d£(7) = ^A(7~
l) dfi(j).

Here, as in the discrete case, fi is the measure arising from /i by inversion:
fi{B) = fi(B~1). If fi has density $ with respect to left Haar measure,
then we shall also write L$ for L^ and R$> for R^. Recall the formula
F * $(7) = Jr F(ja)^(a~1) dj. In this setting, one has the analogues
of the criteria of Kesten and Day, see Berg and Christensen [41], [42] or
Derriennic and Guivarc'h [95].

(12.7) Theorem. (1) \\L^\\ = /i(F) if and only if the closed subgroup of
F generated by (supp/i)(supp/x)~1 is amenable. (2) The "true" spectral
radius p2{L^i) — limn ll-kjUl1^ satisfies p2{L^) = M^) if and only if the
subgroup (supp/z)~ of F is amenable.
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We shall now apply this to reversible transitive random walks. Let (X, P)
be reversible with respect to the measure ra, and let F be a closed, tran-
sitive subgroup of AUT(X, P). Recall that g(j) = m(/yx)/m(x) does not
depend on x, and that either ra(-) is constant and P is symmetric, or ra is
unbounded. We define P on X with entries

(12.8) p(xy y) = y/m(x)p(x, y)/yjm(y) = y/p(x, y)p(y, x).

P is symmetric and F-invariant, p(P) = p(P), and (Pn)~ = P n . However,
it is not necessarily a transition operator, as the row sum

{i.z.y) T ~ / ; P\x> V)

(independent of x) is not always equal to 1; it may even be infinite. Of
course, if ra(-) is constant then P — P and r = 1.

(12.10) Theorem. If(X,P) is reversible and F < AUT(X,P) acts tran-
sitively then

The middle term is < 1. The first inequality is an equality if and only if
F is amenable, and the second inequality is an equality if and only if T is
unimodular.

Before the proof, we need some preparation. Let Q = (g(x,y)) be an
arbitrary non-negative matrix over X which is F-invariant. The row sums
of Q are constant, but not assumed to be equal to 1, and perhaps even
infinite. We want to relate the action of Q on £2(X) (with weights equal to
1) to the action of the convolution operator R$[Q] on £2(F), where

(12.11) Lemma, (a) If Qi,Q2 are two T-invariant operators, then

(b) One has \\Q\\ = \\R&[Q]\\ and p2(Q) = p2(R$[Q]), where norms and
spectral radii of the operators are taken on the respective £2- and L2 -spaces.

Proof. We may assume that | | is normalized so that |FO| = 1. State-
ment (a) is straightforward from (1.30):

-i
xex

2{oto^~16)qi{o,a6)da =
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To prove (b), we first define two operators 5 : L2{G) —• £2(X) and T :
£2(X) -> L2{Y) by

/ and T/ ( 7 ) = f(jo).

One immediately verifies that T = S* (the adjoint), and that ST = / , the
identity on £2(X). Therefore \\S\\ = ||T|| = 1. Using (1.30), we compute for

fe£2(X)

SRm]Tf(x)=

= /

= / f f(Po)q(x,po)dpd7

J{-yer:-ro=x} Jr

and for F G L2{T)

TQSF(7) = ^ 4(70, x) / F(a) da = / 4(70, ao)F(a) da

(a )^(a" 1
7 ) da =

Thus, SRQIQ] T = Q and TQS = R^[Q], so that \\R*[Q]\\ = \\Q\\.
Combining this with (a), we see that \\R%[Q] \\

1/n = | |Qn | | 1 / n , and passing
to the limit, we obtain p2(R<$>[Q)) = p2(Q)- D

Proof of Theorem 12.10. The spectral radius of P acting on £2(X, m)
is the same as the spectral radius of P acting on £2{X). By Lemmas 10.1
and 12.11, ||P|| = p(P) = p(P) = /02CR*), where $ = $[?]. Now a standard
computation for convolution operators (see e.g. Hewitt and Ross [172], §20)
shows that norm and spectral radius of R$ coincide with norm and spectral
radius of the left convolution operator L#, where ^(7) = ^>(7~1)A(7~1)1/2.
We use (1.30) once more to compute

xex

Now, Proposition 8.13 yields that supp ^ = {7 6 F : p(o, 70) > 0} generates
F as a semigroup. Therefore, we may apply Theorem 12.7 to see that the



128 //. The spectral radius

first of the two proposed inequalities holds and is an identity if and only if
F is amenable. _

Next, use symmetry of P, Cauchy-Schwarz and - twice - (1.30) to get

Equality holds if and only if there is a constant c such that |F X | / |F O | = c
for all x with p(o, x) > 0, that is, A(-) = c on supp3> = (supp^)"1. Thus
c = 1, and as supp<I> generates F, we see that equality holds if and only if
F is unimodular. Finally, Cauchy-Schwarz and Lemma 3.25 imply that

We can apply this to quasi-transitive random walks.

(12.12) Corollary. Suppose that X is a quasi-transitive graph. Then the
following statements are equivalent.

(a) X is an amenable graph.
(b) Some (^=> every) quasi-transitive subgroup of AUT(X) is amenable

and unimodular.
(c) p(P) = 1 for some (<=> every) strongly reversible, quasi-transitive

random walk on X.

Proof. That (a) <=> (c) follows from Theorems 10.6 and 10.8 To see
(a) =̂=> (b), let F < AUT(X) be quasi-transitive with N orbits Xi,iel.
Consider the graph X{ N~1' constructed in the proof of Proposition 3.9. It
is roughly isometric with X, so that X is amenable if and only if x ^ " 1 ^
is amenable (Theorem 4.7). Now F acts on X^N~X\ and Fi = HxeXx r *
is a compact normal subgroup of F. We have that F/Fi < AUT(xf i V~1 ) ) ,

so that X[ is an amenable graph if and only if F/Fi is amenable
and unimodular (Theorem 12.10 applied to the simple random walk). Fi
being a compact normal subgroup, the structure theory of locally compact
groups (see Pier [264] or Paterson [255]- compare with Theorem 12.2) tells
us that F/Fi is amenable and unimodular if and only if F itself has these
properties. •
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C. Some explicit computations
Besides the qualitative result of Corollary 12.12, Theorem 12.10 also

contains a formula which may be used to calculate p(P) in the case when
AUT(X, P) contains a transitive subgroup which is amenable. Here we shall
give three examples of computations by use of this method.

(12.13) Homogeneous trees. Let T be a locally finite tree, and let $T be
its boundary, as defined in §6.B. We now select an end UJ G #T. In analogy
with §6.B, we define the confluent x X y of two vertices x, y with respect to
UJ : this is the first common vertex on the rays ?r(x, UJ) and 7r(y, a;). We now
choose and fix, as usual, a root o G T and define for x G T its height with
respect to UJ by

\){x) = \){x,UJ) = d(x, x X 6) - d(o, x X o) G Z .

The A;-th horocycle of T with respect to UJ and o is the set Hk = {x G T :
f)(x) = k}. We now look at T as an infinite "genealogical" tree, where UJ is
the "mythical ancestor", the horocycles H^ (k G Z) are successive "gener-
ations", and each x G Hk has precisely one neighbour x~ (its "father") in
Hk-i and deg(x) — 1 neighbours (the "sons") in Hk+i. When thinking of
the tree in this way, it will be best to view the horocycles in horizontal lines.
Figure 12 is a "horocyclic" drawing of the homogeneous tree T3. Each Hk
is infinite.

Figure 12: T3 in
horocyclic layers

It is clear that the action of AUT(T) extends to the boundary: if £ G fiT
is represented by a ray TT = [xo,xi,X2,... ] and 7 G AUT(T), then 7^
is the end of T represented by 7?r = [7x0,7x1,7x2,-..]. (Equivalence of
rays is preserved under 7.) Now consider the group V = AXJT(T)U of all
7 G AUT(T) which fix UJ. This is precisely the group of automorphisms 7
which preserve the "genealogical" order, that is, ^x~ = (jx)~ for all x.
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(12.14) Lemma. The group F = AUT(T)a; is amenable.

Proof. First check that \){x) -\){y) = d(x, x X y) - d(y, x X y). If 7 G F
then jx X 72/ = j(x X y). These two facts yield that $(7) = l)(7#) — \){x) is
independent of x and defines a homomorphism F —> Z. Being a subgroup
of Z, 3>(F) is amenable. Using Theorem 12.2(e) in its version for locally
compact groups (see e.g. Pier [264]), we see that we only have to prove
amenability of the group F^ = ker<J>. This is the subgroup of F which
leaves HQ, and hence all horocycles, fixed as sets. Now write TT(O, UJ) = [o =
#o,#i,#2, • • •]• If 7 € F then TT(JO,UJ) = [7x0,7^1,7^2? • • •]• In particular,
if 7 G Ffj and no = d(o, 70 X 0) then jxn — xn for all n > n$. This means
that F^ = (Jn FXn, where (recall) TXn is the stabilizer of xn in F. Obviously,
TXn C FXn+1. That is, F^ is the union of an increasing sequence of compact,
whence amenable, subgroups. Therefore (see again [264]) F^ is amenable. •

For the following, we shall consider only T = Tq+i, the homogeneous tree
of degree M = q +1 > 3. The group F acts transitively. We know that T^+i
satisfies IS, so that Corollary 12.12 tells us that F must be non-unimodular.
It is very easy to compute the modular function. If x, y G Tg+i and w =
x X y, then set k = d(x,w) and £ = d(y,w). We have \Txw\ = \Tyw\ = 1,
while iF^xl = qk and \Twy\ = qe. Therefore, using Lemma 1.29,

(12.15)
]Fx| JFj _ ,_k _ Uy)-^X)

From this and (1.28), we find that A(7) = q^lo) for 7 G F.

As a first example, define a nearest neighbour walk P = Pa on Tq+i by

(12.16) p(x~,x) = a/q, p(x,x~) = l — a, where 0 < a < 1.

It is F-invariant and reversible with respect to the measure m(x) —
( (i-a)) * ^ e n o w u s e ^n e ^ac^ ^na^ ^n e ^rs^ meciuality in Theorem
12.10 is an equality, and compute via (12.15)

When ci — \, p(P) = 1. For a = -^-, we have the simple random walk and
recover the formula for p(P) found in Lemma 1.24. Of course, these results
can also be obtained by the more elementary technique used there.

As a second example, consider an arbitrary radial random walk on T =
Tg+i, that is, p(x,y) depends only on the distance between x and y. Write
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Sn = {x : d(x,o) = n}, and let an = p(o,Sn), so that p(x,y) = an/\Sn\
when d(x,y) = n. As P is F-invariant, Theorem 12.10 and formula (12.15)
give

oo n

o,x)q-^ = Y,^ £ \Sn
n=0 ' ° n | k=-n

One computes |Sb| = 1 and | 5 n | = (q + I)*/1"1. Also, Sn fl Hk / 0 if and
only if |/c| < n and n — A: is even,

n\ = qn and

|5n n «•_„+„•! = (q - l y ' " 1 for i = 1,... ,n - 1.

An elementary calculation now yields

(12.17) p(P) =
n = 0

(12.18) Coupling two trees. Consider Tg+i and T r + i with q,r > 2.
As in (12.13), we select ends ui of Tq+i and a>2 of Tr+i, respectively, and
construct the following subgraph of the direct product of T9+i and T r + i .

DLq,r = {Xlx2 e Tq+1 x T r + 1 : f)(Xl) + \){x2) = 0}.

Here, Jj(-) stands of course for the height with respect to the fixed end in
the corresponding tree. Recall that x\x2 ~ 2/12/2 when x\ ~ yx and x2 ~ y2.
To visualize DL9)r, draw Tr + i as in Figure 12, and (on the left) Tg+i in
the same way, but upside down, with the respective horocycles Hk(^q+\)
and ff_fc(Tr+i) on the same level. Connect the two origins by an elastic
spring. It can move along each of the two trees, may expand infinitely, but
always has to remain horizontal. The vertex set of DL9?r is the collection
of all admissible positions of the spring. Prom a given position x\x2 with
J)(^i) + ^(^2) = 0, it may move upwards to one of the "sons" of x\ and
simultaneously to the "father" of x2, or downwards in the analogous way.
Such a move corresponds to going to a neighbour of x\x2, and this may also
serve to visualize the simple random walk on DL9)7.. We invite the reader
to draw a figure according to these "instructions".

Now let Ti = AUT(Tg+i)a;i and T2 = AUT(Tr+i)a;2. The group

r = {7172 : lit Ti, &(7i0i) + *)(7202) = 0}

acts canonically on DLq,r: if 7 ^ = yi, i = 1,2, where X\x2 € DLg,r,
then also yiy2 G DLg>r, and we define 7172(^1^2) = 2/12/2- The action is
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transitive. Being a closed subgroup of the amenable group Fi x F2, F is
also amenable. Now let o = O\O2 and x — x\x<i, where x\ is a "son" of o\
and X2 = <>2 . Then |rorr| = q and |Fxo| = r. Using Theorem 12.10, we find
the spectral radius of the simple random walk:

(12.19) p(P) = ^

In particular, the graph DL^r is amenable if and only if q = r.

The next example is more complicated. We will not lay out each detail of
the background, and the reader might have to consult the relevant literature.

(12.20) The buildings of PGL(n,$), # a local field. For the necessary
background on local fields, the reader may consult Cassels [67] or Serre
[299]. Let $ be a (commutative) non-archimedean local field with valuation
v : $* —> Z and v(0) = oo (#* denotes the multiplicative group, and v is a
homomorphism). Denote by O = {a G # • v(a) > 0} the ring of integers
and $ = {a G 5 : ?J(O) > 1} the maximal ideal in O. Let q (a prime power)
be the - finite - order of the residual field & = O/^p. The absolute value
of a G $ is |a| = q~v(^a\ It induces an ultrametric. Choose a uniformizer
pG<£, that is, \p\ = q-x.

The best-known example is the field Qp of p-adic numbers, where p is a
prime. Each element a G Qp \ {0} can be written asa = Sn>fc sn $*> w n e r e

sn € {0, . . . ,p— 1} and Sk ^ 0; we have v(a) — k G Z. The operations in Qp

are the natural extensions of addition and multiplication in Q+ (for which
the series are finite). Q is dense, Qp is complete, D = Zp is the closure of
Z, and one typically takes p = p.

GL(n,$) is the group of invertible n x n matrices over #, and
PGL(n,$) = GfL(n,S')/5r*, where, more precisely, #* stands for all non-
zero multiples of the identity matrix. Associated with PGL(n,5r), there is
a homogeneous space X which is called a (linear) building of type -An_i.
This is an (n — l)-dimensional simplicial complex with several particular
features; see Ronan [279] or Brown [48]. In order to understand its struc-
ture, for us it will be enough to describe its 1-skeleton, which is a countable
graph. X will stand for this graph, and PGL{n,$) C AUT(X) is closed
and acts transitively; the topology of PGL(n, #) inherited from # coincides
with the topology of pointwise convergence on X. We now describe X.

A lattice is an D-submodule of # n of the form L = Dv± + • • • + Ovn,
where { v i , . . . , v n } is a basis of $n. Two lattices L,Z/ are equivalent if
V = aL for some a G #*. The equivalence class of L is denoted by [L].
Then X = {[L] : L a lattice}. Two points x,y G X with x = [L] are
neighbours in the graph X if we can write y = [V] such that pL C V C L
strictly. For such I/ , the mapping [V] i—• V/pL is an isomorphism from the
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neighbourhood graph N(x) = {y G X : y ~ x} of x G X onto the family
of non-trivial subspaces of &n, where two elements are neighbours if one
strictly contains the other. Thus,

where
- 1 )

as the number of subspaces of £ n is W(n, q) = ]Cfc=o (fc) (see e-&- Goldman
and Rota [143]). The W(n, q) satisfy the recurrence relation W(n + 1, q) =
2W(n, q - 1) + {qn - \)W{n - 1, q), with W(0, q) = 1 and W(l, g) = 2; see
Andrews [7]. For n = 2 we get deg(x) = g + 1, and for n = 3 one finds

2

The building associated with PGL(2,gr) is the tree T g + i . For any n > 2,
the apartment of X associated with a given basis {v i , . . . , vn} of $n is

21 = a ( v i , . . . , vn) = {[p£lOVl + • • • + j / -Dv n ] : £t € Z} .

For n = 2, this is a two-sided infinite geodesic path in the tree.
For n = 3, the subgraph of X induced by 21 is the tiling of the plane

by equilateral triangles. Furthermore, every edge in X is common to q + 1
triangles; see Figure 13.

Figure IS: a triangle
and its neighbours (q = 3)

For any n, the group PGL(n,$) acts on X by matrix multiplication on
the left, i.e., j[L] = [yL] — [D7V1 + • • • + O^fvn]. Here, we typically write
g as a matrix in GL(n,5r), while thinking of it as an element of PGL(n,$)
consisting of all its non-zero multiples.

We now want to compute the spectral radius of the simple random walk
P on X by use of Theorem 12.10. Let Y be the image in PGL(n, #) of the
upper-triangular subgroup of GL(n,$). It acts transitively on X.

To see this, we choose o = [Dn] = [Dei + • • • + Den] as our "root" in
X, where {ei , . . . ,e n} is the standard basis of $n. The stabilizer of o in
PGL(n,$) is (isomorphic to) the group PGL(n,Q) = GL(n,£)/£)*, where
D* = D \ P̂ is the set of invertibles in D, and GL(n,D) consists of all
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matrices 7 G GL{n, gr) such that 7 and 7" 1 have all their entries in O. Now
consider (3 G GL(n,$). Locate an entry /3nj in row n whose absolute value
is largest in that row. By right multiplication by a permutation matrix (an
element of GL(n,D)), we can move this entry to position (n,n). Let Eij
be the matrix with entry 1 in position (i,j) and 0 elsewhere. If a G D,
then / + aEij G GL(n,Q). By right multiplication by n — 1 matrices
/ + djEnj, j — 1 , . . . , n — 1, we can replace all entries in row n, except that
in position (n,n), by 0.

Now repeat with the (n — 1) x (n — 1) matrix at the upper left of the new
j3 obtained in this way, and continue. At the end, we get a G GL(n, O) such
that (3a = 7 is upper triangular, i.e., in F. So ao = o and /3o = 70. As
every element of X is of the form (3 o for some (3 as above, we get transitivity
ofT.

Also, it is well known that V is amenable, being solvable. (In particular
when n = 2, this F is a subgroup of AUT(T)u; for some end UJ of T = Tq+i.)
In order to apply Theorem 12.10, we have to understand the action of Fo

on N(p). Write S = {0, l } n \ {0,1}, where 0 = (0 , . . . , 0) and 1 = ( 1 , . . . , 1).
Let 21 = 2l(ei , . . . , en). The neighbours of o in 21 are of the form

xL = [p£l£ei + h p£ nDen ] , where e G £ .

We can represent Fo = F D PGL(n, £)) by the group

r o = {7 = (7ij)*j=i,...,n : lij £$, lij=0(i> j),

Also, an element of F mapping o to x£ is 7£ = diag(p£i)i=iv..)n . Hence, we
can represent

r*£ = lejoil1 = {P = (Pij) • Pij e ff, fa = 0 (* > j),

|7«l = l , \Pij\<q£3~£i(i<J)} and
To n TXL = {a = (aij) : atj € £ , OHJ = 0 (i > j),

The left Haar measure on the group of upper-triangular invertible n x n
matrices over $ is given by

where d^ij stands for the Lebesgue (Haar) measure A on the additive group
#; compare with Hewitt and Ross [172], p. 209, where this is stated for
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matrices over R. The above two stabilizers and their intersections are com-
pact open subgroups, so that their Haar measure is the restriction of the
Haar measure on the whole group. If we normalize A so that A(D) = 1 and
hence A(̂ 3) = 1/g, A(D*) = 1 — 1/g, the measures of our stabilizers are
|ro | = (1 - 1/qY and |ro H YXe\ = (1 - l/q)nq-M&, where

M(e) = ^ P m ax{0, Si — Sj}

is the number of times that a 1 comes before a 0 in the vector e. With this
notation, we get

ir r I - Ir I /lr n r I - aM&
I 1 OX£_\ — I1 O\ I I 1 O I ' L Xe\ — H

Write \e\ = Yli£i a n d l e t W(n,k;q) = Yle£{o,i}":\e\=k Mfe)- T n e n

W(n, 0;q) = W(n,n;q) = 1, and expanding with respect to the value of
en, one obtains W(n, k; q) — W(n — 1, k - 1; q) + qkW(n — 1, k\ q). The q-
binomial coefficients satisfy the same recursion, whence they coincide with
the W(n, k; q). Therefore J2£G£ QM^ = deg(o). Now one checks easily that
no two different x£, x^ can stay in the same Fo-orbit. Thus, each xL is the
representative of some ro-orbit, and the last identity tells us that we get
all orbits in this way, that is, N(x) = \jee£ FOX£ (disjoint union). Next,
\TXsp\ = |ro7~1x£ | = \Toxi-e\ = g M ( i " ^ . From this and Theorem 12.10,
via Lemma 1.29, we get p(P) = ^ j Eees \ToXe\y/qM&-£/qM& , and
finally

n-1 (n\nk{n -k)/2

y
(with ordinary binomial coefficients in the numerator of the second term).
For n = 2, we obtain the spectral radius of the simple random walk operator
on T9+i. For n — 3 and n = 4, we find

(12.22)

respectively. D
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Notes and remarks

7. Superharmonic functions and p-recurrence
§A. These results are due to Pruitt [271].

§B. The study of p-recurrence goes back to Pruitt [271] and Vere-Jones [327], [328], [329].
Theorem 7.8 has its root in a result for locally compact groups indicated by Guivarc'h
[156], p. 85.

8. The spectral radius, the rate of escape, and generalized lattices

§A. To my knowledge, Proposition 8.2 first appears explicitly in Kaimanovich and Woess
[191]. For groups, compare with Guivarc'h' [156]. The coupling is due to Kaimanovich
[191], and the distance estimates of Proposition 8.8 and Corollary 8.9 are also taken from
[191]. The lifting of the random walk to F in the transitive case was first introduced by
Soardi and Woess [305] (for the simple random walk) and then systematically exploited by
Woess [345]. For Theorem 8.14 in the context of random walks on locally compact groups,
see Derriennic [94] and Guivarc'h [156]. With the exception of abelian groups (compare
with Theorem 6.7), it is not easy to compute the limit tn explicitly. The existence of m
was first proved for random matrix products by Furstenberg and Kesten [128], and the
first formula for m - also in the context of random walks on matrix groups - is due to
Furstenberg [124]. For free groups and homogeneous trees, computing m involves the use
of boundary theory; see Sawyer [290], Derriennic [94], Sawyer and Steger [292], Lalley
[212] and Cartwright, Kaimanovich and Woess [59]. The last three references also contain
central limit theorems for d(Zn, Zo) and - in [292] - other functions of Zn.

§B. For random walks on Zd, this method for determining p(P) has its roots in Kesten
[200]; see Stone [310], Lemma 5.

9. Computing the Green function

§A. Theorem 9.4 was proved by Cartwright [58].

§§B,C. The main result here is Theorem 9.19, which has a "story". After several spe-
cial cases considered previously by Gerl [133], Woess [338], Picardello and Woess [257]
and Soardi [301], this was first proved for free products of groups simultaneously and
independently by Cartwright and Soardi [302], [63] and by Woess [341]. (It is amusing
to remember the reciprocal embarrassment when we met a couple of weeks later.) The
methods are in principle the same, [63] being more harmonic-analysis-flavoured and [341]
more oriented towards local limit theorems.

A couple of months later, again independently, this appears as the main basic result in
Voiculescu's fundamental paper on freely independent non-commuting random variables
[330] in a different and in many respects more general setting; see also [331] and the
recent book [332].

At about the same time, the same result (for simple random walks on free products of
groups) was also proved in the PhD-thesis of McLaughlin [231]. The latter has been taken
up very recently by Quenell [272], and subsequently by Gutkin [161], who considered free
products of arbitrary rooted sets and extended the results on Green functions and spectra
to this setting.

The shortest proof of Theorem 9.19 was given by Cartwright [56], but it needs some
ingredients which we shall touch only marginally, in Chapter IV. The proof given here
via Proposition 9.18 is based on [161], with some input from [341], and gives the most
elementary access. Note that the stopping time arguments used here become completely
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elementary when rewritten in terms of the combinatorics of paths. Donald Cartwright
pointed out to me that in Proposition 9.10 it is better to work with S(z) = W(l/z),
which is true in many respects [56]. I have chosen to stick to the formulation as given
here in order to maintain continuity in the use of generating functions which converge in
a disk around the origin.

A few words on the various examples: the closed formula for W(-) in Example 9.15(2)
is due to Paschke [254]. The formula for p{P) in 9.25(1) was first computed by Gerl [133],
the ones in 9.29(3) by Woess ([336] and [338]), see also Cartwright and Soardi [62]. I
am grateful to Klaus Schiefermayr for the computation (using Mathematica) of p(P) in
9.25(3), when d = 2,3,4. For 9.29(2), see Gerl [131] (where F2 is considered - in this case,
the equation for 9{P) can be solved), Woess [337] and Gerl and Woess [140]; the first
implicit appearance of the formula for $>(£) can be traced back to Dynkin and Malyutov
[111]; see also Levit and Molchanov [215]. Example 9.29(1) is very similar; compare with
Figa-Talamanca and Steger [116]. Example 9.29(4) is from Soardi [301]. In Chapter
III we shall see that one of the most interesting of these examples is 9.25(3), based on
Cartwright [56].

10. Spectral radius and strong isoperimetric inequality
§A. Lemma 10.1 and Corollary 10.2 are extracted from Gerl [139]. (For groups, compare
also with Avez [10].) Previous versions (Kesten [198], Papangelou [252]) used the "heavy
machinery" of spectral resolution.

The main equivalence (a) <=$> (c) in Theorem 10.3 is due to Dodziuk [98] and Dodziuk
and Kendall [99] for simple random walks on graphs with bounded geometry and for
arbitrary locally finite graphs, respectively. This is the discrete analogue of Cheeger's
inequality [70] regarding the bottom of the spectrum of the Laplacian on a Riemannian
manifold. For regular graphs, see also Biggs, Mohar and Shawe-Taylor [43]. Theorem
10.3 as stated here for general reversible Markov chains is taken from Gerl [139]; see also
Ancona [5], [6] and, for graphs, Mohar [237].
§B. Theorems 10.6 and 10.8 were first proved for random walks on groups, see below
(§12.A). The extension to strongly reversible random walks is due to Kaimanovich [186].
Only slight adaptations were necessary for the "non-reversible" versions given here.
§C. Theorem 10.9 is adapted from Gerl [137]. Theorem 10.10 is due to Pittet [265].
Compare also with Mohar [238]. Theorem 10.11 was proved by Woess [352]. We have
omitted the (slightly more complicated) proof of a third condition which implies IS: (c)
inf{x(T) : T G T} > 0, where

is the characteristic number of tile T £T. This was also proved by Zuk [357]. Forerunners
are due to Dodziuk [98], Soardi [303], Calogero [49] and He and Schramm [169], see also
Mohar [239]. For the graph in Figure 11, there are other ways to prove IS, for example
by showing that it is roughly isometric with the hyperbolic upper half plane.

11. A lower bound for simple random walks
Theorem 11.1 is due to Zuk [357]. Theorem 11.6 and Corollary 11.7 were proved by
Paschke [254]. The proof also works when £ is not assumed to be minimal, but more
effort is needed then. As a matter of fact, the lower bound provided by Corollary 11.7
is only very slightly above 2\/M — 1/M. However, the significance of this result is more
qualitative than quantitative.
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12. The spectral radius and amenability
§A. Corollary 12.5 was originally proved in the seminal papers of Kesten [198], [199] and
Day [88].

§B. Theorem 12.10 and Corollary 12.12 are due to Soardi and Woess [305]. These results
also extend to quasi-transitive random walks; see Salvatori [289] and SalofT-Coste and
Woess [286], [287]. An example where r = oo is given in [289].

§C. The example (12.13) is from [305] and is interesting in many respects; see Cartwright,
Kaimanovich and Woess [59]. The graph of (12.18) was "invented" by R. Diestel and
I. Leader in an attempt to solve the following problem of [305]: is there a vertex-transitive
graph which is not roughly isometric with a Cay ley graph? We believe that DLg)r is
a counterexample. The example (12.20) is from [287], with a little help from Donald
Cartwright and Tim Steger.

Further results
There are many further results concerning the spectrum of P on suitable spaces, in

particular £P(X). For references up to 1988, see Mohar and Woess [240]. Concerning
the spectrum of the simple random walk on Cay ley graphs, more recent, significant
references are the two papers by de la Harpe, Robertson and Valette [166], [167]; see also
the references given there.

There is a recent series of papers concerning approximations of the spectral radius,
in particular for surface groups: Cherix and Valette [72], Bartholdi, Cantat, Ceccherini-
Silberstein and de la Harpe [26], Zuk [356], [357], Nagnibeda [243], [244], and Bartholdi
and Ceccherini-Silberstein [25]. For example, consider the genus-two-surface group F =
(ai,a2, b\,b2 | [ai, bi][02,62] = °) a n d its Cayley graph with respect to these generators
and their inverses: the best-known estimate for the simple random walk is 0.6624 <
p(P) < 0.6628 [243], [25].

Regarding quasi-transitive planar graphs, there is an important theorem obtained by
combining recent results by Medolla and Soardi [232] and Benjamini and Schramm [37]
with Theorem 5.13. Call a graph quasi-planar if it can be embedded in the plane so that
every edge is crossed by at most K other edges, where K is some fixed constant.

Theorem. A quasi-planar, quasi-transitive graph either is a generalized lattice of di-
mension < 2 or satisfies IS.

The proof is as follows: [37] shows that a quasi-planar graph which is transient must
have non-constant harmonic functions with finite Dirichlet sum; [232] has proved that on
a quasi-transitive, amenable graph, all Dirichlet-finite harmonic functions are constant.
For (purely) planar graphs, a direct proof of the above theorem is due to Babai [12]; see
also [13].

Compare this with the following result of Woess [347] regarding Gromov-hyperbolic
graphs (the latter will be considered in Chapter IV); see Exercise 22.17.

Theorem. A quasi-transitive hyperbolic graph either has linear growth or satisfies IS.

For (Cayley graphs of) finitely generated groups this is well known (Gromov [151])
but it does not extend immediately to the quasi-transitive case; the proof uses Corollary
12.12.

Still more recently, Benjamini and Schramm [39] have proved the following significant
result, whose flavour parallels in some sense Theorem 5.2 of Thomassen (saying that under
a mild additional hypothesis, a transient graph contains a transient subtree).

Theorem. If a locally finite graph satisfies IS then it has a subtree satisfying IS.



CHAPTER III

THE ASYMPTOTIC BEHAVIOUR

OF TRANSITION PROBABILITIES

The theme of this chapter is the asymptotic evaluation of p^ (x, y) as
n —• oo, and the question how this is related to the structure of the underly-
ing graph or group. We have already encountered such a result at the very
beginning, when considering Polya's walk: for the simple random walk in
the d-dimensional grid, p(2n\0,0) is of the order of n~dl2\ There is a large
body of work concerning this type of problem, and we will not be able to
cover all aspects.

A result which gives a numerical estimate of p^ (x, y) for fixed x, y as
n —̂  oo is usually called a local limit theorem. In this chapter we shall
often assume that (X, P), besides being irreducible, is also aperiodic, so
that p(n\x,y) > 0 for all n > nx,y. This is no severe restriction and serves
only to avoid discussions involving the parity of n.

Throughout this chapter, for real sequences (an) and (6n), we indicate
by an ~ bn that the quotient tends to 1.

13. The local central limit theorem on the grid

The aim of this section is to generalize Polya's example. Let P (irre-
ducible) be defined by a probability measure fi on Zd with finite second
moment, mean m = tn(/x) and covariance matrix E. The corresponding
quadratic form is

E[x] = x • Ex = Y^ lx ' (k - ™)

k

The following is well known; compare also with Proposition 8.20.

(13.1) Lemma. E is positive definite.
Proof. Suppose that E[x] = 0 for x G Rd, x ^ 0. Then k - m is

orthogonal to x for every k G supp/i. Irreducibility yields —k G supp/i(n)
for some n, so that —k — ran is orthogonal to x. Summing, we see that
(1 + n)m and therefore k itself must be orthogonal to x. Thus supp/x is
orthogonal to x, in contradiction with irreducibility. •

(Indeed, the conclusion holds under weaker conditions.) In particular,
E is invertible, and we shall write E-1[x] for the corresponding quadratic
form. We use the centred characteristic function

(13.2) V(x) = </v« = E **(k) e xPWk - m) • x) •

139
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It satisfies grad^(O) = 0, and its second order derivatives at 0 are given by
—£. Fourier inversion gives

/ ^ (x) n exp(-ix • (k - ron)) rfx,

where Wd = [-?r, n]d .

(13.3) Lemma. If ji is irreducible and aperiodic, then |^(x)| < 1 for all

Proof. Suppose |-0(x)| = 1 for some x G Wd, that is, -0(x) = e**°, where
t0 G M. Set t = t0 + x • m. Then, for each n,

a convex combination of points on the unit circle. Therefore e t x k = elnt

and x • k = nt modulo 2TT for all k G supp /tx̂ n .̂ Aperiodicity yields that
0 G supp/i^n^ for all but finitely many n. Consequently, t = 0, and by
irreducibility, x • k = 0 modulo 2TT for all k G Zd. Substituting the integer
unit vectors for k, we get that all coordinates of x are multiples of 2TT. AS
x G Wd, we must have x = 0. •

Now suppose that \i has finite moment of order 2r, where r > 0 is inte-
ger. Then ij) has continuous derivatives of order 2r, and one can differentiate
inside the sum of (13.2). Let A = ^2j=i(d2/dx'j) denote the Laplace oper-
ator with respect to the variable x G Rd, and Ar its r-th iterate. As i\) is
27r-periodic, Green's second identity yields for y G Rd

\y\2r [[ / ?/>(x)n A r e" i x ' y dx
wd Jwd

Applying this for y = k — ran and replacing x with 77= x, where the "new"
x is in y/nWd (the magnification of the cube Wd by y/n), we get

(13.4)

= (-If / exp f-ix• }LJ™\ A>n(x)"rfx,

where ipn(x) =
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(13.5) Lemma. For any a > 0,

uniformly for x G

Proof. We shall show by induction on s < 2r that for each fixed £ > 0

(13.6) lim ^ - — [Mx)n~£ ~ exp(- |E[x])] = 0
n—»oo OXj1 • • • OXjs

uniformly in x G aWd for all mixed derivatives of order s. For 5 = 0 this
is true by the classical central limit theorem. To proceed, first observe that
we can write

(13.7) V(x) = 1 - -E[x] + Yl HkW + o(M2r)x-+o ,
fc=3

where Hk is a homogeneous polynomial of degree k in x = (a?i,... ,Xd).
Finiteness of M2r(/i) is used here, and yields more generally that

joxh • • • axjs kQ

with Hk;j1,...js homogeneous of degree k. In particular, we compute

Ho;h W = 0, # i ; i l (x) = - E ^ • x and i^o;^,^ = -EjuJ2,

where Ej denotes the j-ih row of E. We obtain

XJ1XJ2

where the o(-) and O(-) are uniform in x G dWd- Now suppose that (13.6)
is true for derivatives of order < 5, and write

(13-8) I 7 " V ~ ^ = « - " « - . t [^W-^Hn - € ) ^ ]
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where for a subset A o f { l , . . . , s } , the symbol d^/d^A stands for the mixed
partial derivatives of order \A\ with respect to variables Xjk, k 6 A. By the
above, if |B| > 2, then

uniformly in x G dWd- Writing A^ = { 1 , . . . , 5 - 1} \ {k}, we therefore get
for s > 2

lim -
n—KX>c

An immediate computation shows that this is the required mixed partial
derivative of exp(—|S[x]). The - simpler - case 5 = 1 has to be treated
separately, and is left to the reader. •

Replacing ipn(x)n by its limit in (13.4), and integrating over Rd, one
computes

(13.9) (-l)r / exp f-tx • ^ ^ . ) Ar exp(-±£[x])
JR* \ Vn )

fL
2r f ( . k -(Lexp r z

exp f_
/delE

Combining (13.4) and (13.9), we can now deduce the following form of
the local central limit theorem.

(13.10) Theorem. If/j, is irreducible and aperiodic with mean m and finite
covariance matrix E, and if M2r(/i) < oo, then

2r
1 7=—[ ^™* M( }(k) 7 = exp L- ^

tends to 0 as n —> oo, uniformly for k G Zd.

Proof. In view of (13.4) and (13.9), the expression in the theorem is

(—l)r/\/27r times the difference

( . k - nm\
exp -zx = -

/
Rd
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We choose a > 0 and 0 < b < 1 and decompose this difference as /i(k, n, a) +
J2(k, n, a) + 73(k, n, a, 6) + 74(k, n, 6), where

r [^n(x)n - exp(-§E[x])] dx,/ exp f-zx • ^ ^
aWd \ Vn

/2(k, n,a) = - / exp ( -zx • j=r— ) Ar exp(—^S[x]) dx,
jR*\aWd V Vn )

r /i IA f ( - k - n m \ A r . , , n ,
i3(k, n, a,b) = / exp I —zx • -=.— 1 A ipn(x) ax, and

Jby/nWd\aWd \ Vn )
/4(k,n,6) = / exp (-zx •

k — nxxx

y/n

We replace each integrand by its absolute value; the resulting integrals do
not depend on k.

For any choice of a (which will depend on /2 and Is), /i(k, n, a) —> 0
uniformly in k by Lemma 13.5. Next,

Rd\aWd

which becomes small for a sufficiently large.
To deal with 13, we show that for each s < 2 r , 0 < £ < l / 4 and I > 0 we

can find positive constants b = 6Sj£^ and C = Cs,e,e
 s u c n that

< C e x p ( - ( | - e)E[x]) for all x e by/nWd .

If s = 0, then we can use Lemma 13.1 and (13.7) to guarantee the existence
of b > 0 such that \ < |^(x)| < 1 - ( | - e)E[x] for all x € bWd. Therefore

for x G b^Wd- Now suppose that the statement is true for all partial
derivatives up to order 5 — 1. The computations of Lemma 13.5 show that
we can find a constant Co such that for all i i , • • •, Js,

dxh

Therefore

n

< CQ |x| and

= \/n

< Co for 2 < s < 2r.

7o |x| and

< Co for 2 < s < 2r.
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We now apply the induction hypothesis, with e/2 in the place of e, to
formula (13.8) and obtain

dxh - • • dxjs

with C\ and Ci depending on s, e and L The last expression is bounded
above (on the whole of Rd) by C8i£,t

 e xp(~(^ ~ ^)^[x]j f°r a suitable
constant C8i£i£.

From this we obtain, in particular, that for suitable constants b and C3,

|A2^n(x)"| < C3 exp(-iS[x]) , x

We now can bound

|/3(k,n,a,6)|<C3 / exp(-iE[x]),

and choose a sufficiently large to make this small.
Finally, to deal with I4, we use aperiodicity: by Lemma 13.3, there is

6 > 0 such that |^(x)| < 1 - 26 for x G Wd \ bWd. A slight modification of
the arguments used for controlling /3 (using n\d^n(x)/dxj\ < CQ^/U and
induction on s) shows that

|ArV>n(x)n| < C4 (1 - S)n for all x e VrfWd \ by/rfWd , and

which also tends to 0 as n —> 00. •

Note that the theorem holds for every r such that M2r(/x) < 00, in
particular also for r = 0.

(13.11) Corollary. When m(/i) = 0,

uniformly for \a/y/n bounded, where C = (27r)~d/2(de

An analogous local limit theorem when m(/i) ^ 0 does not follow di-
rectly from Theorem 13.10. For this purpose, we require a finite exponential
moment, see (1.22).
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(13.12) Theorem. Assume that /J, is irreducible and aperiodic and has
some finite exponential moment. Then

/x(n) (k) - Ck p(/x)n n"rf/2 as n -> oo .

Proof. We write (p^ for the function studied in §8.B: here we are in the
situation of a lattice with one orbit only, and ^ ( c ) = ^kM^O ec'k- Let
Co be the unique point where this function is minimal (Proposition 8.20).
Then p(/x) = <pM(co) by Theorem 8.23. We consider the probability measure

It is irreducible and aperiodic, satisfies an exponential moment condition,
and m(/x) = -pcgrad^^co) = 0. Write S for its covariance matrix. By
Corollary 13.11,

(13.13)

W p((i)n exp (-co • k - £ 2 ~ i | k ] )

as n —• oo, uniformly for \n/y/n bounded. D

14. Growth, isoperimetric inequalities,
and the asymptotic type of random walk

The results we shall deal with in this section are not as sharp as asymp-
totic equivalence ~. If (an) and (bn) are two non-negative sequences then
we write an ^ bn if there are C > c > 0 such that for all sufficiently large n,
an <C sup{6fc : en < k < Cn} . If also bn ^ an then we write an^bn. (In
the same way, we shall compare non-negative functions on R+.) An equiv-
alence class of sequences under this relation is called an asymptotic type.
By the asymptotic type of a random walk (X, P) we mean the asymptotic
type of the sequence (p(n\x,x)) . By irreducibility, it is independent of x.
We want to determine this type by finding a concrete numerical sequence
in the same equivalence class. For example, we know from Corollary 13.11
that for an aperiodic random walk on Zd with mean 0 and finite variance,
the asymptotic type is (n~d/2).

Clearly, asymptotic type is less precise than asymptotic equivalence. For
example, sequences of the form (e~AnQ(n)) (where A > 0 and Q is a poly-
nomial) are all of asymptotic type (e~n). Throughout this section we shall
deal with reversible (X, P) which do not satisfy IS.
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A. Upper bounds and Nash inequalities
We shall take up the material from Section 4. Our first aim is to link

^-isoperimetric inequalities with the asymptotic type of (X, P), which is as-
sumed to be reversible with invariant measure ra(-) and conductance a(-, •).
The analytic link is the following.

(14.1) Proposition. Let # : R+ -> R+ be such that f(t) = t/$(t) is
increasing. If(X, P) satisfies IS$ (with constant K) then the Nash inequality

with fl(t) = 4*;2f(4£)2, holds for all f e £0(X).

Proof. In terms of f, the isoperimetric inequality reads m(A) <
Kf(m(A))a(dA).

We start with non-negative / G £o(X). We can write f(x) =
Jo°° l[f>t](x)dt. We have [/ > t] C supp/ , and monotonicity of f (this
property is crucial !) implies m[f > t] < nf(m(supp/)) a(d[f > t}). We
compute

/•OO

n/iii = E ^ x ) m ( a ? ) = / ™[/>*i*

< «f(m(supp/)) r a(d[f > t]) = Kf(m(supp/)) SP(f).
Jo

(For the last identity, see the proof of Proposition 4.3.) We now apply this to
/ 2 . In the proof of Theorem 10.3, we have seen that 5 P ( / 2 ) 2 < 2Dp(f)\\f\\%.
Therefore

ll/lll = ll/2||?/ll/lll <2K2f(m(supp/))2£>p(/).

Now let t > 0 and set ft(x) = max{/(#) - t ,0}. One checks that f2 <
f? + 2tf. Also, Dp(ft) < DP(f) and m(supp/t) = m[f > t] < \\fh/t
(Markov's inequality). Therefore - using monotonicity of f once more -

< |8(m(supp/t) /4)Z)p(/ t ) + 2t\\f\\iHl <

If we now choose At = H/lH/ll/lli then we get the proposed inequality for
non-negative / . The general case is immediate from Dp(\f\) < Dp(f). •

We shall use this to obtain upper bounds on p(n\x,y)/m(y). We need
some preparatory facts.
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(14.2) Lemma, (a) For f e £2(X,m), the sequences

\\Pnf\\l and 117*711! - II^Vll!

are decreasing.

(b) SUP T-T = SUP T-r = f " l_+oo =

Xyy m(y) x m(x)

where || • \\p-+q denotes norms of operators from £p(X,m) to £q(X,m).

(c) Setting P = \{I + P), we have

P(2n) (x,x)< 2p{2n) (x, x) for all x , and

DPU) < 2( | | / | | | - IIP/Ill) for all f € £0(X).

Proof, (a) We have seen in the proof of Lemma 10.1 that the sequence
{Pn^1f,Pn+1f)/(Pnf,Pnf) is increasing and bounded by p(P)2 < 1. For
the second part, note that the operator I — P2 is non-negative definite
and has a square root on £2(X, m), which commutes with P. Hence, as
11̂ 112-2 < 1,

\\Pnf\\l ~ \\Pn^f\\l = ((I-P2)Pnf,Pnf) = W-
^ ^ 2 ^fW2 - \\pnf\\2.

(b) For the first identity, observe that m{x)p{-2n\x,y) = (Pn6x,P
n6y)

and apply the Cauchy-Schwarz inequality. The other identities are straight-
forward exercises.

(c) Use the fact that p(2n\x,x) is decreasing, and write

p ( 2 n

i=0

> — V* (2n)v{2n)(x x) - -v{2n)(x x)
k=0 V /

For the above inequality, note that P2 = | ( / + 2P + P2) > ^P elementwise,
and that P2 is also reversible with respect to ra, whence

ll/lla - WPfWl = ((I - -P2)/- / ) = Dp, (/) > \DP(f, f). D

We can now show how the Nash inequality determines an upper bound
on the transition probabilities.
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(14.3) Theorem. Suppose that (X, P) is reversible and that mo =
infx m(x) > 0. IfNAQ holds for a increasing, continuous function $ : R+ —>
R+ then

supP ) y <2a(n),
rn(y)x,y

where a : [0, oo) —> (0, ^-] is the solution of the differential equation

(l44) a'v=

Proof. In view of Lemma 14.2, we work with P: the Nash inequality
becomes

Let / G eo(X) with ||/Jji = 1. We apply the inequality with Pnf in place
of / . Setting u(n) = ||-Pn/||2 an<i u(t) for the piecewise linear extension to
R+, we have that u(t) is decreasing and convex by (14.2.a), and

u(n) < 2g(l/u{n)) (u(n) - u(n + 1)) .

By monotonicity of 0,

u(t) < -2

Also, u(0) < I/TTIQ. Therefore, elementary calculus shows that u(t) < a(t)
for all t > 0, where a(t) is as stated. The result follows; see Lemma
14.2(b). •

This yields concrete upper bounds in the presence of nice isoperimetric
inequalities, and, if (X, P) is quasi-homogeneous as in (4.14), good upper
bounds can also be extracted from the growth function. In the sequel,
when involving the growth functions Vp(x,n) and Vp(ri) corresponding to
P, we shall omit the subscript P and assume implicitly that the graph
associated with (X, P) (see §2.A) is locally finite. Also, we always suppose
that mo = mix m(x) > 0.

(14.5) Corollary, (a) If (X, P) satisfies ISd - and in particular, if (X, P)
is quasi-homogeneous and V(n) fc= nd - then

m{y)
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(b) If (X, P) satisfies IS$ with #(t) = t/[\og(2 + t)}1/oc, where 0 < a < oo
- and in particular, if (X,P) is quasi-homogeneous and V(n) )p exp(na),
where 0 < a < 1 - then

sup j - — ^ ^ exp(-n«+2).
x,y rn(y)

Proof. First of all, note that under the assumptions of Theorem 14.3,
we also have

m(y) ^ x m{y)

(a) ISd implies NAg with g(t) « (1 + t)2/d , and the solution of (14.4)
satisfies a(i) « ( l+t )~ d/ 2 . The "and in particular" follows from Proposition
4.15.

(b) This time, IS$ implies NA& with $(t) = [log(2 + t ) ] 2 / a , and the
solution of (4.14) satisfies a(t) « exp(—t«fe). The special case where $(t) =
t {a — 00) is covered by Theorem 10.3. Once more, the "and in particular"
follows from Proposition 4.15. •

As typical examples, (a) applies to symmetric random walks with finite
first moment on groups with polynomial growth of degree d, and also to
quasi-transitive random walks with analogous properties on graphs; see
Corollary 4.6. This yields yet another way of classifying the recurrent quasi-
transitive graphs. Also, (b) applies to quasi-transitive, symmetric random
walks with bounded range on amenable graphs with exponential growth: in
this case, we get a = 1. Grigorchuk [147] has given examples of finitely gen-
erated groups satisfying exp(na) =4V(n)^ exp(n/3), where 0 < a < (3 < 1.
(In those examples, it is not known whether a = (3.) This gives an up-
per bound on transition probabilities with a / 1 . In Section 15, we shall
consider several examples in more detail. There is one general consequence
which is worth while noting.

(14.6) Corollary. If (X,P) satisfies mixm(x) > 0 and sup£r(e) < 00
then

SUptfW.
x,y m(y)

This holds, in particular, for the simple random walk on a locally finite,
infinite graph.

Indeed, under these assumptions, ISi is satisfied. Theorem 14.3 also has
a converse:
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(14.7) Proposition. Suppose (X, P) is reversible and lim ||Pn||i_>2 = 0.
n—•oo

Define

Then (X,P) satisfies JVA40.

Proof. Let / € £0(X) with | |/ | |i = 1. Set v(n) = | | P n / | | | . Recall that
" i s increasing (Lemma 10.1), whence H/Hl/l l^/ l l i =
Pkf\\22) < (ll/lll/l|J>/lll)n. Using logx < x - 1, we

obtain

, „ ii/iii - up/in

and, if n is such that \\f\\\ > ||Pn||i_>2 (here we use that the latter tends to
0), then

l-\\Pf\\l)\l=

Now recall Lemma 2.5:

(\\f\\l-\\Pf\\2
2)=DMf)<4DP(f).

If H/lli ^ 1 then we normalize it. Thus, when | | / | | | / | | / | |? > | |P n | | i ^ 2 we
have

| ^ 2 ) . D

We remark that in reality, we have proved the following slightly stronger
version of the Nash inequality:

(14.8) H/lll < a(||/||?/||/||2) (H/Hl - HP/Hi) for all / € to{X),

with g as in the proposition. In view of Lemma 14.2, it makes no essential
difference if we work with (14.8) or with the Nash inequality, as the latter
implies (14.8) for P2. In the following we suppose again that the graph
associated with (X, P) is locally finite.
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(14.9) Theorem, (a) If m0 > 0 and NAg holds with g(t) ^ t2/d, where
d>0, then V(n) ^ nd .

(b) If m0 > 0 and NA& holds with g(t) ^ [log(2 + £)]2/a, where a > 0,
then V(n) ^ exp(na/(a+1)) .

Proof. Suppose more generally that NAg holds with g continuous and
strictly increasing. Fix x G X, r, s e N and consider the function f{y) =
max{r + s — d(y,x),0}. If d(v,w) — 1 then \f(v) — /(w)| < 1, so that
Dp(f) < V(x,r + s)/2. Also, / > s on B(x,r). Note that every / satisfies
ll/ll?/ll/lli < m(supp/). Therefore

s2 V(x, r) < g(V(x, r + s)) F(x, r + s)/2 , or equivalently

V(x, r + s)> g'1 (2s2V(x, r ) /F(x, r + s)) ,

where g"1 denotes the inverse function of g. Now let n > 5, set q = \n/s\
(the next lower or equal integer) and rj = js, j = 0 , . . . , <?.

If there is j G { 1 , . . . , q} such that V(x, rj-i)/V(x, Vj) > 1/2 then

Otherwise, y(x,r j_i) /F(x,r : ; ) < 1/2 for all j , and

We have proved that

(14.10) V(x,ri) > min lg" 1 ^ 2 ) , 2Ln/sJm0} for all n,s € N with n > s .

From this general result we can deduce (b): if g(t) ^ [log(2 + t)]2/a then
g-1^) > exp(ta/2). Therefore, if we set s = [n1/(1+a)j then

V(x,n) > minjci exp(c2 s
a), 2^s^m0} ^ exp(na / ( a ; + 1 )) .

For (a), we proceed differently, starting with r = s = 2k. In this case we
get 4kV(x,2k) < CF(z,2 f c + 1) 1 + 2/ d , where C > 1. Similarly as for Lemma
4.13, we show inductively that one can find a constant Co > 0 such that
V(x,2k) > co2kd. To have this for k = 0, we choose c0 < 2ra0. Now
suppose that we have the lower bound for A:, and write

V(x,2k+1) > (4kV(x,2k)/C) d/{d+2)

Thus, induction works if Co < 2~d(co/C)d^d+2\ that is, we have to choose
c0 < min{2m0 , 2 - ^ + 2 ) / 2 C - d / 2 } .

Finally, if 2k~x < n < 2k then V{x, n) > c0 2(k~Vd > ctfrd nd. D
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( 1 4 . 1 1 ) C o r o l l a r y , ( a ) If m 0 > 0 and d > 0 t h e n

s u p ^ n

x,y m{y)

(b) Ifm0 > 0 and 0 < 0 < 1 then

s u p

Proof. In both cases, we bound the function g(t) of Proposition 14.7
from above and then apply Theorem 14.9.

(a) We have | | P n | | i - 2 < Cn~dl2. Therefore

g(t) < inf ( l + ^ . , 2 n
o 1 lr%. : n

* w ~ \ dlog(n)-21og(C*)

Replacing n by a real variable x, we find that the infimum is attained at
x0 = e(Ct)2ld. Settings = |_^OJ+1, we obtain g(t) < l + | ( e (Ct ) 2 / d + l) ^

'd.
(b) This time | |P n | | i ^ 2 < c± exp(-c2n/3), and

Proceeding as above, we find x0 = ( (log(ci^))/(c2(l - /?)) J , and conse-

quently g(t) ^ [log(2 + t ) ] ^ - « ^ . •

In particular, we see from Corollary 4.16 and the above results that for
quasi-homogeneous (X, P) with mo = inf^ m(x) > 0, one has

ISd <=> FP(n) * n ^ ^ ^

iVA0 with fl(t) = t2/d (d>Q).

In general, it is very easy to see that NAg implies IS$ with $(t) = t/g(t)) but
in view of Proposition 14.1, the two conditions are not equivalent; compare
with the example of Coulhon and Ledoux [83].

B. Gaussian upper bounds
Let (X, P) be reversible, and denote by d(-, •) the distance in the graph

associated with the chain (§2.B). The aim of this subsection is to prove the
following off-diagonal estimate.
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(14.12) Theorem. If sup P " ^\X>> < CQU'^2 for alln>2 then
x m(x) ~ ~

m(y)
This needs some preparation. Fix o G X, define ws(x) = e

sd(Xi°\
where s G R, and a new (non-stochastic) operator Ps by ps(x,y) =
p(x,y)ws(y)/ws(x); compare with (8.16). We have (Ps)

n = (Pn)s- Also,
ws(y)/ws(x) < e\s\d(y'x\ so that the row sums of PJ1 are bounded by en'sL
Consequently,

(14.13) ll̂ s
n||p-+p < en|s| for every p > 1.

We shall need a better estimate for small |s|.

(14.14) Lemma. (Vw8f,Vw-8f) > -s 2( l + e2|s|)||/||2

for all f G io(X) and s G R.

Proof. We fix s and set w{x) = ws(x). Replacing / with wf, we have
to show (Vw2/, V/> > -52(1 + e2^)\\wf\\l We write

2 / , V / ) = 2 '

= Ai + A2 , where

)2(w(xfA, = X)(/(a;) - f(y))2(w(xf+w(y)2)a(x,y) and

Now |1 — es|/(l + es) < |s|, so that \w(x) - w(y)\ < \s\(w(x) + w(y)) when
d(x,y) < 1. We use this, (a ± b)2 < 2(a2 + b2) and Cauchy-Schwarz to
bound

<-f(y))2(W(x) +

8s2Ax ^ ( / ( x ) 2 + f(y)2)(w(x)2 + w(y)2)a(x,y)
x,y

= 16s2Ai J2 f{x)2w{x)2 53(1 + w ^ M a O X z , y)
y

Therefore \A2\ < Ax +4s2(l + e2lsl)||u;/|||. D

The following is the key estimate.
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(14.15) Proposition. Under the above assumptions there is C > 0 such
that for all n and all s

Proof. When |s| > 1 this is immediate from (14.13). So suppose |s| < 1.
We use the continuous-time semigroups

n=0

Po,t is stochastic and reversible with respect to ra(-), and Psj = (Po,t)s
(conjugation by ws). We differentiate and apply Lemma 14.14:

^ | | P M / | | 2
2 = 2{w-aPB%tf, (P - I)waP8ttf)

( s , t f ) < C3s
2\\Ps,tf\\

2

with C3 = 2 + 2e2. Elementary calculus yields H-P^/H! < eC3s2||/| |2, since
P8yOf = / . We now have to transform this into the desired inequality for
PJ\ Let / G £0(X) be non-negative. Note that the adjoint of Ps on £2(X, m)
is P_s, and also that P3_s < e2^s^P^ elementwise. In particular,

Write E(n) = {j G N fl [n — y/n, n] : j even}. We obtain

oo

e >

E
j,k£E(n)

(We have used (14.13) in the last inequality.) We now set t = n. The term
in the large parenthesis is > |P[n — y/n < Sn < n], where Sn is a Poisson
random variable with mean n. By the central limit theorem (or directly),
this has a positive limit. Therefore we find C4 not depending on / such that

| | J ? / | | ! < C4 exp(C3s
2 + S\s\y/n)\\f\\l.

As | |Ps
n/ | | < | |P" | / | | | for arbitrary / , the proposed estimate follows. •
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Proof of Theorem 14.12. The assumption implies H ^
Co(2n)~d/2 for all n > 1 (Lemma 14.2). If the proposed statement holds
for even n, then it is easily seen to hold with suitably modified constants
for all odd n > 2 as well (exercise!). Therefore, we may replace P with P 2 ,
or - which amounts to the same - we assume that HP""!^-^ < C§n~dl2 for
all n > 1.

First of all, this implies ||P8||i-oo < Coe|a|. Also, ||Pa||oo->oo < e|s |, and
Riesz-Thorin interpolation (see e.g. Bennett and Sharpley [40]) implies

(14.16) HPjp^oo < Cl/Pe^ , 1 < p < oo.

Analogously, we combine HP^i^oo < C^rrdl2 and I I P 7 1 ^ . . ^ < 1 to get

(14.17) | |P n | | P - .oo<C 0
1 / p n - d /^ ) , l < p < o o .

Next, we use Stein's interpolation theorem (see [40], Theorem 3.3). If z =
±s 4- it, where s € [0,1] and t € M, then Pz (defined like P8 with z in
the place of s) gives rise to an analytic family of operators with admissible
growth. Therefore we can interpolate between \\PQ ||OO-KX> ^ 1 and the
estimate of Proposition 14.15 to obtain ||PJlJ|p_>p < exp(C0(s2n + 1)),
where - = | + ^ p , p > 2. Replacing 6s with 8, this becomes

(14.18) | |PJl| |p^p

We conclude this tour de force through interpolation by applying the Riesz-
Thorin theorem to (14.17) and (14.18), and get

||Ps
n||p-,g < (C0n-<*/2)i-^ exp(C(f s2n + \)) for 2 < p < q < oo .

The last inequality will now be combined with (14.16): decompose n =
1 + Ylj=\ nj a n d choose 2 = p\ < p% < • • • < pjy < oo. Then, assuming
C > 1/2 and using \s\ < C(s2 -h 1),
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Now we have to make the right choices. We may suppose n > 2. Set
Pj = 2j2, rjj = cj~5 with c = (Y1T J~5)~ » an(^ N = N(n) = maxjj :
nrjj > 1} = [(en)1/5]. Also, we choose n3- = [nrjj\ for j > 2, and n\ =

n-l-Y,2 nr T h e n

N-l oo N-l

7 1 3 = 1 l U 3=1 3=1

and by construction, ^ > c - ^ > | — | (as n > 2), while for j > 2,
nrjj < j5[nrjj\, so that ^- > r/|. Therefore

Finally, the choice of N(n) implies that nd/ (2p jv) < 5 2 < oo for all n.
Altogether, we get for |s| < 1

The adjoint of Ps is P_s . Therefore we get the same upper bound for
||PJl||i_>2, and combining the two,

| | i? | | i -oo < K1n-d/2exp(K2(s
2n + 1)) , |*| < 1,

where Ki,K2 > 0. (By (14.16) this is also true for n = 1.) For |s| > 1, it
is immediate that H P " ^ - ^ < e l ^ I l P 7 ^ ^ - ^ , and with suitable choices of
K\ and K2, the above inequality will hold as well. It is equivalent to

p ( W )( g ' y ) < K1n-d!2exv(K2(s
2n+ 1) + a(d(x,o) - d(y,o))) .

m(y) \ ' J

The choice of o and s was arbitrary. Now let o = x and s = d(x, y)/{2K2n).
Then we obtain

m(y)

If X is any connected graph and d(-, •) its graph metric, then The-
orem 14.12 remains valid if one considers random walks with arbitrary
bounded range instead of nearest neighbour type. The constants will of
course change. In particular, the result applies to almost transitive, strongly
reversible random walks with bounded range on graphs with polynomial
growth.
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C. Lower bounds
In principle, §A shows us the following (under suitable conditions):

if we have a lower bound on Vp(n) then we get an upper bound on
supxy(p^n\x,y)/m(y)), and vice versa. In this subsection, we shall use
upper bounds on the growth function to get lower bounds on the transition
probabilities. As in the preceding subsection, we shall restrict ourselves
to the case where the graph structure on X is the one induced by (X, P),
which is assumed to be reversible. Again, generalization to reversible ran-
dom walks with bounded range will be immediate via equivalence of the
metrics of X and its fc-fuzz. The sharpest results concern the case of poly-
nomial growth. We start with the following simple result.

(14.19) Theorem. If p(n)(x,y) < d m(y) n~d/2 exp ( - ^ ^ ) and
Vp(x,n) < C§nd for all n and y, then there is a constant C3 depend-
ing on Co, Ci, C<i and d such that

P{2n) (x, x) > C3 m(x) n-d'2 for all n.

Proof. As one would expect, the Gaussian upper bound implies exis-
tence of 6 > 0, depending only on Co, Ci, C2 and d, such that

¥x[Zn e B{x, 6y/n)] > 1/2 for all n.

Indeed,

r>8y/n

<(3C0Ci/Ca)
r>6y/n

/•OO

d,<

^ " Js/2
In the second inequality convergence of ^2r>0 e~r /C2nrn{B{x, r)) has been
used to separate the differences, shift one index and reassemble. In the
third, we used ex — ey < (x — y)ex for x > y. Now we only have to apply
Cauchy-Schwarz:

m(y)

which is larger than (4C0)~
1(6y/n)~d. D
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(14.20) Exercise. Ifp(n\x,y) < dm^n-V2 exp ( - ^ ^ ) for all n

and y then Vp(x, n) > C4 nd

[Hint: bound Fo[Zn G B(o,6y/n)] from above.]

In particular, Theorem 14.12 yields yet another - more complicated - way
to prove Corollary 14.11 (a). Also, combining Theorems 14.12 and 14.19 we
see that

VP(n)*n« and sup ^ ^ « n~^ = • inf ^ ^ > „-«/» .
X m(x) x m(x)

While in the upper bound it is easy to get rid of the restriction to even
n, this is not immediate for the lower bound. First of all, one has to have
p(n\x,x) > 0 for all n > nx, that is, aperiodicity. This will yield lower
bounds of the form Cx n~d/2. A global lower bound of the same order will
follow from strong aperiodicity; recall (9.1).

We now want to generalize the method used in the proof of Theorem
14.19, which consisted in translating an upper bound on Fo[Zn £ B(o, &)],
where k = k(n) is chosen suitably, into a lower bound on p(2n\o, 6). We
start with the following nice identity plus by-products.

n

(14.21) Lemma. Pn = ^ P 0 [ 5 n = k] Tk(P),
k=0

where Sn is the simple random walk on Z (with law \x = \{S-i + 61))
and Tfc is the k-th Chebyshev polynomial. Also, \\Tk{P)\\2-+2 — 1

2

Proof. The Chebyshev polynomials satisfy Tn(cosx) = cosnx. Replac-
ing cosx by z G C, we write z = \{w + w~x) with w = elx. Now, the
binomial theorem and symmetry of Sn give

zn= J2 Po[Sn = k}wk =^Po[5 n = k]
w + W =X>0[S« = k]Tk(z).

k=-n fc=0 fc=0

Replacing z with P, we get the identity. The explicit formula for Tn is

+ {* - HI ~

The operator / — P2 on £2 (X, m) is non-negative definite, so that it has a
square root. For a moment, think of £2(X,m) as a complex Hilbert space
of complex-valued functions with inner product (/, g) = Y^x / ( x )# ( x ) m ( x ) -
We can consider the operator R = P + i(I - P2)1 / 2 . As P is self-adjoint,
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R* = ]R, and R*_R = RR* = J, that is, R is an isometry. Therefore
Tn(P) = \(Rn + T) is a contraction of £2(X, m).

For the statement regarding Sn, let t > 0. Then, by Markov's inequality,

Po[Sn > k] = ¥o[ets- > etk] < e-tkE0[ets"} = e-tk(cosht)n < e-
tk+ni?'2 .

Setting t = k/n, we obtain the proposed bound. •

(14.22) Theorem. Suppose that Vp(x,n) < m(x)to(n), where t> : N —•
[2 , oo) is increasing, and such that the function n i—• n2/ log d(n) is increas-
ing and unbounded. Then

>

m(x) ~ 3V(x,to(6n)) '

where to(n) = min{A: : n < k2/\ogv(k)} . In particular,

^^><nd implies ^ ' f ; 1 ' > (n logn)^ 2 (d>Oj, aiad
m(x) m(x)

5) i m p i i e s
m(x)

Proof. Fix k e N, and define the annuli Aj = £(#,7^+1) \ B{x,Vj),
where r̂  = 2JA:, j > 0. Using Lemma 14.21, we have the following for our
Markov chain Zn\

As Tk{P){x,y) — 0 when d(x,y) > k, and applying Cauchy-Schwarz, this

is

< E MS. -

and thus

[ZB 0 B(a;, fc)] < J2 dj with aj = exp ( - (log o(ri + 1) - -A j .
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We want to bound this sum above by a number < 1 via an appropriate
choice of fc, depending on n. Choose k = tv(Cn) with C > 4. By our
monotonicity assumption,

Analogously, ao < exp( — ̂ ^ logu(/c) j , and we get

Using our assumption that ti(k) > 2, this is < | if we choose C = 6. The
proof now concludes exactly as for Theorem 14.19. •

We note that the assumption D(0) > 2 (which is sufficient for all our
purposes) can be replaced by t)(0) > 1. The choice of a suitable C in the
proof will then depend only on the value of t)(0).

Theorem 14.22 is nice because of its generality. The requirements on d(n)
will hold in all typical cases, and nothing else is needed to obtain the lower
bounds. The last statement of the theorem is of course only interesting
when 0 < /? < 1. In typical examples, the bounds will of course not be
sharp.

15. The asymptotic type of random walks on amenable groups

For a symmetric random walk with finite range on a group with poly-
nomial growth of degree d, Corollary 14.5(a) and Theorem 14.19 give the
precise asymptotic type p^2n\x^x) ~ n~d/2. If the group is non-amenable,
then p(2n\x,x) ~ e~n by Corollary 12.5. For groups in between these two
extremes, the upper and lower bounds given in Section 14 are sharp only
in a few cases. In this section, we continue to pursue the asymptotic type
for amenable groups. After a general result (§15.A), we present groups with
exponential growth where the upper bound of Corollary 14.5(b) is sharp,
that is, p(2n\x,x) ~ exp(—n1/3). Then we proceed to exhibit a class of
groups, also having exponential growth, where p(2n\x, x) « exp(—nfc^fc+2^)
for ken.

A. Comparison and stability of asymptotic type on groups
Let Fi and F2 be finitely generated groups. We fix finite, symmetric

generating sets Si, i = 1,2, of the two, and consider the corresponding



15. The asymptotic type of random walks on amenable groups 161

Cayley graphs with their metrics di(-,-)- Suppose that (p : Fi —> F2 is
a rough isometry. Then we have from Theorem 3.10 that the associated
Dirichlet norms satisfy D2(f) > £2-^i(/ ° <p) for all / G ^0^2), where
e2 > 0. Also, rough isometry does not depend on the particular choice of
the generating sets, since all Cayley graphs of a given group with respect
to finite generating sets are metrically equivalent.

(15.1) Theorem. Suppose that Fi is amenable and that (p : Fi —> F2 is
a rough isometry. For % — 1,2, let /ii be symmetric probability measures
on Ti such that M2(ni) < 00 and \i2 is irreducible on Y2. Then there is a
constant e > 0 such that

< 2(1 - e)2n

for all n. In particular, /42n)(o)

Proof. Note that we do not require fix to be irreducible, that is, it may
be supported by a subgroup of Fi. Nevertheless, we may consider the asso-
ciated Dirichlet norm over Fi in the usual way, and the proof in Proposition
3.20 plus Theorem 3.2, showing that -Di(-) > SiD^-) on ^o(Fi), remains
valid without any change. Combining this with the above considerations
and Theorem 3.1, we find a constant e > 0 such that

(15.2) Dtl2(f)>2eDfXl{foip) for all / G 4(F2).

First, we suppose that (p is surjective. Then there is a constant N < oo
such that 1 < ^"H^/ll < N for every y G F2. Now let A2 C F2 be finite,
and set A\ = <p~1(A2). Then \A2\ < \Ai\ < iV"|̂ 42|- Consider the truncated
transition matrices Qi = QAt defined by

liyX yj , it X, y G J±i ,

i, otherwise.

They are symmetric and substochastic. Recall that in the symmetric
case, we choose rn{-) to be the counting measure. We think of the finite-
dimensional space £2(Ai) as a subspace of iofii), consisting of all functions
with support in A\. The Dirichlet norm associated with Qi is

where / G £2(Ai), and Ii is the identity matrix over Ai (alternatively seen
as a matrix over F̂  equal to 0 outside of Ai). As supp/ C A{, we have
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DQi(f) = DMi(/). If / G £2{A2) then foy has its support in A1. Therefore
we have

(15.3) DQ2(f)>2sDQl(foip) and ||/| |2 < | | / o <p\\2

for all / G £2(A2). (Prom this point onwards it may be better to think of
Qi and Ii as finite-dimensional matrices). Let A^(j), j = 1 , . . . , \Ai\, be the
eigenvalues of Qi in descending order (including multiplicities). They lie in
the interval [—1, 1], and 1 — Xi(j) are the eigenvalues of Ii — Qi in increasing
order. The min-max theorem (see e.g. Horn and Johnson [176]) says that

1 - Xi(j) = min max .p;,,^ ,KJJ dimw=j few \\f\\2

where the minimum is over subspaces W of £2(Ai). Now, if W is a subspace
of ^2(^2) then the subspace W o (p of £2(Ai) has the same dimension. (It is
here that we use surjectivity of (p.) We infer from (15.3) that

1 - X2(j) > 2e(l - AiO")) for j = 1 , . . . , \A2\.

(We may assume that e < 1/2.) Now suppose that \\(j) > 1/2. Then, using
the inequalities 1 - 2e(l -t)< e"2^1"^ and e1'1 < Jl for 1/2 < t < 1, we
get

On the other hand, if X\(j) < 1/2 then X2(j) < 1 — e. We now want to com-

p a r e m e t r aces 01 i ^ , z — i , z. ±T\K^^ J — 2-^xeA- Qi v*̂ ?**'/ — 2_-/7=i ^ I J j

is non-negative. As |Ai(j)| < 1, we have

A2(j)<0 A2(j)<0 A2(.7)>0

so that

A2(j)>0 A20)>0
( ) / C ) /

Now observe that (ft (y,2/) is the probability that the random walk on Fi
with law \i\ is at the starting point y G A\ after n steps without ever
leaving Ax. Therefore q[n\y,y) < ^{o) and Tr[Q?] < |^i|/x^n)(o) <
N\A2\ /iin)(o). We have proved that

< 2\A2\ ((1 - ef- + N^
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for any choice of finite A2 C F2. For surjective <£>, the theorem will now
follow immediately from the technical result that follows in Proposition 15.4
below. (For the second statement of the theorem, recall that amenability
yields $n)(o) > C(l - e)n for some C > 0; see Corollary 12.5.)

We now explain what to do when ip is not surjective. Recall from Defi-
nition 3.7 that it is "almost" surjective. Therefore we can partition F2 into
finite sets Ay, y G (pTi, such that y G Ay and Ay is contained in the ball
of radius B centred at y. ("Ball" refers to the metric of the Cayley graph
in consideration.) Let £ = max.{\Ay\ : y G </?Fi}. Now consider the group
Yi = Fi x Zi£. We can extend ip to a mapping (p : Fi —> F2 such that
£>({#} xZ^) = AyX for every x G IV It is straightforward that this is a
rough isometry of Fi onto F2, and /ii can be considered as a probability
measure on Fi with finite second moment, 0 outside of Fi = Fi x {0}. •

(15.4) Proposition. Let F be an amenable group, and let \i be a sym-
metric probability measure on F. For any finite A C F, let QA be the
substochastic matrix over A defined by qA{%, y) = ^(x~1y)y where x,y G A.
Then, for each n,

Proof. We have seen in the proof of Theorem 15.1 that ">" holds in
every case (without assuming amenability). For the reverse inequality, we
fix n, pick e G (0, 1) and choose a finite set K£ cT such that o G K£ and
V>(Ke) > I - £- By F0lner's criterion (12.3), for each n there is a sequence
of finite sets Uk CT such that

^
fc-KX) \Uk\

We set Ak = Ak,£,n = UkK™. If Zj = xX\ --Xj is the random walk with
law fi starting at x G Uk C Ak, then

q^&x) = Fx[Zn = x , ZjeAk for all j < n]

= ¥x[Zn = x]- Fx[Zn = x, Zj^Ak for some j < n]

> fi{n)(o) - ¥x[Xj £ K£ for some j < n]

Indeed, if Xj G Ke for all j < n then also Zj = xXx - - Xj G UkK
J
£ C Ak.

Therefore

Wo) - (n - l)e < ^Tr[QAk] < | ^ } sup ^

Letting first k tend to oo and then e to 0, we obtain the proposed result. •
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The relevance of group invariance lies in the fact that p(n\x,x) is in-
dependent of x, so that the argument using traces can be used. Theorem
15.1 yields the main result of this subsection.

(15.5) Corollary. Let Fi and F2 be finitely generated groups that are
roughly isometric. For i = 1,2, let fii be an irreducible, symmetric proba-
bility measure with finite second moment on I \ , i = 1,2. Then

(2n) / \ (2n) / \

Indeed, for non-amenable groups, this follows from Corollary 12.5.
In particular, we see that for the simple random walk on the Cay ley graph

of a finitely generated group, the asymptotic type of //(2n) (o) is independent
of the chosen set of generators. However, later on we shall see that the
precise asymptotic behaviour is not as stable with respect to perturbations
of fi.

(15.6) Exercise. Reformulate (15.1)-(15.5) for transitive graphs and
check that the proofs remain the same.

B. Poly cyclic groups
There are many equivalent definitions of poly cyclic groups. The one

which justifies the name is the following: a group F is called poly cyclic if it
has a normal series

r = r0 > Ti > • • • > r r = {o}
such that every quotient Ti/Ti+i is (finite or infinite) cyclic. For a long list
of equivalent properties, see Wolf [353], Raghunathan [273] or Segal [295].
In particular, F has a torsion-free subgroup F* with finite index, and the
latter has a nilpotent normal subgroup 91 such that F*/9T = Zd

1 where
d > 0. Furthermore, Wolf has proved that a poly cyclic group has either
polynomial or exponential growth. This has been generalized by Rosenblatt
[280]:

(15.7) Theorem. A finitely generated solvable group has either polyno-
mial or exponential growth.

(This has already been mentioned in §3.B.) A simple example of a poly-
cyclic group with exponential growth is the following. Take the matrix
A — ( J j ) . All its positive and negative powers have integer entries, so that
the infinite cyclic group generated by A acts on 1?. Our example is the
corresponding semidirect product Z X Z 2 .

If F is poly cyclic and not nilpotent-by-finite, then Theorem 15.7 and
Corollary 14.5 tell us that any symmetric random walk with finite range on
F satisfies ii^2n\o) ^ exp(—n1//3). The aim of this section is to prove that
one has the same type of lower bound:
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(15.8) Theorem. If F is polycyclic and \i a finitely supported, symmetric
(irreducible) probability measure on T, then one has the following alterna-
tive (with suitable positive constants C\ < C^)-

(a) F has polynomial growth with degree d, and

(b) F has exponential growth, and

d exp(-C2n1/3) < fi{2n\o) < C2 exp(-C1n1/ 3) .

In view of the results of Section 14 (Corollary 14.5, Theorems 14.12 and
14.19), only the lower bound in (b) has yet to be proved. By Corollary
15.5, we may assume without loss of generality that F is torsion-free, and
r /9 t = Zd, where 9t is a (torsion-free) nilpotent normal subgroup of F.

We choose elements X{ in F which map onto the natural generators ê
of Zd, i = 1 , . . . , d. Also, we choose a symmetric set of generators 5$t =
{y?\...,2^1}of9t. Then

c_ _ / T ± i T ± i 7l±i ? / ± i \
op — \xx , . . . , x d ,yx , . . . , y r j-

generates F. We shall refer by <igi(-,-) and dr(-r) to the corresponding
Cayley graph metrics and write \y\<n = dyi(y,o) and |a;|r = dr(x,o), where
x e F, y e OT. Also, if k G Zd then we denote by xk the element x\x • • • xk

d
d G

F, and |k| = Ylt=i IN* We shall need some algebraic observations. By [x,y]
(where x,y G F) we denote the commutator xyx~~1y~1 (always G 9t). Let

Mi =rrmx{\x£
i
iyf1x~£i\<n : i = 1 , . . . ,d , j = 1, . . . , r ,e< = ±1} ,

M2 = max{|[rrf ,a:JJ']|^ :i,j = l,...,d,ei,ej = ±1} .

We may suppose that Mi > 2 and set M = c/2MfM2.

(15.9) Proposition. If k,l G Zd then x k x 1 = 6xk+^ with b = 6(k,l) G 01

Proof. We may suppose that k ^ 0. First of all, observe that for y G
and k G Zd,

This is straightforward by induction on |k|. Next, verify that for x,y G F
and k > 0, we can write

[xk
k

,y] = Y[ak-j(x,y), where a,j(x,y) = ^[x,^]^"-7'.
3 = 1
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(Use the identity [xj,y] = aj-i(x,y)[x^~1,y].) In order to prove the
statement of the proposition, we first assume that 1 = e .̂ When i = d
then b — o and there is nothing to prove, so assume i < d. Let
k(j) = (hi,..., kj, 0 , . . . , 0). Also, if kj = 0 set Uj = o, and otherwise

\kj\

Uj = J J a\kj\-e(x^j, xi), where Sj = sign kj .
e=i

k • k •

Then x-3Xi = UjXiX-3, and if j > i then

\J ' 11 • JC ^J

Therefore we get xk Xi = b x k + e i , where

d-i

£=1

To bound the length of 6, we get from (15.10)
\kj\

\uj\m <M2J2M[kjl~£ < M2 M[kj', and
e=i

d

The proof with 1 = — e* in place of ê  is exactly the same and leads to
the same bound for 6(k, -e^) Next, if 1 = ^e* with t{ e Zd \ {0} then by
induction on |^|,

3=0

Finally,

d-l

? D
As a consequence, if u,v G VI and k,l G Zd then there is w G 9t such

that

(15.11) w x ^ x 1 = wxk +* , and \w\m < \u\m + \v\n M | k |

(Apply (15.10) to x k u x " k and use Proposition 15.9.)
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Proof of Theorem 15.8. In view of Corollary 15.5, it is enough to
prove the lower bound in (b) for the random walk Zn = X± • • • Xn whose law
li is equidistributed on Sr- Let K3 be the projection of Xj onto Zd = F/9t,
and Sn = Ki + • • • + Kn the projection of Zn. This is a modified simple
random walk on the grid, with "holding probability" r/(r + d) at each point.
We can write

(15.12) Xj = Yj x*'" , where Yj € <tt and 1^1* + \Kj\z* = 1.

Analogously, we write Zn = Unx.Sn with Un G 9t (in particular, U\ = Xi).
Using (15.11) and (15.12), we get (omitting the subscripts in | - |or and | • |Zd)

n| < \Un-l\ + |^n| MI5""1"

< |C/n_i| -f M | 5 - l | + 1 < (inductively)
n—1

3=1 3=1

Therefore, if max{|5j| : j < n} < m then \Un\ < nM1+7n. We now use the
method of Theorem 14.19, but instead of balls, we consider the finite sets

An,r - {w = uxk e r : |k| < r , |tz|^ < n M 1 + r } .

As yi has polynomial growth, there is a constant c\ > 0 such that |An?r| <
eci(i+r+iogn) Using Cauchy-Schwarz as in the proof of Theorem 14.19, we
obtain

(2n) Po[Zn e An^ P^maxd^hj <n}<r]2

W ~ \A\ ~

We now use the following inequality.

(15.13) Exercise. A variation on Kolmogorov's inequality (Alexopoulos
[2]): show that there is a constant C2 > 0 such that

Po[max{|5i| : j < n} < r] > e"
c2(i+n/r2) for a U m ? n G N .

Thus, we have ^2n\o) > exp(-c3(2 + % + r + logn)) with c3 =
max{ci,C2}. Setting r = n1/3, we obtain the lower bound proposed in
Theorem 15.8. •
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C. The solvable Baumslag—Solitar groups

Let q be an integer > 2. The corresponding Baumslag—Solitar group is

This is a solvable, non-polycyclic group with exponential growth. It is
the semidirect product Z X Z[^], where the action of Z on Z[-] is given

by (fc,*J) i-> qk^. The elements a = (gj) and b - (J}) satisfy the
relation a& = 69a and generate BSg. Indeed, as an abstract group, it has
the presentation

B S g = (a,b\ab = bqa).

Every element x — ( q ~^ j can be written uniquely as

where q does not divide m when £ > 1. We write k(x)1£(x) and m(x) for
these numbers; k(-) is the natural projection of BSg onto Z.

(15.14) Theorem. Every symmetric random walk with finite second mo-
ment on BSq satisfies

Proof. Again, we only have to prove the lower bound and are free to
choose which random walk to study. We apply the same method as for
polycyclic groups to the simple random walk Zn = X\ • • • Xn on the Cayley
graph of BSg with respect to {a±1,b±1}. (The starting point is ZQ = o.) We
write Ln = £(Zn), Mn = m{Zn) and Sn = k(Zn). The latter is the random
walk on Z which in a step moves left or right with probability 1/4 each, or
remains where it is with probability 1/2. Also, we write Bn = Mn/q

Ln. We
prove by induction that

n—1

\Bn\<^2 qSj and Ln < max{-5,- : 0 < j < n} .
j=o

This is true for n = 0. Suppose that it holds for n — 1.
If Xn = a±l then Bn = .Bn_i and Sn — Sn-± ± 1, so that the statement

also holds for n.
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If Xn = 6±1 then Sn = Sn-i and Bn = B^^q^-K The bound on \Bn\
is obvious, while the one on Ln follows from Ln < max{-5 n _ i , L n _ i} .

We now set

An,r = {xe BS, : \k(x)\ < r , l{x) < r , \m(x)\ < nq2r}

and proceed as before: if max{|5j| : 0 < j < n} < r then Zn G An,r ,
whence ^2n\o) > Fo[max{\Sj\ : 0 < j < n} < rf/\An,r\. The proof
concludes exactly as for Theorem 15.8 (after (15.11)). •

D. Random walks on lamplighter groups
Suppose that at each site (vertex) of the grid Zd there is a lamp which

may be switched on or off. Initially, no lamp is lit. A lamplighter starts from
the origin and performs random steps. At each step, he has two choices:
he may either decide to change the state of the lamp where he stands, or
he may move across some edge of the grid to a neighbouring site. In the
resulting random process, we have to observe two things: the position of the
lamplighter, performing a random walk in the grid, and the sites where the
lamps turned on - a finite subset of Zd. This can be described as a random
walk on a group, the lamplighter group over %d.

The lamplighter groups are examples of wreath products. Let F and 21
be arbitrary groups. A configuration is a function rj : F —• 21 with finite
support, where supp?7 = {x G F : r](x) ^ o%}. Equipped with pointwise
multiplication in 21, the set 03 of all configurations is a group - the direct sum
of copies of 21, indexed by F. Now F acts on 03 by group automorphisms via
(2/5 v) l~> Tyr], where Tyrj(x) = rj(y~1x). The resulting semidirect product
F X 03 is the wreath product of F with 21, denoted by F I 21. Both 21 and F
embed into the wreath product: a G 211—> (or, rya), where rja G 03 is defined
by Va(or) — & and rja(x) = 0% \ix G F \ {op}- The embedding of F is given
by y \—> (2/,?7O2t). Here, j]o^ is the empty configuration (constant with value
021). The unit element of the wreath product is o = (or,r/Ogi). If F and 21
are finitely generated then so is their wreath product, which is generated
by the union of the embeddings of the respective generating sets.

Here we shall only consider the case when F and 21 are abelian, with
respective group operations written additively, and the product in F I 21 is
given by

(2/1 ,m) (2/2,7/2) = (2/1+2/2,^1 + ^ 7 / 2 ) .

Thus, F?2l is solvable and has exponential growth. The lamplighter group is
Zd I Z2. If 21 has more than two elements, then we may imagine each lamp
having more than just the two states "on" and "off". In this subsection
we want to study the asymptotic type of random walk on these generalized
lamplighter groups.



170 /// . The asymptotic behaviour of transition probabilities

(15.15) Theorem. Let 21 be a finite abelian group. Every symmetric
random walk with finite second moment on Zd 121 satisfies

Proof. Let /io be the equidistribution on {0, ite* : i = 1 , . . . , d} C Zd.
For the proof, in view of Corollary 15.5, it is sufficient to consider the
random walk on Zd I 21 whose law /i is given by

i f r /G{r ? a :aG2l} ,

0, otherwise.

Consider i.i.d. //-distributed random variables Xn = (Kn,Vn), where
Kn G Zd has distribution /io and the Q3-valued random variable Vn is
equidistributed on the set of configurations rj G 93 with supp?7 C {0},
and Kn and V^ are independent. Then our random walk is

• Xn =

where 5 n = Xi + • • • + Kn is the random walk on Zd with law //o, with
So = 0. We start with the (easy) lower bound, proceeding as in the previous
two theorems. Set

Ar = {(1, rj) G Zdl 21: |1| < r, ry(k) = o« if |k| > r} .

Then |Ar| < Crd\%\Cr\ and if maxJIS^I : j < n} < r then Zn G Ar.
Indeed, the lamplighter cannot turn on any lamp before reaching it. Once
more, we obtain

A*(2n)(<>) > Po[max{|,S,-| : j < n} < r]/\Ar\ > e x p ( - C ( l + ^ + r d + logr)) .

Choosing r = n 1 / ^ 2 ) leads to the desired result.
The upper bound involves a difficult tool. We first need the following

fact. If ko, . . . ,kn _i G Zd (not necessarily distinct) then Yl^i^j-i^j
is equidistributed on the set of all configurations 77 G 53 with suppz? C
{ko, . . . ,kn- i} .

This is straightforward when all kj are distinct. If they are not, then
observe that for fixed k G Zd and i < j , the distribution of T^Vi + T^Vj
is the same as that of T^Vi. Indeed, the sum of two or more independent,
uniform 21-valued random variables is again uniformly distributed on 21.
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We now compute

n

Po[Zn = o]= Po[5n = 0, Y,TSJ-IVJ = Vo»]

= £
ko,...,kn€Zd

ko=kn=O

= E0(|a|- |Dn-11 \Sn = 0)Fo[Sn = 0] <

where Dn = {So, • • •, Sn} and \Dn\ is the number of distinct sites in Zd

visited by the random walk up to time n. The upper bound now follows
directly from the theorem on random walks in the grid that is stated next. D

(15.16) Theorem. Let Sn be a symmetric random walk with finite second
moment in Zd, and \Dn\ the number of distinct sites visited up to time n.
Then, for every z > 0 there is a constant a(z) > 0 such that

\im^n-d/^2) logE0(exp(-z|L>n|)) = -a(z).

This profound result, which rather belongs to the realm of Section 13,
is due to Donsker and Varadhan [100]. It uses refined estimates for large
deviations of \Dn\ which indoubtedly go beyond the scope of the present
book. Preliminary results that may lead to a better understanding of this
important theorem can be found in the book by Hughes [177].

16. Simple random walks on the Sierpiriski graphs

In Section 14 (Corollary 14.5, Theorem 14.19), we have seen that under
certain conditions (quasi-homogeneity), polynomial growth with degree r
and decay of order n~r I2 for transition probabilities occur with the same
exponents r1 = r. In this section we shall study a class of graphs with
polynomial growth, where r' is strictly smaller than r. These are the sim-
plest "fractal" graphs, strongly related to the Sierpiriski fractals in d > 2
dimensions.

We explain the recursive construction of the d-dimensional Sierpiriski
graph Srf. Let 0 = xo ,x i , . . . , x^ be the vertices of a standard equilateral
simplex in Rd with all vertices in the non-negative cone. We write S^ —
Sj for its 1-skeleton; this is the complete graph with vertices 0, x i , . . . , x<j.
If we have already constructed S^ = S^ , then we define

j = o
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Figure 14-' the Sierpinski graph S2

where x + 5^fc^ denotes the translate of the graph S^ by the vector x G R d .
Also, we write — S^ for the reflection of S^ through the origin, and S^ =
S{

d
k) = -£(*) U S(k\ As x0 = 0, the S<fc), k > 0, are an increasing family

of finite graphs. The Sierpinski graph is their union: S^ = Ufc>o &d • ^ *s

regular with vertex degrees equal to 2d. Figure 14 shows (a finite piece of)
S2; the part with the bigger #'s is S2

The subgraph S^ is the ball in S of radius 2k centred at vertex 0. We
have |S(*)| = (d + 1) IS**"1)! - ^ = ^ = ^ ( ( d + l)k + l ) . Thus, with
respect to the counting measure, V(0,2k) = (d + l) fc+1 + d. Prom this we
obtain

nr + d < V(0,n) < (d+l)2nr + d with r

Let us now consider simple random walk on S<£. From Theorem 14.22 we get
p(2n)(0,0) > C(nlogn)~r / 2 . However, this lower bound is poor. Without
any computation, we can see immediately that the random walk is recurrent
for all d. Indeed, the number of edges going out of S^ is constant (equal
to 2GP), SO that Nash-Williams' criterion (Corollary 2.20) applies.

A. Stopping times and an equation for the Green function
Consider the graph 2S^. One of the important properties of the

Sierpinski graph is that the vertex set of 2S<2 is contained in S^. Two points
of 2Sd are neighbours in this graph precisely when they are at distance 2 in
Sd.

The simple random walk Zn on S^ visits 2S^ infinitely often with prob-
ability 1. Suppose that ZQ = 2x, where x G S^. We can "factor" the
random walk with respect to its successive visits in 2S^, that is, we consider
the stopping times

t0 = 0, tj = min{n > t ^ i : Zn G 2Sd , Zn ^ Z t i _ J .
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The ball #(2x, 2) in S^ is connected to the rest of S^ only through its vertices
2y G 2S<f, where y ~ x in S^. Furthermore, each i?(2x, 2) is isomorphic
with S^1). This is the basis of the following fundamental lemma.

(16.1) Lemma. The increments tj —tj-i are i.i.d. with probability gen-
erating function

z2

Proof. Isomorphism of all i?(2x, 2) implies immediately that the incre-
ments are i.i.d. We now compute <f>(z) = E0(^ t l ) = Y£=i Fo[ti =n]zn .

Consider the random walk restricted to S^\ and make the boundary
points ±2XJ (j = 1 , . . . , d) absorbing. We can group the vertices into four
classes: Co = {0}, d = {±Xj- : j ^ 0}, C2 = {±(xd + xk)J ^ kj, k ^ 0}
and C3 = {±2XJ : j ^ 0}. Then, for all i,i' e {0,1,2,3} and x G d, the
probabilities p(i,if) = p(x, C»/) are independent of the choice of x E C ,̂ so
that we can consider the factor chain with transition probabilities p(-, •) on
{0,1,2,3}. (This construction is more general than the factor chains with
respect to groups introduced in §1.F.) We compute

p(0,l) = 1, p(l,0) = i , p( l , l ) =P(1,2) = ^ , p(l,3) = ^ ,

p(2 , l )=p(2,3) = ^ ,p(2,2) = ^ 2 , and p(3,3) = l ;

the other transition probabilities are 0. We have <j>(z) = F(0,3\z). Using
Lemma 1.13(d), we obtain the following system of equations.

\z) = zF(l,3\z),

F(2,3\z) = \z+\z F(\, 3|z) + ^ z F(2,3\z).

The rest is straightforward computation. •

Also, we note that for y ~ x in S<j,

(16.2) E 2 x ( z t l l a y ( Z t l ) ) = ^ ( z ) .

Indeed, each point 2y with y ~ x is equally likely to be Ztl, when ZQ = 2x.
Furthermore, we shall need i/;(z) = J]^Li ^2x[^n = 2x, t i > n] zn .
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(16.3) Lemma. i/>(z) = d ~^ ~ ^ </>(z).
a ~\ z

Proof. For the factor chain introduced in the last proof, 1 + ip(z) =
5(0,0|z), so that %l)(z) = l/(0,0|2)/(l - *7(0,0|z)). The computations are
now similar as above, using Lemma 1.13(c),(d) and the fact that F(2,0|z) =
F(2, \\z) F(l,0|2;). We leave the details as an exercise. •

We now consider the random variables J(n) = max{j : t j < n} and
write, for x, y € S<f,

oo

G(2x, 2y\z) = ]T Gfc(2x, 2y\z) = ̂  E
fc=O n=0

Note that Zn = 2y G 2Sd implies ZJ(n) = 2y and Z* ^ 2Srf for J(n) < i < n.
Therefore

= <, Zt = Zn = 2y, Z< ̂  2Sd (̂  < t < n)]
£=0 n=£
oo

oo

x ^2x[Zn = 2y,Zit2Sd(e<i<n)\Ze = 2y] zn~e

= (l + <l>(z))E2x(l{2y}(Ztk)z
t*).

By induction on A;, it is now straightforward to show from Lemma 16.1 that

E2x(l{2y}(Ztfc) z*») = pW(x, y) <t>(z)k;

for A; = 1, this is (16.2). We have proved the following.

(16.4) Proposition. For all x ,y G Sd and \z\ < 1,

We set G(z) = (7(0,0|z). It satisfies the functional equation

(16.5) G(z) = (l +

Now, if \z\ < 1 then \</>(z)\ < </>(\z\) < \z2\ < \z\. If <pM denotes the n-th
iterate of 0, that is, (t>{0){z) = z and ^(z) = 0(0( n"1 )(^)), then we see
that c/>(n) (z) —y 0 uniformly in compact subsets of the open unit disk. Recall
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that G(0) = 1, and observe that the Taylor expansion of tp(z) at 0 starts
with z2/(2d2) . Therefore, iterating (16.5), we obtain

N-l

(16.6) G(z) = ̂ lim^ J ]
~*°° n=0

n=0

for \z\ < 1. We now want to show that convergence in (16.6) holds in
a much larger subset of the complex plane. Indeed, G(l/z)/z is a matrix
element of the resolvent of the symmetric operator P, so that it must extend
analytically everywhere outside the ^2-spectrum of P, which is contained in
the real interval [—1, 1].

(16.7) Proposition. We have cp^ (z) —> 0 except for 1/z in a closed subset
of the real interval [4=2 ? l] containing its two endpoints, and convergence
is uniform for 1/z in closed subsets of C \ [4=2 5 i] m

In particular, in this region the infinite product (16.6) converges to an
analytic function.

Proof. We work with the conjugate

0(z) = 1/0(1/*) = 1 + 2d(z - l)(z - 4=2)

and show that its iterates tend to oo outside of [4=2 ? 1].
We already know that \<j>(z)\ > 0(|*|) > \z\2 for \z\ > 1. Therefore

(j)(n)(z) —* oo in this region, uniformly in {\z\ > c} for every c > 1.
The function 4>(z) is symmetric with respect to the point ^ p . Conse-

quently we also have \<j>(z)\ > \z— ̂ ^ | 2 for \z — ^ ^ | > 1, and the iterates
of 4> tend to oo in this region, too.

We are left with studying the intersection D of the two closed disks

3
Consider the (real) solutions of <j){x) = 4 ^ : they are x\$ = ((3d — 3) ±

v/ (<2+l ) 2 -4) / (4d) . Uz = x + iy then Re(0(z)) = ^{x) - 2dy2. Thus, if
(p(x) < 4=2. then \4>(z) - ^ = ^ | > 1 and the iterates tend to oo. This settles
the strip {x\ < Re(z) < x2}.

Finally, we are left with the intersection of D with the two strips { 4 ^ <
Re(z) < xx] and {x2 < Re(z) < 1}. Now Im(<£(*)) = y{^dx - {3d - 3)). Ifx is outside the interval [x\, x2] then \£dx — (3d — 3)| > y/(d+ I)2 — 4 > 1
[we use d > 2 here!], and if in addition Im(z) ^ 0 then

+ I)2 — 4 |Im(;z)|. Thus, after a finite number of iterations,
must leave D.
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Altogether, we see that only for real z G [4^p , #i] U [x2 , 1] may the
iterates of <j>(z) not tend to oo.

We have <pf(l) = d + 3, and z = 1 itself is a repelling fixed point of </>(•),
so that 4̂ jp, #i, #2 a n d 1 must belong to the Julia set (= set of points which
are not attracted by oo) of </>(•). As a matter of fact, it is not hard to see
that this is a Cantor set. •

B. Singularity analysis
We now want to use Proposition 16.7 and the representation (16.6) for

finding the asymptotic behaviour of the power series coefficients p(n)(0,0) of
G(z). To this end, we need good knowledge of the behaviour of G(z) near its
principal singularity z = 1. In the rest of this chapter, we shall use methods
from complex analysis - as typically applied in combinatorial enumeration
- on several occasions. We now present the analytic tool that we shall
use for the Sierpinski graphs. This is singularity analysis, developed by
Flajolet and Odlyzko [117]; see also Odlyzko [249]. It has several variants;
the "prototype" considers the coefficients of the power series expansion at
0 of (1 — z)t. We cannot reproduce the whole theory with its proofs here,
but only present the main tool elaborated by Flajolet and Odlyzko; see in
particular Proposition 1 and Corollaries 2 and 3 in [117].

We introduce the sets Dats = {z G C : \z\ < 1 + 6, | arg(z - 1)| > a},
where 0 < a < \ and 6 > 0.

(16.8) Theorem. Let F(z) = Yin fn zn be a power series with real coeffi-
cients and a singularity at z = 1. Assume that it extends analytically to a
suitable set Da^ \ {1}.

If F(z) = C(l-z)< + O(\l - zf) asz^lin Da,6, where ( G C \ N 0

and p e R, /? > Re(C), then

Note the particular case when C = 0. We want to apply (an extension
of) this theorem to G(z) = EnP(n)(°> °) zU- T h e first problem is to find the
leading real exponent r\ of G(z) at z = 1. If we write G(z) = (1 — z)71 H+(z)
and substitute this into (16.5) then we see that H+ satisfies the functional
equation H+(z) = (l + f{z)) H+((f)(z)), where
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Precisely the same proof as that of Proposition 16.7 (note that /(0) = 0)
shows that H+ has the product expansion

n=0

which converges to an analytic extension of H+(z) in the complement of
the Julia set of <j>. Now 0 has a local inverse </>(-1) near z = 1, analytic
and such that in an open disk Uc = {z G C : \z — 1| < c}, its derivative
is bounded in absolute value by a constant smaller than 1. In particular,
z = 1 is an attractive fixed point of </>(-1\ and its iterates cj)(~n\z) tend
to 1 exponentially fast in Uc. We now choose rj such that / ( I ) = 0, that
*s' ^ = io(d+3) "" 1* We- shall fix this value of r] for the rest of the present
section. Then the infinite product

n=l
converges and is analytic in Uc. The "backward completion" H(z) =
H-(z)H+{z) of H+(z) is analytic in Uc\ [1, oo) and satisfies H(z) =
H((f)^1^ (z)). We now modify H(z) to obtain a function which is periodic.
We learn from Beardon's beautiful book on the theory of functional itera-
tions [29], Thm. 6.3.2, that one can extract the linear part of the expansion
of c^"1) at z = 1 by conjugating by a function g(z) which is analytic in the
disk Uc (with smaller c if necessary), and real-valued if z G Uc is real:

t 1 ) ( » = l + £s(z-l), and '
If we now define K(z) = H(g(z)), this function is analytic in Uc\[l, oo)
and satisfies

Thus, the function TQ(W) = K(l — (d + 3)™) is periodic with period 1 and
analytic in the semi-infinite strip {Re(u;) < log c/ log(d + 3), |Im(u>)| <
7r/log(d + 3)}. This allows analytic continuation to the whole strip
{|Im(u>)| < 7r/log(<i + 3)}, and a rapidly converging Fourier expansion

oooo

T0(w)= ^ akexp(2k7riw) with ak = ^ ( e x p ( - ( l o g
2

( ^ 3 ) - g)|fc|))
fc=-oo

for all e > 0. We now consider the approximation error in replacing H+(z)
with K(z). As z -+ 1, we have H-(z) = O(\z - 1|), whence H+(z) =
(1 + O(\z - l\))H(z), and (as K(z) is bounded)

H+(z) - K(z) = {1 + O(\z - 1|)) (H(z) - K{z)) + O(\z - 1|).

In order to control H(z) - K(z) = H(z) - H(z + O(|l - z\2), we study
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(16.9) Lemma. For each 6 > 0 and 0 < a < ?r/2,

H'{z) = OaiS(\z - i|-iog(d+3+«)/iog(d+3-tf)),

as z —> 1 and | arg(z — 1)| > a.

Proof. We can find a disk Uc around 1 where \<t>'{z) — (d + 3)| < 6. We
write C7c?a = {z e Uc : \ arg(z - 1)| > a}.

If c is suitably small then | arg(</>(z) — l ) | > a for all z G C/C?a. This
can be seen by elementary computations, for example by observing that
near x = 1, the line y = a(x — 1) is mapped to a curve y = w(x) where

w(l) = 1, w'(l) = a and w"(l) = a ( l + (1 + a2)</>"(l)/<l>'(l)2>), with the

value <j)"{l) = 2d2 + 6d + 12. Thus the image lies above or below the line
according to the sign of a.

This implies that Vc,a = UCjOC \ ^^~1^(t/c,a) lies m an annulus around 1,
and by continuity, \{z - iyog(d+3+6)/\og(d+3-6) R , ^ < c < oo in V~a.

Now for every z € C/C?a \ {1} there is an n > 0 such that (j)^n\z) G T4>a. We
show by induction on n that

\H'(z)\ <C\z- i|-iog(d+3+tf)/iog(d+3-6) for

This is true for n = 0. For the induction step, suppose that the statement
holds for 0(z) G {7c,a. Then

|if;(z)| = \<t>\z)H'{<l>{z))\ <C{d + 3 + 6) \<t>(z) - i |

The estimate follows. •

Combining all these computations, we obtain the following expansion.

(16.10) Theorem. Near z = 1 and for \&rg(z — 1)| > a, the function
G{z) = (2(0,0\z) has a singular expansion

/iog(i-*)\ - ,, i a _

for all a < \ and e > 0, where r\ = j ^ ) ^ ^ — 1 and TQ(W) is a non-constant
periodic function with period 1 which is analytic in the strip {\Im(w)\ <

Proof. We only have to show that To(w) cannot be constant. There are
two ways to do this; one of them fails for d = 2 and the other for d = 3.
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First assume that d > 3. The rational function (j){z) has two poles
P2 > Pi > 1 and the three fixed points 0,1, ̂ ^ . In the real interval [1, pi),
<j){z) has derivative > d+3 and tends to +oo when z —» p\. The local inverse
of 4> around 1 extends to this interval and has the attracting fixed point
z = 1. The point ^ ^ lies in (p2, oo). We can find a (unique) z\ € (1, pi)
satisfying <p(zi) = j ^ , and the sequence of (real) points zn = ^~n+1\zi)
is decreasing with limit 1.

Now suppose that To(w) is constant. Then K(z) and hence also H(z) =
K[g^~x\z)) are constant. This constant must be real and positive, as
H+ is positive in (0, 1) and H- is positive for real z near 1. Therefore
H+(z) = H(z)/H-(z) has an analytic extension to a full neighbourhood
Uc of z = 1 and H+(z) > 0 in Uc D E. In Uc\[l, oo), we can write
G(z) = (1 - z)11 H+(z). There is some zn in Uc, and cj)^ maps a suitable
neighbourhood V C C/c to a neighbourhood jy of ^ ^ , such that in each
iterate 4>^\V), j = 0 , . . . , n, both 4>(z) and ^(z) are well defined (i.e., have
no poles), and such that (j)^ : V -^ W is invertible. Also, the iterates of
non-real points in V are non-real.

Now (16.5) holds in a set containing C \ R. Therefore we have in V \ R

with il)n(z) = - 1 + 117=0 f1 + ^(0O ) (^))) • Let z -> zn in the upper
half plane. Then (1 - z)11 —> (zn - l)7?(cos(?77r) - isin(7/7r)). If z —• zn

in the lower half plane, then the last " - " becomes a "+". (Recall that
(1 - z)71 = exp(r7log(l - z)) and that ImQogw) = arg(iu) G (—TT , TT).) One
checks that 1 + ipn(zn) > 0: indeed, I/J(Z) > 0 in (1 ,pi). Therefore we find
a constant a > 0 such that

lim Re[G(z)) = a cos(r)ir).

Now (j>(W) is a neighbourhood of W, and <\> maps non-real points in W to
non-real points. We compute ^ (^^ ) = —2 and apply (16.5) once more to
obtain

Bm Re(G(z)) = - l i m ^ R e ( G ( ^ ) ) ) .

That is, a = —a, a contradiction.

For d = 2, 0(2) = z2/(4 — 3z) has no fixed points besides 0 and 1. There
is only one pole pi = 4/3. As above, </> is strictly increasing in [1, pi), and
the inverse of <\> in this interval has the attracting fixed point z = 1. We use
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the point ZQ = —4 which is mapped to 1 by </>. Observe that ip(—4) = — 1,
so that (16.5) yields a neighbourhood W of z = — 4 such that in W \ E

) with h(z) = £+~J$~*

Now I/J(ZI) = 4, where z\ = 6 — 2\/5 > pi. We can find Z2 € (1 , pi)
such that 4>(z2) = 6 — 2\/5, and its successive preimages zn tend to 1 from
the right and satisfy (j)^n\zn) = —4. Assuming that TQ(W) is constant, we
proceed as above and find a neighbourhood V of some zn such that in V \ E

After checking that tpnizn) ^ —1, we take absolute values on both sides and
let z —> zn in V \ E. On the left, the limit is non-zero, while on the right it
is 0, a contradiction. The same method works for all d ̂  3. •

Combining Theorems 16.8 and 16.10, we can now deduce the main result
of this subsection.

(16.11) Theorem. For the simple random walk on S^,

0) = n-iog(d+i)/iog(d+3)

for all e > 0, where T(w) is a non-constant periodic C°°-function with
period 1. Its Fourier series is

oo

T(w)= Y^ ^
fc=-oo L V1 log(d+3) /

where the a^ are the Fourier coefficients ofTo(w).

Proof. By Theorem 16.10 we have in a suitable Daj$

G(z)=
k=-oo

The series converges uniformly, so that we may apply Theorem 16.8 to each
term and take the sum over k to obtain

/ _ \og(d+l)+2kni

p(n)(Ojo)= Y
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We now claim that, with T as defined above, the sum over k can be written
as n-iog(d+i)/iog(d+3) (r(logn/log(d + 3)) + C^n"*1-*))) for all e > 0.
We write the k-th. term in the sum as

p/ , 1 lQg(d+l) + 2fc7Ti\

p/-, _ Iog(d+l)+2fc7ri\ n\
1 V1 log(d+3) )

and use various formulae for the Gamma function. First, \Y(x + iy)| =
\x~1/2 e-^l2 (1 + o(l)|y|_oo) - see Lebedev [213], p.15 - so that

for all e > 0. Also, |F(x + iy)\ < F(x) for x > 0, and with a use of Stirling's
formula,

1

n\

/ l O g ^ + l j + T̂TZN I < C n _ l o g ( d + 1 ) / l o g ( , + 3 )
V \os(d + 3) / I ~

Therefore, if b > 0 is sufficiently large,
/

The same holds for the sum over |A;| > logn in the series defining
T(logn/log(d + 3)). Now we only have to compare the two sums in the
range —b log n < k < b log n. We use the following form of Stirling's formula
-see [213], (1.4.23):

1/2 e z (1 + Oad^r 1 ) ) as z -> oo , | arg(^)| < a

This implies

r ( r t | l ^

with the O(-) independent of k G (—6logn, blogn). The result follows. •

17. Local limit theorems on free products

Here we take up the machinery developed in Section 9; the reader is
invited to recall §§9.B-C. We shall derive the asymptotic behaviour of tran-
sition probabilities on a variety of free products, in particular of groups.
Here it will become clear why we insisted on distinguishing the two differ-
ent cases 9 < 6 and 6 = 9 in Theorem 9.22. In the sequel, we suppose that
the setting is precisely that of (9.16) and (9.17). Also, we shall suppose that
the random walk is strongly periodic as in (9.1), which holds automatically
for random walks on groups.

We start with some extensions of the composition formulae derived in
§9.C. Recall that Fi(-,-\z) denotes the probability generating functions for
the first hitting times of the Markov chain (Xi, Pi), and X[ = \{o}.
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(17.1) Lemma. Let P = ^iGxOaPi be defined on X = * X{, and r =

r(P) = IMP).
(a) For i el, one has Q(T) < r(P;), unless 6 = 0{Pi)/(Xi, in which case

C<(r)=r(PO.
(b) If x = x\ • • • Xk € X with Xj € X[ , ij =fi ij-i, then

F(x, o\z) = Fh (xi, o\(h (z)) ...Fih (xk, o\dk {z)) .

Proof. By (9.20), C<(r)Gi(CiW) = 0*9 < 6{Pi) =
The strict monotonicity of the functions involved for positive real arguments
implies (a).

(b) For x as above, set yo = o and yj = x\ • • • Xj (j = 1 , . . . , k). By the
tree-like (or, rather, cactus-like) structure of the free product, the random
walk starting at yj has to pass through yj-i before reaching o. Therefore,
the same stopping time argument as used in the proof of Lemma 1.23 yields

F(x,o\z) = F(yk, Vk-i\z) • • • F(yi,y0\z).

When starting at yj and before hitting 2/j-i, our random walk has to per-
form its steps within the copy of X^-_± attached at yj-\ according to the
construction of the free product. This is the same as starting at Xj and
walking until the first visit to o. Therefore F(yj,yj-i\z) = F(XJ,O\Z), i.e.,
we can cancel on the left when going towards o, and Proposition 9.18(c)
yields the proposed formula. D

Note that the last argument does not in general work in the other direc-
tion, going from o to x. However, it does work in the case of random walks
on free products of groups.

Using (9.20) and the definition of Ci(z)i w e s e e that d(z) =
aizG{z)/$i(aizG(z)). For x{ e Xi, let

This function is analytic for t in a ii^(p.), as defined in §9.B. Recalling that
G(x,o\z) = F(x,o\z)G(z), we see that for x — x\ • • •£* as in Lemma 17.1
above we have

(17.2) G(x,o\z) = $(x\zG(z)), where $(x\t) = $(t) J J ^(xjla^t).

The function $(#|-) is analytic in a iig.
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To conclude the preparations, let m = m(x) be the (unique) number in
{0, . . . , d - 1} such that p(n\x, 6) > 0 only when d divides n - m. Finally,
recall the definition (9.13) and the composition formula (9.21) for # .

A. The typical case: n~3/2

By the "typical" case we intend the one of Theorem 9.22(i), when 0 is
strictly smaller than 0. The basic result of this subsection is the following.

(17.3) Theorem. Let P = Ylieiai ^>i ^e s^ronS^Y periodic with period d
on X = * Xi. Suppose &(§-) < 0. If x = xi • • • xk G X then

i€l

p{n\x, o) = - 1 = Hx) pn n-3 / 2 + O(pn n
2,/pTT

as n —» oo, n = m(x) modulo d, where p = p(P) is given by Theorem 9.22(i),
and setting ij = i(xj),

with

Before the proof, we proceed as in the previous section and study the
behaviour of G(x, o\z) near the principal singularity z = r.

(17.4) Proposition. Under the assumptions of Theorem 17.3, for each
x G X there exist a neighbourhood QJ = %JX C C of z = r and functions
A(x\z) and B(x\z) analytic in 93, such that A(x\r) = g(x), B(x\r) = h(x),
and for z G QJ \ (r , oo),

G(x,o\z) = A(x\z) — B(x\z)y/r — z.

Proof. We know from Theorem 9.22 that G(r) is finite. In (9.23) we
introduced the function T{z, w) = $(z w) — w, which is analytic in a neigh-
bourhood of (r, G(r)) and satisfies T{z, G(z)) = 0. Also, we have the
partial derivatives .Fw(r,G(r)) = 0 and fw u l ( r ,G(r)) = T2$"(0) > 0.
Therefore, the root G(r) of the function w i—> ^"(r, w) has multiplicity
2. The Weierstrass preparation theorem (see e.g. Hormander [175], Thm.
7.5.1) implies that in a neighbourhood il of (r, G(r)) we can decompose

(17.5) f(z,w) = H(z,w) (a{z) + b(z)(w - G(r)) + (w - G(r))2) ,
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where H is analytic and non-zero and a{z) and b{z) are analytic in the z-
projection 9J = 93O of il. By evaluating T, Tw , Tww and Tz at the point
(r,G(r)), we find o(r) = 6(r) = 0 and a'(r) = 20$'(<9)4/$"(6O > 0.

The decomposition (17.5) yields a quadratic equation for G{z). Its dis-
criminant d(z) = b(z)2 — 4a(z) is analytic in 53 and has a Taylor expansion
at z = r starting with 4a;(r)(r — 2;). Solving for G(z), we now get that in
93 \ (r, 00), G(z) = G(T) — \b{z) ± \ \/d(z). There are various ways to see
that the correct sign is the "—". For example, otherwise we would obtain
negative transition probabilities for large n at the end of our computations.
We can write

d(z) = 2B{Z)VT - z, with B(r) = = g(o).

B(z) = B(o\z) and A(z) = A(o\z) = G(r) - \b{z) are analytic in 93, and
we obtain

(17.6) G(z) = A(z) -

as proposed.
Next, let x € X! = Xi\ {o}. As 6 < 6 by assumption, Lemma 17.1 (a)

implies that the function 11—> $i(x\ait) is analytic near t = 0, and

ai<&'i(x\ai0) = Fl
i(x,o\ai0/$>i(ai0)) ^ ( a ^ ) / ^ ( a ^ ) 2 > 0.

In particular, t i—• $i(x\ait) is real-valued and strictly increasing for real
t near 0. Therefore the simple branching point z = rofG(2:) is also a
simple branching point of F(x,o\z) = $i(x\aizG(z)'), and we can find a
neighbourhood 93X C 93O of r and functions A^(x|z) and Bi(x\z) which are
analytic there, such that in 93X \ (r, oo)

(17.7) F(x,o\z) = Ai(x\z)-.

In particular, Ai(x\r) = $i(x\ai0) and

Bi(x\r)= lim iW<** = ai&i(x\ai0)&(0)

Now let finally x = x\ • • • Xk with Xj G X[.. Combining (17.2), (17.5)
and (17.7), we find

G(x,o\z) = (A(z) -
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Carrying out the multiplication and collecting all terms which come along
with an even or odd power of y/r — z, we obtain A(x|z) or B(x\z)y/r — z,
respectively. In particular,

B(X\T) = B(T)

and

k

£=i

as asserted. •
Proof of Theorem 17.3. We know from Theorem 9.4 that the only

singularities of G(x,o\z) on the circle \z\ = r are the points r ^ with & =
e w / d , i = o , . . . ,d - 1. We have G(x,o\z) = QG{x,o\z/£e). We can
expand B(x\z) at z = r :

B{x\z) = h(x) C(x\z)(r - zf ,

with C(x\z) analytic in 5JX. (We do not need k(x) explicitly.) Thus, for
Z/£I€%JX\(T, OO),

G(x,o\z) =

At this point we could appeal once more to singularity analysis (Theorem
16.8), but we continue in a more "old-fashioned" way. The auxiliary function

£=0

is analytic for \z\ < r, and its expansion at the origin has non-zero coeffi-
cients

h(x) p^ n

On the other hand, H(z) is three times continuously differentiate on the
circle \z\ = r, and the Riemann-Lebesgue lemma (see e.g. Olver [251], p.
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310) tells us that hn = o(pn n~3). The result now follows by observing that
X^=i £e~n = d if d divides n — m, and = 0 otherwise. •

The technique that we have used in the last proof is called the method
of Darboux: one identifies all singularities on the circle of convergence and
then subtracts part of the expansion near them, so that the remaining part
is sufficiently often differentiable on {\z\ = r } . We refer to Olver [251],
Chap. 8, §9.2 for more details. See also Polya [270].

We now present several examples of classes of random walks on groups
where Theorem 17.3. applies.

(17.8) Corollary. Let fa be irreducible probability measures on the groups
Ti, i 6 X, and \x be a convex combination of the fa on the free product
T = * IV Then

iei

as n —• oo with n = m(x) modulo d, in each of the following cases.

(a) Each Ti is finite and the fa are arbitrary, with the exception of the
case |X| = |ri | = |r2| = 2.

(b) Ti = Zdi with di < 4, and the fa have finite support, or finite
mean and finite moments of order min{di, 2}.

(c) Each Ti has polynomial growth with degree di < 4, and the fa are
symmetric with finite moments of order min{di, 2}.

(d) F is the free product of identical pieces Ti = Fo and fa = //0, with
on = 1/\I\, and \X\ > 1/(1 - *o(0o-)).

Proof, (a) We have 0 = oo and ^ (0—) = 1/|I\|, see (9.14). Therefore
£ ) = 1 + Ziiik ~ *) < °' unless IJI = lril = lr2l = 2'
(b) For d = 3,4, Corollary 13.11 and Theorem 13.12 yield that in this

case Ul(r(fa)) = oo; see (9.15.3). Therefore ^ ( ^ - ) = 0 by (9.14). For
d = 1,2, this follows from /9-recurrence (Theorem 6.1, Exercise 8.26). If
IQ G X is such that 6 = dijoii then

¥(0) = £ ( ¥ < ( < * $ ) - l ) < 0 ,
i^io

as ^i(t) < 1 for t > 0.

(c) The argument is the same as for (b), using Theorem 15.8(a) (for
di > 2) and Corollary 6.8(b) (for di = 1) instead of (13.11) and (13.12).

(d) This follows from (9.25). •
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Further examples can be obtained by combining the above four cases
in various ways. Finally, we prove another result that explains why the as-
ymptotic behaviour of Theorem 17.3 is "typical" for free products of groups.
The following is a preliminary step.

(17.9) Lemma. Let F be an arbitrary discrete group, and let S be a finite,
symmetric set of generators. If S contains an element of order > 3 (possibly
infinite), then there is a symmetric probability measure \i supported by S
such that #M(0-) < 1/2.

Proof. By assumption, there is #o £ S such that the subgroup FQ gen-
erated by XQ is cyclic of order m with 3 < m < oo. Let /io be the law of
the simple random walk on FQ, that is, Ho(xo

 1) = 1/2. Then r(/xo) = 1,
0(/j,0) = oo and ^Mo(^(//o)—) = 1/m, see (9.14) and the subsequent lines.
Again by virtue of (9.14), we can find 6 > 0 such that the denominator in
the formula for \I/Mo satisfies

oo

1 + Y,(n - l)^°[t° = n] (1 - 8)n > 2.
7 1 = 1

Now, if 5 is symmetric, generates F and contains xo, then we define \i on F
with support 5 by

For the associated function ^ and numbers r = r(//) > 1 and 6 = #(/x), we
have P£[t° = n] > P£°[t° = n](l - <5)n, whence

oo

l/tt(0) = 1 + ^ ( n - 1) P^[t° = n] rn > 2 . •
n=l

As a consequence, except for the case when |F| = 2, we can always find a
symmetric, irreducible probability measure on F with \J/(#—) < 1/2: there
must be an element of order > 2, and 5 can be chosen to contain this
element. Also, finiteness of S is not really needed in this argument.

(17.10) Corollary, (a) If F = Fi * F2, with exception of the case |Fi| =
|T21 = 2, then there is a symmetric, irreducible probability measure \x onT
for which the conclusion of Corollary 17.8 holds (with d= 1 or 2).

(b) Furthermore, if Si are symmetric generating sets of F^ (i = 1,2)
containing elements of degree > 3, then one can choose /x of the form a\ •
Mi + QJ2 • M2 with the fii supported by Si and suitable coefficients oti.

Proof. We start with (b). From Lemma 17.9 we get symmetric proba-
bilities jii supported by Si such that ^ (0 ; ) < 1/2, where Oi = 0(fii).
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(1) If 61 = 92 = 00 then we may choose a\ = a2 = 1/2. For /i =
OL\ • /ii + cx2 • /J>2 we get 6 = 00, and (9.21) yields \P(0—) < 0, as required in
Theorem 17.3.

(2) If both 61 and 02 are finite then we choose ai = 0i/(9\ + 02). Then
0 = 01/ai = 02/a2 and by (9.21), V(0) = tfi(0i) + ^2(^2) - 1 < 0.

(3) Finally, if 0\ < 00 and 02 = 00, say, then we choose a± sufficiently
small, a2 = 1 - a±, such that ^2(a20i/ai) < 1/2- Then 0 = 0±/ai and
^(fl) = ^i(6>i) + ^2(a26>i/ai) - 1 < 0.

Part (a) follows from (b), unless precisely one of the two groups, say 1^,
has order 2. In this case, we can choose \x2 arbitrarily on 1^ (different from
6O): we get 02 = 00 and ^2(^2—) — 1/2. The proof now continues as in (b),
case (1) or (3), accordingly. •

Analogously, let T = * IV Then T carries a free-sum probability mea-
i€zX

sure fj, = ^2{ c*i • \±i for which the conclusion of Corollary 17.8 holds, unless
111 = 1^1 = 1^1 = 2.

In the latter, exceptional, case, F is (isomorphic with) the infinite di-
hedral group (a, b | a2 = b2 = o), and /x must be supported in {o^a^b}.
In particular, F has an infinite cyclic subgroup of index 2, and - as /J, is
symmetric - the random walk must be recurrent by Theorem 3.24. In the
aperiodic case

(17.11) ^n){x) = Cn-1'2 +

(17.12) Exercise. Let X\ — {o, a} and X2 = {o, b} and let Pi be arbitrary
irreducible Markov chains on the Xi. Consider the free product X\ * X2

and P = a\Pi + OL2P2. Compute G(x,o\z) and the asymptotic behaviour
of p(n)(x,o). In particular, prove (17.11).

The reader is invited to consider further examples, also including free
products which do not arise from groups. As one such example, take two
Sierpinski graphs rooted at the respective origins. The simple random walk
on each of the two is null recurrent. Therefore, if X is their free product,
then the simple random walk on X satisfies the prerequisites of Theorem
17.3, and we get

p(»)(o, o) = Cpn n"3/2 + O(pn n " 5 / 2 ) ,

where p < 1. In particular, the periodic oscillations have disappeared.
Intuitively, this can be explained as follows. For the simple random walk
on Sd, the oscillations are induced by the larger and larger "holes" around
which the random walk will run very often. In the free product, the random
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walk spends only a finite amount of time in each of the infinitely many copies
of the Sd used to build up X, and in the asymptotics, the information
regarding the holes is lost.

B. Instability of the exponent
If we consider the Euclidean case, i.e., random walks on Zd, then we

know that every irreducible probability measure with finite support satisfies
a local limit theorem of the form pSn\o) ~ Cp(//)nn~d/2, if n is divisible
by the period of \x. While p depends on fj,, the exponent — d/2 relies only on
the underlying group. An analogous phenomenon will be found in Section
18 for finitely supported random walks on free groups. Of course one cannot
expect stability of the exponent when considering random walks that do not
have finite range or a finite exponential moment. Indeed, on Zd the local
limit theorem is closely connected with the domain of attraction to which
the probability measure /i belongs; see Rvaceva [283]. However, one might
be tempted to believe that the following holds for any finitely generated
group F: if ii^n\o) ~ C p{p)n n~x for some irreducible, aperiodic, finitely
supported probability measure on F, then it holds - with the same A - for
every other /J, of that type. In this subsection we shall exhibit an example,
due to Cartwright, which shows that this conjecture is wrong. To wit, we
show the following.

(17.13) Theorem. For d > 5, the simple random walk on Zd *Zd satisfies

li{2n) (o) - C p{ii)2n n~d/2 as n -> oo .

By the simple random walk we mean of course the random walk on the
Cayley graph of Zd * Zd with respect to the natural generators and their in-
verses, as considered in (9.25.3). Now we know from Corollary 17.10(b) that
there is another symmetric probability measure ft with the same support as
/x, but with

p,(2n\o) ~ C p(ji)2n n~3/2 asn-+oo.
In particular, fi and ft have equivalent Dirichlet forms, and we see that
comparison of the forms cannot be used to detect a term such as n~A, once
the spectral radius is strictly less than 1. Note that this is not in contrast
with the results on the asymptotic type of Section 14.

We start with some preparatory observations regarding the free product
of identical pieces, as studied in (9.25). Here we suppose that the number
of factors is 2 (but everything extends immediately to M > 3), and that the
identical factors are given by a group Fo and a probability measure /xo- As
before, we write \i for the resulting probability measure on the free product
F = Fo * Fo. Also, r0 = l/p(Mo), r = 1/P(AO, and 6 = 0(/x) = rG(r). For
the rest, we use the same notation as in (9.25). We are interested in the
"degenerate" case tf (0) > 0 of Theorem 9.22(ii).
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(17.14) Lemma. Suppose that /io is symmetric and p-transient, and that
90) > 1/2 (so that 0 = 200). Then

(b) for all z in C with z fi (—oo , —r) U (—oo, — r),

*G(z)

(c) G'(r-) = E ^ i ^ ^ W r 7 1 " 1 < oo, and for \z\ < r,

G{z) = G(r) + G'(r-)(r - z) + o(r - z) as z -> r .

Proof, (a) Recall that $(t) = 2$0(£/2) - 1- T n u s bY (9-12)

rG(r) _ 6 _ 2(9Q _
1 + G(r) ~~ 1 + $(0) ~ 2$o(#o) ~ r ° '

(b) Next recall also that 3>o(£) = t/Vo(t), where Vo(t) is the inverse
function of WQ(Z) = zGo(z) for z in a neighbourhood ilr0 of the interval
[0, r 0 ) . We have from Theorem 9.19

G(z) + 1 = 2$o{zG(z)/2) = zG(z)/V0(zG(z)/2) .

With a little algebra, we obtain the required identity, valid in ilr0 •
Now observe that WQ{1/Z) is a diagonal matrix element of the resolvent

of P^o (the transition operator given by /JLQ) on £2(Zd). It must be analytic
outside the spectrum (see Dunford and Schwarz [107]), which by symmetry
is contained in [—p(//o) ? P(A*O)]- Thus, G0(z) is analytic i n C \ { z € l : \z\ >
ro}-

In the same way, G(z) is analytic in C \ {z G R : \z\ > r } . Also, if m
is the spectral or Plancherel measure associated with PM (i.e., the diagonal
element at o of the resolution of the identity — see [107] once more), then

(17.15) G(z) = I —^— dm(t).
J—p(fji) -̂  %t

From this formula we see that Im(l/z) and Im(l/G(z)) have the same
sign. In particular, when z is strictly complex then zG(z)/(l + G(z))
is also strictly complex. On the other hand, we know from (a) that
zG{z)/(l + G{z)) G [-r0 , r0] when z G [-r , r]. Therefore (b) holds by
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analytic continuation in the whole complex plane with the exception of
(—00, —r) and ( r , 00).

(c) For 0 < z < r, we differentiate the equation G(z) = ${zG(z))

and find G'(z) = G(z) &(zG(z)) j(l - z&(zG{z))}. Now V(0) > 0 by

assumption, so that $'(rG(r)) < 1/r. Consequently,

00

\G'{z)\ < ^ n ^ n ) ( o ) r n - 1 = G' ( r - ) < 00 for \z\ < r. D
n=0

For proving Theorem 17.13, we also need the following result, which, like
Theorem 15.16, belongs to the realm of Section 13.

(17.16) Proposition. The Green function Gd{z) = Gd(O,O\z) of the sim-
ple random walk on Zd (d > 1) has a singular expansion near z = 1 of the
form

f(z) + g(z) (1 - z)(d~2)/2 , ifd is odd,

f(z) -r g(z) (1 - z)^-2^2 log(l - z), ifd is even,

where f and g, depending on d, are analytic in a neighbourhood of 1 and

Proof. We proceed as in (17.15) and write

(17.17) Gd(z) = [
- l 1 — Zl

(17.18) Exercise. Show that the exponential generating function

n=0

satisfies Ed(z) = Ei(z/d)d. (Consider the e.g.f. of a Cartesian product of
two Markov chains.)

Continuing the proof of (17.16), we now see that m^ is the n-th convo-
lution power of mi, rescaled to the interval [—1, 1] by a factor of d. Now,
Sd(z) — Gd(l/z)/z is the Stieltjes transform of the measure m^, and the
distribution function of the measure is found via the inversion formula

( ( ( *)) + t n d ( ( - o o , t])j = - lira / lm(Sd(x - iy)) dx.
/ 7T y—>-0+ t / _ o o



192 /// . The asymptotic behaviour of transition probabilities

See Dunford and Schwarz [107], Th. X.6.1, or (in the context of continued
fractions) Wall [335]. Prom Lemma 1.24, we know that Gi{z) = l/y/l-z2.
The standard version of the square root is analytic in C \ (—oo , 0], and takes
all values in the right half plane. Thus, S\(z) = signRe(z)/\/2;2 - 1 for
z G C \ [— 1, 1]. The inversion formula now yields after a short computation
that mi has density

with respect to Lebesgue measure. Thus m^ has density fd(t) = df[ \dt).
We now prove the following. For 1 — e < t < d,

(17.19) U(t) = (l-t)^d-2^9d(t),

where $d is a real-analytic function in a neighbourhood of 1, and 0d(l) ¥" 0-
We set f(t) = fi(l — t) and show by induction on d that for 0 < t < e one

has fd)(t) = £(d~2)/2§<*(£) with gd real-analytic near 0 and gd(0) ^ 0. This is
obvious for d = 1. Suppose it is true for d. We write Qd(t) = S ^ o an(d) tn .
Then for small £, using the substitution y = tu in the second step,

ft

Jo

t(d-D/2
J° m,n=0

Now /0 u"H-(d-2)/2(X _ u)
n~xl2 du = B(m+ d/2, n +1/2) < TT, where £(•, •)

is the beta function, so that we may exchange summation and integration to
find gd_K as proposed. In particular, gd+i(O) = gd(0)gi(0)£(d/2,1/2) ^ 0.

This proves (17.19). For the rest, we may assume d>2. Again, we write
gd(t) — ]C^Lo an(d) (1 — t)n . Now we use (17.17), splitting the integral into
J_~£ and J1_£- The first part is analytic near 1, and the second becomes

^2°_ f1 (I _ 4\n+{d-2)/2
(17.20) Y^an(d) dt-

n=0 ^1~£ ~ Z

(Exchanging integral and summation is justified by dominated convergence
when z ^ [1, oo) and e is sufficiently small.) The integrals appearing in
(17.20) are of the form Ik(z) = f^_£((l - t)k+6/(l - zt)) dt, where 6 = 0 or
1/2 according to the parity of d, and k > 0. Now

\ log(l - (1 - e)z) - \ log(l - z), if d is even,
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and Ik(z) = —^^-Ik-i(z) + \§k+$- Note that y^r arctan JIff- extends
analytically to a neighbourhood of 1. The rest is an elementary exercise: one
inserts the solution of the recursion into (17.20) and checks convergence. •

Proof of Theorem 17.13. In the sequel, we always assume \z\ < r.
The notation Oc{(r — z)h) will indicate that this term, divided by (r — z)k,
has a limit when z —> r. Let L — f^y2-]. We shall show that for z near r
with \z\ < r,

L

(17.21) G(z) = Y^9k(r~z)k + R(z) + Oc((r - z)L+1) , where
k=0

= f (cd + ci (r - s))(r " * ) ( d " 2 ) / 2 , if d is odd,

~ \ (co + ci (r - z)) (r - z)^'2^2 log(r - *) , if d is even,

unless d = 6, in which case there is an additional term ci(r — z)3 Iog2(r — z)
in i?(z). The coefficients depend on d, and CQ ^ 0.

As the random walk has period 2, we have G(—z) = G(z), and besides
±r , there are no singularities on {\z\ — r } , by (17.15). We can then apply
Darboux's method once more: R(—z) is the term in the expansion near —r
analogous to R(z). The Taylor coefficients at z = 0 of R(z)-\-R(—z) have the
asymptotic behaviour asserted for ^Sn\o). The Riemann-Lebesgue lemma
applied to G(z) — R(z) — R(—z) shows that the remainder is o(p(//)n n~dlT)
as n —> oo, concluding the proof.

We are left with having to prove (17.21). It will be convenient to consider
the function B(z) = G(z)/(l + G(z)) instead of G(z), that is, G(z) + 1 =
l / ( l — B(z)). In particular, we have TB(T) = 1 by Lemma 17.14(a).

As 0 < B(r) < 1, we see that G(z) will have an expansion as asserted
in (17.21), if B(z) has an analogous expansion, with coefficients (say) bk
instead of gk and do, d\ instead of Co, c\. The equation of Lemma 17.14(b)
becomes

(17.22) (l-B(z))G0{zB(z)) = 1/2.

We now use Proposition 17.16, writing GQ(Z) = ]Cfc=o ak0- — z
where

(17.23) E0(z) =(e0 + ei(l - z)) (1 - z)^^2 logK(l - z)

+ aL{l-z)L + Oc((l-z)L+1),

with hi — 0 if d is odd, and K = 1 if d is even.
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We inductively determine bo,..., &L-I such that for £ < L — 1 one has

i

(17.24) B(z) = ̂ 2bk(r-z)k + Bi(z), where Be(z) = o((r - z)£) .

For £ = 1 this follows from Lemma 17.14(c), and as ri3(r) = 1, we get
that 1 — zB(z) = Oc(r — z) for \z\ < r. In particular, we obtain that
E0(zB(z)) = Oc((r - z)(d"2)/2 log*(r - z)) . Now suppose that (17.24)
holds for some I < L - 1. Then 1 - ^B(z) = (r - z)Pt(z) - z Bt(z)
and (1 - zB(z))k = (r - z)kP£(z)k + o((r - * ) m ) for fc > 2, where

Pe(z) = Yl£jZo(bJ ~ Thj+i) ( r ~ z)j + bi(r- z)£. We substitute this into
(17.22) and bring all polynomial terms to the right. This yields the equation

(17.25) ao B£(z) + (1-b0) E0(zB{z)) + o ( ( r - ^ + 1 )

k=0 ) k=0

witha0 = - a o - a i ( l - & o ) r = -G?
o(l)+Gfo(l)(r-1). Differentiating (17.22)

and letting z -> r - , we find that a0 B'(r) + (l - 5(r)),B(r)Gfo(l) = 0. As
0 < Bf(r) < oo, it must be that a0 < 0. We note here also that /30 = ^ ( r )
is equal to B(r) + r 5 ' ( r ) > 0.

The left hand side of (17.25) is o((r - z)1). Therefore the polynomial
in (r — z) on the right hand side must start with a power larger than L
Consequently Bt{z) = Oc((r - z)i+1), and (17.24) also holds for £+1.

For the rest of the proof, we consider (17.24)-(17.25) with £ = L - 1. A
better use of (17.23) yields

Eo(zB(z)) = e0 (po(r-z)){d-2)/2 log-(r-^)+o((r-^)(d-2)/2 logK(r-z)) .

We substitute this into (17.25) and obtain

(17.26) BL.x{z) = do(x- z)(d-2>/2 logK(r - z) + CL{z),

d0 = - ( 1 - bo)eoP
{
o
d-2)/2/ao and CL(z) = o((r - z)<<*-2)/2 logK(r - z)) .

Next, if d is odd (ft = 0), then we introduce the new variable u — y/r — z
and continue by precisely the same method, extending (17.24) stepwise by
the next power of u and carrying all polynomial terms to the right hand
side of the equation obtained from (17.22), as in (17.25). Comparing the
error terms that remain on the left, we first find &£ (the coefficient of u2L =
(r - z)L), and then dx (the coefficient of u2L+1 = (r - z)d/2).
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If d is even, then we do not change the variable. The procedure is similar,
but more tedious. We first find 6L : via the binomial theorem, (17.26) yields
(1 - zB(z))L = ((r - z) PL-I(Z))L + Oc{(r - z)L+l log(r - z)) and

(17.27) log(l - zB(z)) = log(r - z) + log A,

+ Oc(max{(|r - z\, |(r - z)1-1 log(r - z)\}).

Consequently

Eo(zB(z)) = eo/3o
L(r - z)L log(r - z) + /0/30

L(r - z)L + o((r - z)L)

with /o = CLL + eo log/?o- Once again substituting this into (17.24), we find
that Q;O CL(Z) + o((r — z)L) is a polynomial in (r — z). We see that this must
be divisible by (r — z)L. Therefore CL(Z) = Oc((r — z)L), and comparing
coefficients on left and right, one obtains &£.

We now have B(z) = E L o h{r - z)k + DL W + BL(z) with L>L(z) =
do(r - z)L log(r - s) and 5L(^) = o((r - z)L).

For the rest, the case L = 2 (d = 6) has to be treated separately because
of the "max" in (17.27). We invite the reader to do this as an exercise. So
let L > 3. We restart, writing 1 - zB(z) = (r - z)PL{z) - zDL{z) - zBL(z)
and (l-zB(z))2 = (r-z)2PL(z)2-2f3OT{r-z)DL(z) + o({T-z)L^1) , while
for k > 3, we find (l - zB(z))k = (r-z)kPL(z)k+ o((r-z)L+2log(r-z)) .
We substitute these expansions into (17.22) and find an equation of the
form (&()#£ (z) + a constant times (r — z ) L + 1 log(r — z) + a remainder
term o((r — z)L+1) ) = (a polynomial in (r — z) ). Prom this we obtain
BL(z) = di (r - z)L+1 log(r - z) + Oc((r - z)L + 1) , which concludes the
proof. •

18. Intermezzo: Cartesian products

For Cartesian products of Markov chains, as defined in §4.B, it is rather
easy to obtain a local limit theorem from the asymptotic behaviour of each
of the factors.

(18.1) Proposition. Let (an) and (6n) be two non-negative sequences such
that an rsj C\ pi nXl and bn ~ C<i pj nX2 when n —> oo, with Ci,pi > 0 and
Xi e R. Then for 0 < t < 1,

n / \

-SO
where p = t p\ + (1 — t)p2 and C > 0.

Proof. We set 6 = tp1/p. Choose e > 0, e < min{<9, 1-9}. Let n be
large enough that 1 — e < a^j'(C\ pk kXl) < 1 + e, and analogously for &/-,
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for all k that satisfy |£ —0\ < e. We write c n / (p nn A l + A 2 ) = qn + rn, where
qn is the sum over those fc, and rn is the rest. Then

where Xn is a binomial random variable with parameters n and 0. There
is an analogous lower bound, changing sign in front of all occurrences of e.
By Chebyshev's inequality, the probability tends to 1 as n —> oo. So what
is left is to show that rn —> 0.

Let £i = -min{0, [Xi\}. We split rn = r'n + rj[, where r^ is the part
corresponding to k = 0 together with k — n. It is straightforward to see
that r^ —> 0. For the remaining part, we can find a bound M such that

fc=l

We have (£) < (^) < f+i ' ' 8f+fj-- In the same way, ( ^
^ ^ T ' *' *£%&- Using the formula s±l(J) - (^+1

1), we obtain

n - l

fe=l

M
>£ ,

where Xn+^1+^2 is binomial with parameters n + £i+£2 and 0. Once more
by Chebyshev's inequality, this probability tends to 0 as n —• oo. •

This result has an immediate application to random walks. Indeed, if
(Xi,Pi) and (X2,P2) are two Markov chains, and

P = cPx (8) I2 + (1 - c) h <g) P2

is a Cartesian product of the two, then

(18.2) p^\xlx2,yly2) = £ ( " V p ^ i , j/i) (1 - c)
fe=o V K /

n~k
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This yields the simplest proof of Polya's classical result that the simple
random walk on Zd satisfies p(2n)(0,0) ~ Gdn~d/2. For dimension d = 1,
we know that it is true. The simple random walk in d dimensions is a
Cartesian product of d copies of the simple random walk on Z, so that we
can apply Proposition 18.1.

Many other examples can be easily constructed. Let us consider one of
them, namely the graph C^ xZ, where C^ is the comb lattice in dimension d,
as considered in (2.21). We shall use Proposition 18.1 to prove the following.

(18.3) Theorem. For d>2, the simple random walk on Cd x Z is tran-
sient.

We first remark that this is not straightforward by use of the tools that
we have at our disposal from Chapter 1. Our graph satisfies IS2 by Theorem
4.10, but does not satisfy IS2+£ for any e > 0. Also note that Cd x Z is
a slight "fattening" of Cd+i- One (non-trivial) approach is to construct a
finite energy flow from o to 00; see Markvorsen, McGuinness and Thomassen
[226].

Here, we shall derive a local limit theorem for the Cartesian product
(with c = 1/2, say) of the simple random walks on the two factors. As C^
is not regular, the simple random walk on Cd x Z cannot be obtained in this
way. However, the Dirichlet form associated with the latter is equivalent to
the one corresponding to the former (i.e., D2(•) > £1 -Di(-) and vice versa -
see Theorems 3.1-3.2), and we can apply Corollary 2.14.

(18.4) Proposition. The simple random walk on Cd satisfies

Proof. We can construct C^ by taking the two-way-infinite path Z and
countably many copies of C^-i; at each point of Z we attach a copy of C^-i
by its origin. (That is, Z is a "spit" running through the centres of all the
copies of Cd_i.) We write k = (/c,0,... ,0) for the points in C^ situated
on the "spit" Z. Let Ud(z) = Ud(0,0\z) and Fd{z) = Fd(l ,0|z) for the
generating functions (1.12) of the first return probabilities to the origin 0,
and (1.11) of the first passage probabilities from 1 to 0 in Cd, respectively.
By Lemma 1.23 and the translation invariance of the random walk along
Z, we have Fd(2,0\z) = Fd(z)2. Therefore, use of Lemma 1.13 yields the
following equations.
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In the first equation, the first term on the right corresponds to going from 1
to 0 at the first step, the second term corresponds to first taking a "detour"
into the copy of Gd-i attached at 1 until the first return to 1 and then
restarting once more at 1, and the third term corresponds to first going from
1 to 2 and continuing from there until reaching 0. The second equation is
obtained in a similar way (staying in the copy of C^-i attached at 0, or
first moving to ±1).

We now eliminate Fd{z) from the two equations and replace Ud(z) with
1 — 1/Gd(z), where Gd(z) = G(0,0\z) on C^. It is then convenient to intro-
duce the auxiliary function Hd(z) — d/Gd{z) = d — dUd(z). We obtain the
recurrence relation Hd{z)2 = (l + Hd-i{z))2-z2. Recall that p^(0,0) = 0
when n is odd, and that Gd{z) cannot have any singularities on the circle
of convergence {\z\ = 1} besides dbl. We replace z by y/z, that is, we con-
sider the functions Gd(z) = ^2np

{2n)(0,0) zn and ~Hd{z) = d/Gd(z). Thus
we only have to consider the singularity z = 1. The recurrence relation
becomes

(18.5) Hd(z)2 = (l + Hd.1(z))2-z.

We know from Lemma 1.24 that H\(z) — y/1 — z. Therefore each Hd(z)
is algebraic, and z = 1 is an algebraic singularity. Also, Hd(l) = 0 by
recurrence of the simple random walk. Therefore it admits an expansion as
a convergent Puiseux series

Hd(z) = ad (1 - *)« + f ] ad(n) (1 - *)««<">,
n=l

valid in a neighbourhood of z = 1 with the exception of [1, oo), where
Qd < ^d(l) < Qd(%) < • • • is a discrete sequence of rational numbers and
ad ^ 0 (see e.g. Dimca [97], p.p. 177-179). We have qx = 1/2 and ax = 1.
Inserting the expansion into (18.5), we can determine recursively qd and a^
by comparing the lowest exponents on the left and right hand sides. We
find 2qd = qd-i and a\ — 2ad-i, that is, qd = 2~d and ad = 21"2 . We
now obtain

Gd(z) = d2~1 + 2 l~d(l - z)~2~d + higher order terms,

where the latter form again a discrete series in increasing rational pow-
ers of (1 — z). This is a case where Darboux's theorem applies immedi-
ately (singularity analysis might also be used), yielding that p(2n)(0,0) is
asymptotically equivalent with the coefficients in the expansion at z — 0 of
d2-1+2l-d(l-z)-2~d. D
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(18.6) Corollary. If P is defined on C^ x Z as a Cartesian product of the
simple random walks on C^ and Z, respectively, then

In particular, P is transient for d>2.

19. Free groups and homogeneous trees

The free group ¥M and the group F = (a i , . . . , a ^ \ °H = °) have the
homogeneous tree (with degree 2M and M, respectively) as their Cayley
graphs. Both are free products, and Corollary 17.8(a,b) applies. For the
case of nearest neighbour random walks, explicit formulae for $(t) were
given in (9.29). Furthermore, on F M , we obtain the asymptotic behaviour
of Corollary 17.8 whenever \x is supported in the set of all integer powers
of the free generators and either has some exponential moment or has finite
first moment and zero mean over each subgroup (a*) ~ Z. In this section
we study the following questions: what is the local limit theorem when \i
does not arise as a free sum? In §B we shall give the answer for the case
when fj, has arbitrary finite support, and in §C we shall consider random
walks whose transition probabilities depend only on the distances between
the points. The simple random walk on T M is the simplest example of
this type. For random walks in Zd, the local central limit theorem gave
us asymptotic estimates that are uniform in space and time over a certain
range. In § A we study the analogous question for a variant of simple random
walk on the tree.

A. Space-time asymptotics for aperiodic
simple random walks on TM

Instead of the simple random walk, we shall study here the random walk
onT = T M whose transition probabilities are

p{x,x) = 1/2 and p(x,y) = 1/(2M) when y ~ x.

The only reason for this choice is that we obtain an aperiodic random walk,
so that we do not have to distinguish parities. The modifications needed
for obtaining the analogous results for the "pure" simple random walk are
straightforward.

The transition probabilities depend only on the distance, so that it is
sufficient to consider p(n\o, x). As usual, we write \x\ = d(x,o). With
direct calculations, or combining Lemmas 1.24 and 9.2, we get

(19.1) G(o,x\z) = G(z) F(z)W , where
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*(*) = jK&r, ((1 - \*) - \/(l - *A)(1 - Z/B)) and

1 / /T"7 \ 1

Here, r = p(P)~1 is the radius of convergence (principal singularity) of
G(o, x\z). We now use Cauchy's integral formula to write

dz >2TH ~Z~ e x p ( n ( a

where a = \x\/n and C is a positively oriented, simple closed curve in C
which has 0 in its interior and r in its exterior. We define for a G [0, 1]

(19.3) (f(a) = min{a log F(z) - logz : 0 < z < r} .

The minimum is attained at

z(a) = (M^2)2 (M-w(a)) , where w(a) = \/M2a2 + 4(M - 1)(1 - a2).

In particular, z(0) = r, z(l) = 0, and ip is strictly decreasing, with (p(0) =
- l o g r and <p(l) = — log(2M).

(19.4) Theorem. As n —>• oo, we have uniformly in |x| < (1 — c)n with
c> 0

P(n)(^) ~ B(\x\/n)

wiiere 5(a) = MG(z(a)) j\J2TT(M - w(a))w(a).

Proof. We subdivide the proof according to the two ranges a < a < 1—c
and a < a. We start with the first of the two; the choice of a will become
evident in the second part.

Case 1. For a G [a, 1 — c], the values z{a) lie in some interval [a, r — c]
with a,c > 0. We now choose the integration contour C = {z(a)elt : £ G
(—7T, TT]}. The function tpa(t) — a log F(z(a)elt) — log(z(o;)e^) has deriva-
tives ipf

a(0) = 0 and tpa(0) = -z(a)w(a)/(2Ma2) and Taylor expansion
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The remainder term R(a, t)/t2 is continuous in [a, 1 - c] x [-n , TT], so that
R(a,t) = o(t2) uniformly as t —> 0, when a G [a, 1 — c]. In particular, we
can find 7 > 0 such that \R(a,t)\ < - ^ ( 0 ) £ 2 / 4 for all t G [ -7 ,7] . We
decompose the integral in (19.2), rewritten in terms of the variable t, into
the parts where |t| < 7 and 7 < \t\ < TT, respectively. The second part
becomes

J_encp(a) f
T\Ol

which is bounded in absolute value by enip(a) G(r) An, where A =
max{(|F(2:)|/F(|2:|))a : \z\ G [a, r - c], |arg(z)| > 7 } . Now, in {|z| < r} ,
the power series defining F(z) has all coefficients strictly positive (for n > 1),
and |-F(z)| < i^d^l) strictly, when z is not in [0, r]. (This is the clou of
this "saddle point" technique: that z(a) minimizes \F(z)a/z\ over [0, r],
but maximizes the same function over the circle {\z\ = z(a)}.) Therefore
A < 1, which will be seen to imply that the integral over 7 < \t\ < TT is
asymptotically negligible in comparison with the one over [—7, 7]. The
latter is

-nR(a,t)^G(z(a)eit)dt.

We substitute 9 = t\ln^S4j^- = ty/nbla) to rewrite this as

^n-1'2
2irb(a)

x / exp \-k0 +nR(a, Jt( J —^ . N d6.
J— ̂ /nb{a)~f x ' Ksr\4'\uc))

Due to our choice of 7, we can bound the integrand in absolute value by
exp(— ̂ -) . Thus we can apply Lebesgue's theorem (dominated convergence)
to see that the last integral tends to fRe~e ^2 dO uniformly in a. We have
obtained

p ( o , * ) / en
y/n z(a) w(a)/M

uniformly as n —> 00 and a = -^ G [a, 1 — c]. In this range, 1 + ^^^ |^ | ~
^ a n , and the result follows.

Case 2. If a < a and z(a) is close to the singularity r of F(z), the
above technique does not work. The substitution u = y/r — z will make the
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singularity disappear. We shall integrate along the segment u = u(a) — it
for t G [—7, 7], where u(a) = yjr — z(a). The number 7 will be chosen
below, and does in turn imply the choice of a. In ^-coordinates, the line
segment transforms into the parabola piece

z = z{a, i) = z(a) + t2 + lit u(a), |t| < 7.
Pick some (small) e0 > 0, and choose a such that |z(a:,7)| > r + £0 for all
a < a (this is possible because z(a) —• r as a —> 0). Recall that on the
other hand, r — c < z(a) < r.

Figure 15: the integration
contours in Cases 1 and 2
The dashed circle is \z\ = r.

Now observe that F(z) and G(z) are analytic in C \ [r, s]. Therefore
we may chose as integration contour C in (19.2) the parabola piece together
with the arc {\z\ = \z(a,^y)\, |arg(z)| > arg(z(a,7))}; see Figure 15. This
contour depends on a, but remains in a bounded region of the plane, where
F(z) and G(z) are bounded by some constant C > 1. Therefore the integral
(19.2), taken over the arc only, is bounded above in absolute value by

C
F(T-C)J r + £0*

If we choose a small enough so that A < 1, this will be asymptotically
negligible as compared with the integral over the parabola piece. After our
change of variable, the latter is

(19.5) - T
7T J —

(u{a) - it) dt, where

= a logF

We compute u(a)2 = r - z(a) = - and = -b(a)2 with

b{af =
2(r - z(a))w(a)

Ma2 z(a)
The latter tends to the non-zero limit 2/r as a —> 0. Writing ipa(t) =
<p(a) — ̂ (b(a)t) +R(a, t), we see as above that R(a, t) = o(t2)t-+o uniformly
for a € [0, 1 - c]. We finally can choose 7 such that |i?(a,£)| < (b(a)t) /4
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for all t G [—7, 7] and all a G [0 , 1 — c]. Proceeding as above, we substitute
0 = y/nb(a)t. Now, if a —> 0, both real and imaginary parts of the last
factor in the integral (19.5) tend to 0. This last factor is

u(a) - itn , where tn = tn(0, a) = .
y/nb(a)

Therefore we have to consider two subcases.
Case 2.A. If a > n"1/4 then u(a) — itn ~ u(a) uniformly in a for each

0, as n —• 00. Also, G(z(a,tn))/z(a,tn) ~ G(z(a))/z(a). We proceed as
in Case 1 and find

y/n z{a) b{a)

which by a few elementary computations transforms into the proposed
asymptotics.

Case 2.B. We now assume a < n"1/4. First, we refine R(a,t) =
j^'(O)*3 + O(t4). Also, ^ ; (0) = O(a), so that R(a,t) = t3(O{a) +
O(t)) . Note that, p(n\o,x) being real, we are only interested in the real
part of the integrals (19.2) and (19.5). We decompose R(a,t) = Ro(a,t) +
iRi(a,t) (real and imaginary parts). We have nt^ = tn6

2/6(a)2, whence

eos(nl?i(<Mn)) ~ 1, sin(nBi(a,tn)) ~nfli(a,tn)) =

Also, by (19.1), we can write G{z)/z = ^(z) + ^ r - zK(z), with f/"(̂ )
and K{z) analytic in {0 < Re(z) < s}, H(r) = G(r)/r and iiT(r) ^ 0.
Decomposing if(z) = H0(z) + iHi(z) and K(z) = K0(z) + iKi(z), both
^1(2:) and Ki(z) are O(|r—z|) as z —»> r, and with our substitution y/r — z =
u(a) — itn, this becomes (9(^(a)2 +12).

We now calculate the real part of the integrand of (19.5). It starts with
exp(ri(p(a) — \02 + nRo(a,tn)). In the remaining factor,

with zn = z(a,tn), we find that the real part is

u(a) H0(zn) - t2
n K0{zn) + o(a) + o(t2

n)

We may as well replace z(a) with its limit r, and in particular, we com-

pute H(r) = 2ffigg and Jf(r) = - 2 M ^ ) ^ T - Remembering that
= \/27r5 we use dominated convergence to obtain
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Once more, this transforms into the proposed formula after some elementary-
calculations. •

In order to compare Theorem 19.4 with the Gaussian estimate (14.12)
and in particular with the local limit theorem in the grid, (13.11), let us
consider the range \x\/y/n < C. Then a = \x\/n —• 0. We compute
the first and second (right) derivatives of ip at 0 and find the expansion
(p(a) = - log r - a log JW^l - cM a2 + (9(a3), where cM =
Inserting this into the asymptotic estimate, we obtain

(19.6) p{n){o,x)

uniformly for \x\/y/n bounded. Regarding the full range 0 < \x\/n < 1, we
have the following simple estimate that will be useful in §28.B.

(19.7) Lemma. lim sup pM(o,x)1/n exp(-(p(\x\/n)) = 1.
n-*°°\x\<n

Proof. The limit, if it exists, cannot be < 1 (set x = o). For showing
that it is < 1, we use the simple estimate p(n\o,x) < (|"|)^'(0)|x |. Indeed,
F'(0) = p(x,y) for any edge [x,y], and the random walk has to cross each
of the |a; | edges on TT(O, X) on its way from o to x. The binomial coefficient
stands for the different choices of the instants when each of these crossings
occurs for the first time. We have (.̂ ,) n < e£/2 when n —> oo and \x\/n >
1 — 6£. Using F(z(a)) = az{a)F'(z{a)), with a = \x\/n, we get

F/(0)aexp(-Vp(a)) - exp f - a log a + (1 - a) log z(a) -

which tends to 1 as a —• 1. Thus, if e > 0 then the last expression is < e£/2

if \x\/n > 1 — 6£ with a suitable choice of 6£.
The estimate of Theorem 19.4 yields that for \x\/n < 1 - 6e, we have

also p(n\o, x)1/nexp(—(p(\x\/n) < e£ when n —> oo. •

Finally, we remark that the method used in Theorem 19.4 works also in
the case M = 2, that is, on Z. In this case, r = 1 and G(z) = l / \ / l — z,
which causes slight changes in the (easier) computations and the n ' 1 / 2 in
place of n~3/2. Without going through all the details again, we state the
corresponding result, which can also be derived more combinatorially.
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(19.8) Theorem. Consider the random walk on Z with p(k, k ± 1) = 1/4
and p(k,k) = 1/2. As n —> oo, we have uniformly in \k\ < (1 — c)n with
c> 0

p(n)(0,fc) - £(|ifc|/n) exp(n<p(|ife|/n)) n~1/2 , where

= - ((1 - P) log(l - /?) + (1 + p) log(l + /?)) and

Noting that (^(0) = ^'(0) = 0, one recovers the asymptotic estimate of
Corollary 13.11 when \k\/y/n is bounded. Also, Lemma 19.7 remains valid
on Z without any change.

B. Finite range random walks on free groups
Let ¥M — ( a i , . . . , aM | ) be the free group on M > 2 generators. In this

subsection we shall prove the following general local limit theorem.

(19.9) Theorem. Let \x be a finitely supported, irreducible and aperiodic
probability measure on ¥M • Then as n —> oc

We shall need several preliminary steps. We write d(x, y) for the distance
in the Cayley graph T = T2M of ¥M with respect to 5 = {af1 , . . . , a^1 },
and \x\ = d(x,o). Also, n(x,y) is the geodesic arc in T between x and y.
Let N be the smallest integer such that supp fi is contained in B = B(o, N),
so that B(x, N) = xB.

(19.10) Exercise. IfwE 7t(x,y) then the random walk starting at x has
to pass through wB before reaching y.

For every y G F M define the stopping time sy{= syB) = inf{n > 0 :
Zn e yB} and forx^y the matrix Hx,y(z) = (Hx,y(xa,yb\z))a h£B with

HXtV{xa,yb\z) = Exa(z
sy 6yb{ZSy)), z € C.

This is a power series with n-th coefficient hx
n]j(xa,yb) < f(n\xa,yb) <

p(n\xa,yb), so that it certainly converges for \z\ < r = 1/p{P). Recall that
the Green function converges at z = r by Theorem 7.8 - this fact will be
important. Let B* = B\ {0} and consider the column vectors

F*(z) = (F(b,o\z))beB,, F(z)=(F(b,o\z))beB, and eo = {6o(b))beB.
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(Recall that F(o, o\z) = 1.) Also, we define a column vector and square
matrix over B* by

A(z) = {M(b,o\z))h£Bm and M(z) = (M(a,b\z))a^B. , where

M(a,b\z)=fi(a-Ib)z+ Yl ^a~1x)z HXiO(x,b\z).
x£aB\B

As usual, we write G(z) = G(x, x\z), which is independent of x. Using Exer-
cise 19.10, we now obtain the following system of equations for determining
G(o,x\z) and the other generating functions involved.

(19.11) Proposition. Ifx,y G ¥M and ir(x,y) = [x = #o,#i , . . . ,Xk = y]
thenthen

(a) G(x,y\z)=F(x,y\z)G(z);

(b) G(z) = l + z (/x(o) + J2 M&) F(b, o\z)) G(z);
beB*

(c) F(x,y\z)=eo-Hx<y(z)F(z);
(d)

(e)

{ y ) i f x a e y B ,

J2 V>(p!)z Hxa,y(xaa', yb\z), otherwise.

Proof. Statements (a) and (b) are part of Lemma 1.13, and (c) follows
from Exercise 19.10 and the fact that F(yb, y\z) = F(b,o\z). Also (e) is
immediate from Exercise 19.10.

To see (d), we condition on the instant of the first return to B, which
may occur at the first step (giving rise to the first term of M(a, b\z)) or
after time 1, so that the first step goes to the exterior of B (giving rise
to the second term). Also, A(z) and Ai(z) correspond to the first return
taking place at o and in J3*, respectively. Indeed, M(a, b\z) is a power series
whose n-th coefficient is the probability that for the random walk starting
at a € B*, the first return to B occurs at time n at the point b.

Similarly, to see (f) in the non-degenerate case, we condition on the first
step, which goes from xa to some xao! 6 xaB. •

Note that by group invariance Hx,y(xa,yb\z) = Ho^x-iy(a,x~1yb\z), so
that each of the terms Hxa(xaa', yb\z) occurring in the right hand side of (f)
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is by virtue of (e) a matrix element in a product of at most N + l matrices
from {Ho,v{z) '• v G S}. We eliminate the constant ones (with value 0 or
1) among them, and write Hi(z), i G 1 = {1 , . . . , «} , for the non-constant
ones among the matrix elements of all the Ho,v{z), v G S.

Consequently, for any fixed x G F M , Proposition 19.11 provides a finite
system of equations, each of which is of the form (unknown function) = (a
polynomial with non-negative coefficients in z and the unknown functions).
Given this explicit form of the equations, "elimination theory" of algebraic
geometry implies that each function involved is algebraic, i.e., satisfies a
polynomial equation Q(z,f{z)) = 0, see van der Waerden [333], Section
20. Indeed, the (complicated) algorithm for finding Q works even when
considering formal power series in non-commuting variables; see Kuich and
Salomaa [210], Section 16.

Every non-constant function occurring in Proposition 19.11 arises as a
power series whose radius of convergence must be a singularity that cannot
be smaller than r = 1/pQz). We shall investigate the nature of these singu-
larities. The main key to our result is the following system of equations.

(19.12) Proposition. Suppose that /z(x) > 0 for every x G S. Then there
are polynomials Qi(z, iu i , . . . , wK), i = 1,...,«, with positive coefficients
such that

and every variable Wj appears as a factor in a non-zero term of Qi that also
contains the variable W{. Also, all Qi are divisible by z, and some Qi must
have a non-zero linear term in z.

Proof. Each i 6 l corresponds to a triple (u, a, 6), where u G S and
a,b € B, and Hi(z) = Ho^u{a,ub\z) is non-constant. (We distinguish func-
tions corresponding to different triples, even if they might actually coincide,
as for example in the radial case.)

We apply (f) of Proposition 19.11 with x = o and y — b. We iterate this
formula N times by conditioning on each of the first N + 1 steps instead of
the first one only. What we obtain is an equation

(19.13) Ho,u(a, ub\z) = J2

where all Xk G supp^u and XN = x\ • • • XN. In the first of the two sums it
must be that x\ • • • Xk £ uB for k < n and x\ • • • xn G uB. In the second, it
must be that x\- — Xk £ uB for all A: < iV-j-1, and we only consider non-zero
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terms. In particular, d(xN,u) < N2 + 1, and again, HxN,u(xNXN+i,'u>b\z) is
a matrix element in a product of at most N2 + l matrices from {Ho,v(z) '- v G
5}. In this way we obtain the required polynomial Qj, where i = (u, a, b). It
certainly has non-negative coefficients and is divisible by z. We now verify
its other proposed properties.

It is true that some Qi has a non-zero linear term in z, since there must
be some point from where one can enter into uB in a single step.

For the other property, let i = (u, a, b) and j = (v, c, d) with u,v G 5,
a,b,c,d G B and Hi and Hj non-constant. This implies that a £ uB,
and it must be that a = a\- • • a^ with a^ G S (this and all subsequent
representations are tacitly assumed to be reduced) with a\ ^ u. Also, it
must be possible to reach ub starting from a before visiting any other element
of uB. Now the random walk cannot leave the branch To>ai (see §6.B for
notation) before visiting uB, that is, ub G To?ai, and the representation of
b must be of the form u~xa\ • • • arb\ • • • be with r > 0 and r + £ < N — 1.

Analogously c = c\ • • • CN with c\ ^ v and d = v~1c\ • • • csd\ • • • dm with
5 > 0 , s + ra < i V - 1 .

To see that Wj occurs in Qi, choose ajv+i G S \ {a^^v} and let y =
ttiv+i^"1. Then ayv (= aajy+i), &?/, ayc and ayvd lie in the branch To>a; see
Figure 16. The same is true for x = aycc^ = a\ •

i K \

Figure 16 . g \ 1 g\
i I , ayv I
\ub I 1 /
\ / ayvd /

Now d(a;, a) = N + 1. By assumption /i(ajv+i), Mv X)5 Mci)> • • •» ^{CN)
are all positive. Therefore the right hand side of (19.13) contains
Hax,u(%CN, ub\z) in a non-zero term. We now verify that the latter function
is non-constant and contains Hj(z) = Hayiayv(ayc,ayvd\z), and also Hi(z),
in a term of its expansion according to Proposition 19.11(e). Indeed,

Writing aye = XCN we see that Hx,ay(ayc,ayc\z) = 1 is a positive matrix
element in the first factor. In the second, Hayiayv(ayc,ayvd\z) = Hj(z). In
the fourth factor, we have the matrix element HOiU(a,ub\z) = Hi(z).
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To close the chain, we show finally that Hayv^o(ayvd,a\z) is non-zero.
Changing denomination for the sake of convenience, write ayvd = a\ • • • a^
(reduced representation by elements of 5), so that N + 2 < L < 2iV + 1 , and
let an = €b\" -a>h- In this notation, HayVjO(ayvd,a\z) = HaN+1,0(o>L,o>N\z).
We have CLL G O>KB for all h > L — TV", whence HaN+1,aL-N{o,L,o>iJ\z) =
1. Finally, HaL_N,o(a>L,a>N\z) contains by assumption the non-zero term

1 i ^ zL~N . This concludes the proof. •

It is much easier to deal with the matrix M(z).

(19.14) Lemma. Some matrix element of M{z) must contain a non-
constant function Hj(z). Furthermore, if /x(x) > 0 whenever \x\ < 2, then
M(z) is irreducible for every positive z.

Proof. The first statement is obvious. For the second, let a,b E B*. If
d(a, b) < 2 then M(a, b\z) > 0. Otherwise, we can find a = ao, a i , . . . , a^ = b
in B* such that d(a»_i, o*) < 2, whence M^(a, b\z) > 0. •

Our strategy is now the following. Assuming that fj,(x) > 0 whenever
\x\ < 2, we first prove that all non-constant generating functions occurring
in Proposition 19.11 have the same radius of convergence r. We then prove
that for each Hi(z), the singularity z = r is a simple branch point. This
will then be carried over to the F(6,o\z), b G JB*, and finally to G(x,y\z).

(19.15) Lemma. If /J,(X) > 0 whenever \x\ < 2, then the power series
6, o\z) and Hi{z) all have radius of convergence r.

Proof. The generating function z(fi(o) + J2beB* M&) F(b,o\z)j =
U(o,o\z) of the first return probabilities to o is strictly increasing and has
radius of convergence at least r. If it is larger than r then the only possi-
bility for z = r to be a singularity of G(z) is for it to be a pole. But then
the random walk would be p-recurrent, in contradiction to Theorem 7.8.

From this we get that some F(a,o\z) with a G B* must have radius of
convergence equal to r (and not larger).

Now, lib e B* with d(a,b) < 2, then F(b,o\z) > ^(b-1a)zF(a,o\z) for
all z > 0, and the power series F(b,o\z) must diverge for z > r. There-
fore also F(b, 0\z) has radius of convergence r. Continuing as in the proof
of Lemma 19.14, we conclude that all F(b,o\z), b G B*, have radius of
convergence r.

Analogously, using the polynomials of Proposition 19.12, we conclude
that all power series Hi(z) must have the same radius of convergence, say
s, which is at least r. Now suppose that s > r.

For small (positive) z, the matrix I — Ai(z) is invertible, and

(19.16) F*(z) = (l-M(z)y1A(z).
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Increasing z, the entries of M.(z) increase, as do those of A(z). Thus, (19.16)
will define an analytic function until either we reach s or det(/—M(z)) = 0.
Now r is a singularity of the left hand side, and having supposed s > r, we
find det(J — M(r)) = 0. But then the singularity r of the left hand side is
a pole. As F(b, o\x) < G(b, o\x) < oc, this is impossible. •

In particular, I — M.(z) is invertible for z G (o, r]. This fact will be used
below. We now know that each of the power series Hi(z), F(o, x\z) (with x ^
o) and G(o, y\z) converge at z = r, and that this is an algebraic singularity
of each of these functions. Therefore, as in the proof of Proposition 18.4,
each of them has an expansion as a Puiseux series

( Hi(z) = ao(i) — a>i(i)(r — z)a^ + h.o.t.,

F(o, x\z) = bo(x) - 6i(x)(r - zf^ + h.o.t.,

G(o,x\z) = co(x) - ci(x)(x — zf1^ 4- h.o.t.,

where h.o.t. stands for "higher order terms" which are all of the form (real
coefficient times (r — z)p), where p > 0 is rational. Also a(i), /3(x) and
y(x) are rational and positive, and each series converges in a set of the form
{\z — r | < e} \ ( r , oo). As our functions are strictly increasing in the interval
[0, r], in each of the three cases the first two coefficients must be strictly
positive.

(19.18) Proposition. If /J,(X) > 0 whenever \x\ < 2 then a(i) = 1/2 for
all i G I.

Proof. We insert the Puiseux series (19.17) of all Hj(z) in the poly-
nomial equation for Hi(z) given by Proposition 19.12. The terms on
the right hand side are of the form (constant times zk } (where k > 1),
with expansion starting with rk — krk~1(r — z), or of the form (constant
times zk Hj1(z) • • • Hjt(z) ) (where k,£ > 1), with expansion starting with
Co — Ci(x — z}

min{1M3i),---MJe)}m Recall that every Hj(z) must occur on the
right hand side. Comparison yields a(i) = min{l ,a(j) : j G X} . Therefore
a(i) = a < 1. This was the easier part.

We now consider the Jacobian matrix

JM.f*W--'-C»

For z G (0, r], all of its entries are positive by (19.12). We can therefore
appeal to the Perron-Frobenius theory of finite non-negative matrices; see
Seneta [297]. It says in particular that J(z) has only one eigenvalue X(z)
of largest absolute value, which is positive and a simple root of the char-
acteristic equation. By the implicit function theorem, \{z) is continuous
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(real-analytic). As all entries of J{z) increase with z, so does X(z). Also,
t7(0) is the zero matrix. We now determine A(r).

As limz_>o+ X(z) = 0, we have X(z) < 1 for small (positive) z. We
claim that X(z) < 1 for all z G (0,r) . Suppose the contrary, that is,
s < r, where by continuity s = minjz > 0 : X(z) = 1}. By the Perron-
Frobenius theorem, the left eigenvector (v i , . . . , vK) of J(s) corresponding
to the eigenvalue A(s) = 1 has all entries positive. Expand the function

in a Taylor series around the point 3 = 3(3) = (s,jfiTi(s),... ,HK(s)): we
have for all i,j

Substituting Wi = Hi(z), we find

(19.19) a(s -z) = |Co(s - zf + | ( s - z) ^ ^ ( ^ ( s ) - Ht(z))
1 = 1

K

+ 5 E C^(ff<(s)-ft(2;))(flJ-(s)-fl-i(z))+fc.at.
*,i=i

Now all Hi(z) are analytic and strictly increasing at z = s. We insert their
Taylor expansions at z = s in (19.19) and find an expression of the form

a(s - z) = C(s - z)2 + h.o.t.,

where a,C > 0, valid in a neighbourhood of s: a contradiction. Therefore
X(z) < 1 for all z < r, and by continuity also A(r) < 1. Now it cannot
be A(r) < 1. Otherwise, (/ - J(r)) would be invertible, and the implicit
function theorem would imply that the Hi(z) were analytic at z = r.

We have found A(r) = 1. We can now repeat the above calculations with
r in place of s, a corresponding left eigenvector of J"(z), and 3 = 3(r). In
the new version of (19.19), we insert the Puiseux expansions (19.17) and
find an expression of the form

a(s -z) = £>i(s - z)2a + D2{s - z ) 1 + a + D3(s - z)2 + h.o.t.,

where a, Z?i, Z>2, D$ > 0, valid for z G (r — «s, r]. Comparing the exponents
on the left and right hand sides, and knowing that a > 0, we find a = 1/2. •
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We are now close to the conclusion.

(19.20) Lemma. If /j,(u) > 0 for all u with \u\ < 2 then in (19.17) the
exponents are f3(x) = ^(x) = 1/2 for all x.

Proof. Propositions 19.11(e) and 19.18 imply that each non-constant
matrix element of each Hx(z) has a Puiseux expansion of the form ao(x) —
ai(x)(r - z)1/2 + h.o.t.

We have observed that (19.16) holds for all z G (0, r]. The elements
of M.(z) are polynomials in z and wi — Hi(z). Perhaps not all Wi occur,
but some do by Lemma 19.14. Write M(z, W\,..., wK) for the matrix ob-
tained by replacing the Hi(z) with free variables Wi. It is irreducible for
positive z and Wi, and I — M(z,wi,..., Wk) is invertible in a neighbourhood
of {(z,Hi(z),...,HK(z))}. The inverse ^2^L0M(z,wi,... ,wK)n is an an-
alytic function of z and the W{. It is componentwise strictly increasing for
real positive z and all those Wi that occur. Expanding each matrix element
at (r, i? i ( r ) , . . . ,Hr(z)) and substituting the Puiseux expansions (19.17),
we find ^(a"1) = 1/2 for all a G B*.

Now (19.11.c) yields j3(x) = 1/2 for all x ^ o. Finally, (19.11.b) and the
fact that U(T) < 1 imply 7(0) = 1/2, and (19.11.a) shows that 7(2;) = 1/2
for all x. D

Proof of Theorem 19.9. If \i is irreducible and aperiodic then there
is &o such that \i^(u) > 0 for all k > ko and all u G ¥M with \u\ < 2.

We can apply the machinery developed above to the random walk with
law i^k\ Its Green function satisfies (19.17) with 7(2;) = 1/2 and rk in
place of r. We know from Theorem 9.4 that z = rk is the only singularity
on the circle of convergence. Therefore we can apply Darboux's method as
in Theorem 17.3 (even though here we do not know whether the Puiseux
series is in integer powers of 1/r — z only) and find

Note that p(M
(fc)) = p(n)k. Now ^kn+i\x) = E | t f |<w

so that

p(n)n n-3'2 , a s n ^ o o , n = l modulo k.

The same holds with k + 1 in place of k, and it is now a straightforward
exercise to show that hk,t(x) is independent of k and I. •
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C. Radial random walks on the homogeneous tree
In this final subsection on local limit theorems, we return to techniques

of harmonic analysis similar to the use of characteristic functions in Section
13. Here we consider random walks on T = TM (M > 3) which are radial,
that is, p(x, y) depends only on the distance between x and y. In accordance
with the notation of (12.13), we write M = q + 1. Let Sk(x) be the sphere
centred at x with radius k. Recall that |Sb| = 1 and \Sk\ = (q + l)qk~1

(k > 1). If Pk is the transition matrix where pk(x, •) is equidistribution on
Sfc(x), the transition matrix P of any radial random walk is of the form

(19.21) P = ^akPk, where ak > 0 , ^ a k = 1.
k=0 k=0

It is irreducible if and only if ak > 0 for some odd k and aperiodic if in
addition ak > 0 also for some even k. The key to this subsection is the
following simple formula.

(19.22) PiPk = PkPi = ^Pk-i + ^iPk+i ( * > 1 ) .

This shows that each Pk can be written as Pk = P^(Pi), where the polyno-
mials Pk(t) are given by

(19.23) P0(t) = 1, AW = t, tPk{t) = ^h-iit) + ^ i f t+ iW •

Pk(t) is even for even k and odd for odd k. We now write p = p{P\) = | ^ |
and consider these polynomials for t € [—p, p\. The linear recurrence is
easily solved, and with the substitution t = p cos 6, where 9 G [0, TT],

i x 1 / 7 ^ < Z 1 , , s i n A ; 0 \
cos0) = r cos&0 H cos0 —-—— and

y/q \ Q+1 sm0 )
ci., N̂ 1 / , sinA;0 a — Ismk6 — k sin0 cos0 cosk6 \
Pr

k{p cos6>) F A;-^— + ^ — 3 - .
/ \ sm0 ^ + 1 s i n # /

In particular,

fc ^ ( ^ \ ) and

3)) ,

and one easily proves by induction that

(19.24) \Pk(t)\ < Pk(p) and | ^ ( t ) | < Pk{p) for
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Viewed as a function of x € T, one calls <f>t(x) = P\x\(t)
 a spherical function.

For a radial transition operator (19.21) we now define its spherical transform
oo

(19.25) P(t) = J2 ak Pk(t), te [-p, p].
fc=O

Then (19.22)-(19.24) imply the following.

(19.26) Lemma, (a) The series defining P(t) and its termwise derivative
converge absolutely and uniformly in [—p, p], and summation and differen-
tiation may be exchanged.

(b) If P and Q are two radial transition operators then

PQ(t) = P(t)Q(t).

(For (b), observe that this holds for Q = P\ and hence for Q = P&,
applying (a).)

Now the Pk satisfy a second order linear recurrence relation with constant
coefficients and must be orthogonal polynomials with respect to some Borel
measure; see the books by Polya [270], Chihara [73] and Wall [335].

In the present situation, it is easy to find this measure. Consider the
Green function associated with the simple random walk Pi, and in particular
G(z) = G(x,x\z). Let m be the Plancherel measure on the spectrum of Pi,
that is, the diagonal element of the spectral resolution. (We have used it
previously in (17.15) and (17.17).) Then, setting S(z) = G(l/z)/z, we know
that S(z) = J -£zi dvx(t). We now compute m via the inversion formula

= - lim / lm(S(x-iy))dx.

By Lemma 1.24, S(z) = ((q - l)z - sign Re(^) y/(q + l)2z2 - 4q) /(2 - 2z2)

for z e C \ [-p, p]. After a short computation,

(19.27) dm(t) = q+^f_-f dt, t€[-p,p].

If we expand the integrand in J -^ dm(t) in a power series in z and compare

with the series defining G(l/z)/z, we find p]n\x,x) = Jtndm(t). Lemma

19.26(b) and the fact that Pk = Pk(Pi) now indeed imply

(19.28) T Pk(t)Pe(t)dm(t) = ^pk(x,y)pe(y,x) = Skfi/\Sk\.

Now let P be a radial transition matrix as in (19.21), and write P n =
T,k

ak(n)Pk. Then p^(x,y) = ak{n)/\Sk\, where k = d{x,y). Together
with (19.28) and Lemma 19.26, this yields the following.
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(19.29) Proposition. Ifd(x,y) = k then

p{n\x,y) = f (P(t))nPk(t)dm(t).
J —p

We can now prove the local limit theorem for radial random walks on T.

(19.30) Theorem.

r)^nhr iA - 4 M 4 - - d(r in\ a~dl

where A = {^t%^ {BJ^L) ^ and the sPectr^ ™dius p(P) = P(p) is
given by (12.17).

Proof. Let k = d(x,y). We use once more the method of Laplace and
start by substituting t = pcosO (0 < 6 < TT) in the integral in (19.29). We
expand logP(pcos#) near 0:

logP(pcos6) = logP{p)- f 02 + R(6), where B

and R(0) = o(02). Next, we choose e > 0 such that \R(0)\ < BO2/4 for
0 < 0 < e, and subdivide the integral into J^ and J\ By assumption, at > 0
for both some odd and some even t, and (19.24) yields \P(pcos6)\/P{p) <
A < 1 for 0 G [e, n]. Then the second integral,

is bounded in absolute value by Ck p(P)n An (with Ck > 0) and asymp-
totically negligible with respect to the first one. With the substitution
u = y/BnO the latter transforms into

L "
Due to our choice of £, the last integrand is bounded by j^—s e u /4, and
as n —> oo, the integral converges to j ^ -

Note that the above contains a different proof of the formula (12.17) for
p{P). We also remark that it is straightforward to adapt the proof to the
situation when P is not aperiodic, that is, a^ > 0 for some odd but no even
k. The period is 2 in this case.
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Notes and remarks

13. The local central limit theorem on the grid
This material is taken from Ney and Spitzer [246]. See also Rvaceva [283] and Stone

[310], in particular for the case when /i is not in the domain of attraction of the normal
distribution. In my survey [348], I wrongly stated Theorem 13.12 under the assumption
of finite second moment, in which case it is known (in general) only when the drift is 0.
Extensions to generalized lattices are due to Guivarc'h [157] and Kramli and Szasz [208].
I did not present them here for lack of space.

14. Growth, isoperimetric inequalities, and the asymptotic type of random
walk

§A. My principal source here was the very nice to read survey by Pittet and Saloff-Coste
[266]. The use of Nash inequalities was introduced to continuous-time Markov chains
by Varopoulos [324], and to discrete-time chains by Carlen, Kusuoka and Stroock [51].
See also Coulhon and Saloff-Coste [84], [85]. The present version is based on Coulhon
[79]. One should also mention the link with Faber-Krahn-type inequalities, which are
not "visible" here but stand behind the arguments. See Coulhon and Grigoryan [82] and
the references given there.
§B. The Gaussian upper bound is due to Hebisch and Saloff-Coste [170].

§C. Theorem 14.19 is adapted from Benjamini, Chavel and Feldman [34], who prove the
analogue for Brownian motion on manifolds. Lemma 14.21 is due to Carne [52]. For
Theorem 14.22 (where again my source was [266]), see Lust-Piquard [217] and Coulhon
and Grigoryan [81].

15. The asymptotic type of random walks on amenable groups

§A. This material is adapted from Pittet and Saloff-Coste [268].
§B. The lower bound in Theorem 15.8(b) is due to Alexopoulos [2]. In this reference one
can also find a proof of Exercise 15.13.

§C. This is just an exercise following the method of Theorem 15.8(b).
§D. I learned the fancy name "lamplighter groups" for these particular wreath products
from Lyons, Pemantle and Peres [221]. Random walks on these groups were first studied
by Kaimanovich [182] and Kaimanovich and Vershik [190], who also gave first estimates
of the transition probabilities. Theorem 15.15 is taken from Saloff-Coste and Pittet [267].
Theorem 15.16 is a true challenge!

16. Simple random walks on the Sierpinski graphs

§A. The random walk on the Sierpinski graphs is one of the main ingredients in the
construction of Brownian motion on the Sierpinski fractal ("gasket") by Barlow and
Perkins [24]. The functional equation (16.5) is well known to physicists via what they
call "decimation procedure"; see Rammal [274], [275].

§B. These results are due to Grabner and Woess [144]. The method goes back to Odlyzko
[248].

In theoretical physics, the asymptotic behaviour of the return probabilities to the
origin has been determined via heuristics (plus variants) in the following spirit: Near
z = 1, there will be an expansion G(z) ~ (1 — z)'nH(z), with H(z) analytic (which
is wrong, as we know). Substituting in (16.5), one finds an equation for 77, whence
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p(n)(0,0) - Cn1-*. See Rammal [274], [275] and Priedberg and Martin [122]. Their
non-rigorous arguments fail in detecting the oscillations.

The asymptotic behaviour of Theorem 16.11 is valid for p(n) (x, y) with arbitrary x, y.
This can be proved via a ratio limit theorem - compare with [144]:
Theorem, (a) If P is strongly aperiodic then \im.n(p(n+1\x,y)/p(n\x,y)) = p(P).

(b) If in addition P is recurrent, then limn(<p(n\x,y)/p(n)(y,y)) = 1.
Part (a) follows Gerl [132], where this is proved for random walks on groups. This

is only the "tip of an iceberg" concerning ratio limit theorems. See my survey [348] for
more references.

Regarding off-diagonal estimates, there is a result in the spirit of the Gaussian esti-
mates of Section 14 for the Sierpinski graph in dimension 2, due to Jones [181]:
Theorem. Set 8S = 2 log 3/log 5 and 8W = log 5/log 2. Then there are constants
no, co,. . . , C5 > 0 such that for all x, y € S2,

for all n > no, and in the lower bound one also needs n > co|x — y|.
Here, |x — y| is Euclidean distance. The proof makes extensive use of stopping time

arguments.
A general rigorous study of random walks on fractal-type graphs is only at the be-

ginning. Recently Barlow and Bass [23], have proved a result similar to that of Jones
(but, of course, with different exponents) for random walks on the "graphical Sierpinski
carpet". In this case one does not have a nice functional equation such as (16.5). The
results are based on methods comprising those presented in Section 14, first applied by
the authors to Brownian motion on the Sierpinski carpet itself [22].

Associated with a fractal, there are three characteristic constants, which in the set-
ting of graphs with polynomial growth become the fractal dimension 8f (the growth
exponent), the spectral dimension 8S, and the walk dimension 8W. The latter two play
the same role as in Jones' theorem above. The expected time until the first exit from the
n-ball around the starting point is of order nSw; this defines the walk dimension. Ob-
viously, the definitions themselves require certain regularity properties. In typical cases,
one has the "Einstein relation" 8S = 28 f /6W] compare with Teles [313], [314].

17. Local limit theorems on free products

§A. Theorem 17.3 and Corollary 17.8 are from Woess [341]. Lemma 17.9 and Corollary
17.10 are due to Cartwright [57].
§B. Theorem 17.13 is also due to Cartwright [56], but my proof here is quite different; [56]
elaborates the singular expansion of G(z) only until the first non-polynomial term, which
makes the use of Darboux's method slightly problematic. Let me explain in more detail
how Darboux's method works in our setting: one looks for the first singular term in the
expansion of G(z) near z = r. Typically, one knows an explicit asymptotic equivalent an

of its Taylor expansion around 0, and wants to conclude that p(n) (o, 6) ~ an. To this end,
one wishes to apply the Riemann-Lebesgue lemma to the remainder term, which should
yield a decay that is o(an)- If this is not the case, one has to continue the expansion
beyond the first singular term until one reaches (hopefully after finitely many steps) a
remainder where the Riemann-Lebesgue lemma yields o(an) Taylor coefficients.

Alternatively to Darboux's method, one might show that the expansion holds in a
larger set, so that one can apply singularity analysis (Theorem 16.8) and does not have
to determine the additional terms.
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18. Intermezzo: Cartesian products
Proposition 18.1 was proved by Cartwright and Soardi [64] in the context of random

walks on Cartesian products of groups, also taking into account the periods of P\ and
P2. Proposition 18.4 was proved by Gerl [138], and later independently by Cassi and
Regina [69].

19. Free groups and homogeneous trees

§A. This is due to Lalley [211], who proved Theorem 19.4 more generally for random
walks on the free group whose law is supported by the identity, the free generators
and their inverses. The local limit theorem in this case had been proved by Gerl and
Woess [131], [337], [140]. Lalley [211] also finds the uniform asymptotics in the range
(1 — c)n < |x| < n. On the other hand, regarding the range of Case 2, in particular 2.A,
I could not follow the indications of [211], so that I chose another integration contour.

§B. The very significant result of Theorem 19.9 is also due to Lalley [212]. It has a "story":
in the mid-80s, Tim Steger had proved the same theorem, at least for symmetric random
walks, and has given seminars on it in a few places, including Leoben and Sydney, but has
never written it up. Here, I follow Lalley's method. However, there is a mistake in Prop.
2.7 of [212] (which has become Proposition 19.12 here), because the procedure which
[212] describes there is not the iteration of the system of equations obtained previously
(the one of Proposition 19.11(f)). Of course, this does not compromise Lalley's excellent
proof strategy.

I have not gone much into detail regarding the proof of algebraicity of the Green
function (after Proposition 19.11). It was proved by Aomoto [8] and Steger [309], [116].
Behind this, there is a certain amount of algebraic geometry. One can also use formal
power series and the theory of context-free languages (Woess [343]).

§C. Theorem 19.30 is due to Sawyer [290]; see also Picardello [256]. The setting of
spherical harmonic analysis on T was first developed by Cartier [54], [55], and later on,
in part independently, by other authors; see the book by Figa-Talamanca and Picardello
[115] and the references therein. In particular, the formula (19.27) for the Plancherel
measure has been rediscovered many times (with different parametrizations). In the
classical context of orthogonal polynomials, it goes back to Geronimus [141]; see also
Chihara's book [73].

Finally, note that Corollary 17.8(b) yields a local limit theorem for a class of random
walks on free groups that are non-radial and are not required to have finite range.

Further results
In Section 14,1 have not presented the main result of Varopoulos' seminal paper [323],

which stands at the origin of the material in §14. A:

Theorem. Let (X, P) be reversible and d > 2. Then the following are equivalent.

(a) There is K > 0 such that ||/||2d/(d-2) < « £ > P ( / ) for all f <E £o(X) (Wirtinger
inequality)

(b) Ei^)s u p ^ < C n .
x,y rn{y)

We have arrived at the estimate (b) in another way. Varopoulos' theorem is well
presented in his book with Coulhon and Saloff-Coste [326].

Also, in Section 14 I have not touched the interesting question of off-diagonal lower
estimates. A result has been mentioned in the notes to Section 16. The - recent - main
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general theorem of this type is due to Delmotte [90], [91]; see also the survey by Coulhon
[80].

In the case of a radial structure, that is, when the random walk admits a factor chain
that is nearest neighbour on N, one can use the theory of analytic continued fractions
to obtain information on transition probabilities. See Gerl [134] and Woess [339]. The
method goes back to Karlin and McGregor [195], although continued fractions are not
mentioned there explicitly.

The results of §19.C extend immediately to isotropic random walks on distance regular
graphs. A graph is said to have this property, when the cardinality \B(x,k) D B(y,£)\
depends only on fc, I and d(x, y). The infinite distance regular graphs have been classified
by Ivanov [180]; they are precisely the free products Dm,M = ^m * • • • * Km (M times),
where ra, M > 2. When m = 2, this is T f̂- The corresponding Plancherel measure has
again been computed by various authors, including Kuhn and Soardi [209] and Faraut
and Picardello [114]. The simplest way is to compute G(z) for the simple random walk
(compare with Gerl [133]) and apply the inversion formula.



CHAPTER IV

AN INTRODUCTION TO
TOPOLOGICAL BOUNDARY THEORY

This final chapter is devoted to studying the interplay between the spa-
tial behaviour of random walks, harmonic functions, and compactifications
of the state space. The word "topological" in the title is thought of as op-
posed to "measure theoretic". This means that the rich and deep theory
of the Poisson boundary, related entropy methods and the weak Liouville
property (constantness of bounded harmonic functions) will be touched only
marginally.

Let X be a separable metric space (typically a graph with its integer-
valued distance). By a compactification X of X we shall always mean a
compact Hausdorff space with countable base of the topology, containing
X, such that the inclusion X -̂> X is a homeomorphism, and such that X
is open and dense in X. Therefore X is metrizable, and the boundary fiX =
X \ X is compact. Our way of thinking is that the compactification has a
"natural" description in terms of the geometry of X, prior to considering
random walks. We then consider a transient random walk Zn on X with
transition matrix P and look for suitable adaptedness conditions which allow
us to answer the following questions.

(A) Convergence to the boundary. Does there exist a $X-valued ran-
dom variable Z^ such that in the X-topology, Zn —> Z^ almost
surely (Px) for every xl

(B) Dirichlet problem at infinity. Does every continuous function
flX —• E admit a continuous extension to X which is harmonic
onl?

(C) Identification of the Martin boundary. Does every positive har-
monic function have an integral representation over fiX ?

Question (C) will be formulated more precisely in Section 24. Of course,
harmonicity refers to the transition operator P. We start with some general
observations regarding (A) and (B).

20. A probabilistic approach to the Dirichlet
problem, and a class of compact ificat ions

A. The Dirichlet problem and convergence to the boundary
Let P be the (irreducible) transition matrix of a transient random walk

Zn on the graph X. Suppose that we have a compactification X with

220
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boundary fiX. Set

^oo = {&€&,: ZQO(a;) = lim Zn{ui) G $X exists in the topology of X} .

Convergence to the boundary means that Px(^oo) = 1 for every x G X.
In this case, Z^ is measurable with respect to the Borel a-algebra of fiX.
Write vx for the Fx-distribution of Z^ , that is, vx{B) = Fx[Zoo G B], where
B is a Borel set in fiX. (We may also consider vx as a Borel measure on X
that charges only the boundary.) Factoring with respect to the first step,
the Markov property yields

(20.1) ^ =
yex

The Borel probability measures family vx, x G X, are called the harmonic
measures. From (20.1) we get vx > p^n\x,y)vy, and irreducibility yields
that all vx are mutually absolutely continuous. A function on $X which
is i/x-integrable for some x has this property for all x G X. The harmonic
measure class can be used for producing harmonic functions: if ip is a vx-
integrable function on $X, then

(20.2) h,p(x) = I <pdvx

J'&X

defines a harmonic function with respect to P, and (20.2) is an analogue of
the classical Poisson integral for harmonic functions in the unit disk. If ip
is continuous then h^ is the right candidate to solve the Dirichlet problem
with boundary function (p. What we want is that lmxc_^ h<p(x) = (p(£) for
every (p G C{&X) and every £ G fiX.

Note that when it exists, then the solution is necessarily unique. Indeed,
by continuity and the minimum principle (1.15), any solution h must satisfy
min^x (p < h < max^x <p. Now, if h! and h" are two solutions, then
h! — h" solves the Dirichlet problem with all boundary values = 0, whence
ti - h" = 0.

(20.3) Theorem. The Dirichlet problem with respect to P and X is solv-
able if and only if

(i) (Zn) converges to the boundary, and
(ii) for the corresponding harmonic measures,

lim vx = 6$ weakly for every £ G fiX .

Proof. The above discussion shows that (i) and (ii) are sufficient con-
ditions. To prove necessity, assume that the Dirichlet problem is solvable.
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Step 1. For <p G C('dX)J let h^ denote the (unique) harmonic function
on X which gives the continuous extension of ip to X. For x G X, consider
the evaluation operator

VX:C(#X)^R, Vx(<p) = hy{x),

where C(fiX) is equipped with the max-norm. By uniqueness of the exten-
sion, Vx is linear, Vx(l) = 1, and by the minimum (maximum) principle,
||T4|| = 1- Also, if (p > 0 then Vx(<p) > 0. Considering the dual of the Ba-
nach space C($X), we see that there must be a Borel probability measure
vx on fiX such that

htpix) = Vx((p) = / (fdux

for every <p G C{&X). Solvability of the Dirichlet problem now implies (ii)
for the measures vx , x e X.

Step 2. To prove (i), we first observe that harmonicity of h^ for all <p
implies that (20.1) holds. By our assumptions on the compactification X,
there is a countable family {</?& :fc€N} which is dense in C(tiX). For each
<Pk, the sequence of random variables

k (zn) = <Pk dvZn , n = 0 , 1 , 2 , . . . ,

is a bounded martingale. By the martingale limit theorem, it converges
almost surely. Hence, using transience, Fx(Q

f) = 1 for every re, where

O; = < u G fi : Zn{uj) —• oo , / (pjc duZn(u)) converges for every k > .

(For a sequence (xn) in X, we write xn —> oo if it visits any finite subset of
X only finitely many times.) If a; G Q', then by Helly's principle there is a
Borel probability aw on $X such that

lim vz (v) = (JUJ weakly.
n-*oo nK }

By compactness, there must be a sub-sequence (nf) and a point £ G fiX
such that Znt{u) —>• ^ in the topology of X. By (ii),

lim vz ,(w) = 8$ weakly.
n'—>oo n

Consequently, au = 6$. Repeating the argument, we see that every accu-
mulation point 77 of (Zn(o;)) must satisfy 6^ = a^ , and r) = f. Therefore
Zn(w) ~* C ^ ^X, with ^ depending on a;, and we have proved convergence
to the boundary.
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Step 3. We still have to show that the limit distributions, that is, the
Px-distributions of Zoo, coincide with the measures vx , x G X. What we
have to verify is that

)) = ydvx for every ip G C(tiX) and every x e X.
JtiX

To see this, let <p G C(ftX). Then ^(ZQQ) = limn /i^(Zn) almost surely.
By dominated convergence, we may exchange expectation and limit. But
by harmonicity of h^ ,

for every n. This concludes the proof. •

The interest of the last theorem lies mainly in the fact that solvability
of the Dirichlet problem implies that the random walk converges to the
boundary. In the next subsection we shall study a situation where this fact
will be useful for proving the latter.

If we have convergence to the boundary, then we can also consider a local
version of condition (ii): a point £ G fiX is called regular if limx_>£ vx = 6$
weakly.

(20.4) Lemma. Let £ G &X be regular. Then £ G supp vx for every x G X,
and if supp vx has more than one element, then the Green kernel vanishes
at £, that is,

lim G(y, x) = 0 for some f^=> every) x.

Poof. If U is a neighbourhood of £ in $X, then lim^-^ vx(U) = 1. Hence
vx(U) > 0 for some x. As all the vx are mutually absolutely continuous,
this must hold for all x.

If |suppi/x| > 2 then we may choose a neighbourhood U of £ such that
vx($X \ U) > 0. Starting at y and stopping the random walk at its first
visit to x, we obtain

U) > F{y, x) vx($X \ U).

If y -> £ then vy(dX \ U) -> 0, so that F(y,x) -» 0 and also G(y,x) =
F(y,x)G(x,x)-+0. D

In particular, when |i?X| > 1, we see that for solvability of the Dirichlet
problem, it is necessary that the Green kernel vanishes at infinity (given x,
for every e > 0 one has G(y, x) < e for all but finitely many y).



224 IV. An introduction to topological boundary theory

B. Compactifications with "hyperbolic" properties
In this subsection we introduce a class of compactifications which - for

the case of transitive random walks - admit a straightforward solution of
the Dirichlet problem. We shall then apply this to two classes of graphs and
groups in the next two sections.

Let (X, d) be a proper metric space, that is, closed balls in X are com-
pact. (In principle, we are only interested in locally finite graphs, but no
additional difficulty will arise from this slightly more general level.) Let X
be a compactification of X. We say that X is protective, if the following
holds for sequences (xn), (yn) in X:

(20.5) xn -> f G fiX and supd(zn, yn) < oo imply yn -> f.
n

Next, let F be a subgroup of AUT(X), the group of self-isometries of (X, d).
Our interest is in compactifications that are compatible with the action
of F. We call X a contractive F-compactification, if it is projective, every
7 G F extends to a self-homeomorphism of X, and the following convergence
property holds. For any sequence (7n) in F,

(20.6)

ln% —* £ € $X and r)nlx ""*• V ̂  &X imply jnw —> £

uniformly for w G X outside of every neighbourhood of 77.

(Here, x G X is arbitrary by projectivity.) This means that for every choice
of neighbourhoods U of £ and V of 77 in X, there is an index n(U, V) such
that jn(X \ V) C U for all n > n(U, V). The case £ = 77 is not excluded.

The most typical example of this type of compactification is provided
by X = H, the hyperbolic plane (Poincare disk) with the group of Mobius
transformations that leave the unit disk invariant. If we take HI to be the
Euclidean closure of the unit disk, then (20.5) and (20.6) hold. More about
this will be said in Section 22. We now dedicate a few pages to some purely
structure theoretic considerations. The first step is a classification of the
elements of F, analogous to Mobius transformations of the disk. An element
of AUT(X) is called elliptic, if it fixes a compact, non-empty subset of X.

(20.7) Proposition. Let X be a contractive T-compactification of X. If
7 G F is non-elliptic, then one has one of the following:

(1) 7 is hyperbolic - it fixes precisely two elements £, 77 G $X,

lim jnx — £ and lim j~nx = rj for every x G X .
n—*oo n—»oo

(2) 7 is parabolic - it fixes precisely one element £ G fiX,

lim 7nx = £ and lim /y~nx = £ for every x G X.
•+oo n—+00



Probabilistic approach, and a class of compactifications 225

Proof. Equip AUT(X) with the topology of uniform convergence on
compact sets. This is a locally compact group. By the classification of
monothetic groups (see e.g. Rudin [281], Th. 2.4.1), the subgroup (7)" is
either compact, or discrete and equal to (7). As 7 is non-elliptic, we are
in the second case, and (X being proper) for arbitrary x G X the sequence
(inx)nez n a s n o accumulation points in X. Therefore, using compactness
of X, we can find a sub-sequence (nf) and elements £,77 G fiX such that
7 n x —> £ a n d "y~n x —> rj.

We have d{^n + 1rr ,7n x) = d(7;c,x), and by projectivity, 7^ =
limn/ 7

n jx = £. Analogously, 777 = 77. By the convergence property,
7 n w —• £ and 7~n w —» rj for every w G X different from 77 and £, re-
spectively. In particular, no point besides £ and 77 is fixed by 7.

First suppose that £ 7̂  77. Let [/, V be disjoint, open neighbourhoods
in X of £, 77, respectively, not containing x. By the convergence property,
there is n0 in (n1) such that

and inductively 7/en°x G E7 for all A; > 0. Thus, every accumulation point of
the sequence {^kn°x) must lie in [/, and hence - being fixed by 7 - must be £.
In other words, jkn°x —> £. By projectivity, also jkn<>+rx = r)kn°{Yx) ~^ £
as k —> 00 with r fixed. Hence

lim jnx = £, and analogously lim 7~n# = 77.
n—»oo n—>-oo

Once more by projectivity, this is true for every x G l , and (1) holds.
Now suppose that £ = 77. By the above, this must be the only accumu-

lation point of {7nx : n G Z} in X, and (2) holds. •

Note that by the arguments used in the proof, we also get the following:
if E7, V C X are non-empty, open and disjoint and there is 7 G F with

(20.8) -y(X \V)CU and 7"x(X \ U) C V,

then 7 is hyperbolic with "forward" fixed point in U and "backward" one
in V\

Next, we define the limit set L(T) of F. This is the set of accumulation
points of an orbit Tx in fiX. By projectivity, it is independent of a: G X. We
write H(T) for the set of points in ftX which are fixed by some hyperbolic
7 G F. We have H(T) C I/(F), and I/(F) is compact and fixed (as a set) by

r.
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(20.9) Proposition. Let X be a contractive T-compactification of X.

(1) If L(T) is non-empty, then it has one, two, or infinitely many elements.
(2) If L(T) has more than one element, then H(T) is dense in L(T).

Proof. We start with (2). Let £,£' G L(F) be distinct, and choose
x G X. There are sequences ((3n) and (7n) in F such that (3nx —* £ and
ln% —> £'• Without loss of generality, we assume that P^x —» n and
j^x -+ rf G tfX.

Case 1. r] ^ £. Let J7, V be disjoint, open neighbourhoods in X of £,
77, respectively, not containing x. By contractivity, there is no such that
(3no(X \V)CU and / ^ ( X \U)cV. By (20.8), £no is hyperbolic with
fixed points £1 G U and 771 G V. In particular, £1 G H(T) n Z7.

Case £. 7/ 7̂  £'. As in Case 1, we can find no such that j n o is hyperbolic
with fixed points £1 and 771. One of them, say £1, must be different from
77. By (20.6), /?n£i —• £, and (3n£i is a fixed point of the hyperbolic element
PnlnoPn1- Again, H(T) nU^Q.

Case 3. 77 = £, 77' = £'. We choose open, disjoint X-neighbourhoods
C/ of £ and [/' of £', not containing x. By (20.6), there is n0 such that

U)CU and ̂ {X \ U') C U'. We set 7 = /3no7no- Then

[/ and <y-\X\U) C<y£(U) CU'.

By (20.8), 7 is hyperbolic, and one of its fixed points lies in U. Once more,
H(T) nU^Q.

We now prove (1). Suppose that |L(F)| > 3. By (2) there are two
hyperbolic elements ^ ,7 G F with |Fix/3uFix7| > 3. Let £ G F ixp \ Fix7.
Then for every n, 7n/?7~n is hyperbolic and fixes 7n£. As 7 is hyperbolic,
all 7n£ are different. •

For convergence to the boundary, and the Dirichlet problem, we want
the boundary as big as possible: then we can distinguish many different
directions of convergence at infinity, that is, there is more information.
Therefore we shall only consider the case when L(T) is infinite. It is then
not hard to show that L(T) is uncountable. Indeed, it is a perfect set.

(20.10) Proposition. Let X be a contractive T-compactification of X
with infinite limit set L(T). Then precisely one of the following holds.

(a) F contains two hyperbolic elements without common fixed points,
and no proper, non-empty compact subset A of L(T) is fixed by F.

(b) F fixes a unique element £0 of L(T), and no proper, non-empty com-
pact subset A of L(T) \ {£0} is fixed by F.

Proof, (a) Suppose F has two hyperbolic elements without common
fixed points, and let A be as stated. By Proposition 20.9 there is a hyperbolic
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element 7 G F with "forward" fixed point C G fiX \ A. Let 77 be the
"backward" fixed point of 7. li Q € A\{rf\ then 7n£ —» £, and 7 does
not fix A. This proves (a), unless A — {77}. In this case there is another
hyperbolic element of F whose fixed points are different from C and 77.

(b) Now assume that any two hyperbolic elements of F have a common
fixed point. By Proposition 20.9, we can find a hyperbolic element 7 G F
with "forward" and "backward" fixed points Co and 770. Let (3 be any other
element in F. Then fi'yP'1 is hyperbolic with fixed points /?Co and
Therefore /?({Co,r?o}) n {^Vo} / 0-

Now suppose that there are /3i, /?2 £ F such that

{£o,?7o} = te)} and

Then 71 = fli^p^1 and 72 = ^T/?^"1 a r e hyperbolic and must have a
common fixed point. Hence, there is £ G $X such that Fix 71 = {Co,C}
and Fix 72 = {770, C}- Let U and V be disjoint X-neighbourhoods of Co
and 770. By hyperbolicity of 7 there is an integer n such that 7 n ( G [/
and 7~nC G V, so that 7nC 7̂  7~nC- But then 7 n 7 i7" n and 7~n727n are
hyperbolic elements of F without common fixed points, a contradiction.

Hence, without loss of generality, we may assume that Co € 7({Co>?7o})
for every 7 G F. (Otherwise exchange Co and 770.) We claim that F fixes Co-

Let p G F with /?({£o,77o}) 7̂  {£0,̂ 70}- Suppose /?£0 ^ {Co,̂ 7o}, so that
/̂ r7o = Co- Then /̂ 277o = /?& 7̂  Co and hence /?2Co = &• This yields
/3£0 = /3—1^o = ?7o> a contradiction. Thus, we must have /3£o = Co and
/3rj0 ^ 770. Choose some fio G F with these properties. It must exist, since
by assumption, H(Y) is infinite.

Suppose that there is (3 G F with /?£o 7̂  Co- By the above, it must be
that /?Co = rj0 and (3r)0 = Co- But then /?A)({Co, ^0}) = {?7o, PPorjo} does not
contain Co> again a contradiction.

Finally, we verify the statement regarding invariant subsets. Let A be as
given. By Proposition 20.9, there is some hyperbolic 7 G F with "forward"
fixed point Co and the other fixed point outside of A. But then ^nA —> Co
by (20.6), and A is not invariant under F. •

(20.11) Exercise [Klein's ping-pong Lemma]. In case (a) of Proposition
20.10, F contains a free group with two generators. It is discrete in the topol-
ogy of uniform convergence on compact sets, and all its elements different
from the identity are hyperbolic.

[Hints: Take hyperbolic /?i,/?2 G F with Fix/?* = {£i,rn} (all four differ-
ent). Take pairwise disjoint neighbourhoods O of the origin, Ui of the Ci and
V{ of the 77̂ . Set 7* = /?^, where k is large enough that r)i{X\Vi) C Ui and
7~1(X\J7i) C Vi, i = 1,2. Show that (71,72) is a free subgroup, as asserted.
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To see this, set Wi = UiUVi. Show that every non-trivial reduced word
7 = 7i1721 " ' ' 7ir72r w ^ h integer exponents (only k\ and £r are allowed to
be = 0) satisfies y(X \ Wt) C Wj for suitable ij G {1,2}.]

In the discrete setting, applications of this machinery are twofold: on
the one hand, X may be non-discrete and F a finitely generated discrete
subgroup of AUT(X) carrying a random walk. On the other hand, X may
be a locally finite graph carrying a random walk P, and F a closed subgroup
of AUT(X, P) which acts transitively on X. (This includes the case when
X is a Cay ley graph of the finitely generated group F.) Existence of a
non-trivial contractive F-compactification is of course not automatic.

We shall only consider the second situation. Recall the method described
in §8.A of lifting the random walk from the graph X to the group F. Let fi
be the probability measure on F defined in (8.12), and Rn the corresponding
right random walk on F (8.11). The convolution of a measure /i on F with
a measure v on $X is defined by

/ / /
&x J#x Jr

Convergence to the boundary now means that Rno —» Z^ G fiX, and
aRno —> aZoo, as aRno models Zn with starting point ao. Set v = vo.
In view of Proposition 8.13, we get vao = 6a * v. The limit X^Z^ of
X2 - • • Xno must have the same distribution as ZQQ. Therefore we find that
v is a stationary measure for /x, that is, \x * v = ZA

Conversely, if we have a stationary measure z/, then for a G Fo,

as /i is ro-invariant on the left by the definition (8.12). Thus, we may define
vx = #7X * ̂  where (recall) 7^0 = x, and <5a * v = uao for arbitrary a G F.
The resulting probability measures i/x, a; G I , are candidates for being the
harmonic measures.

We now suppose that our compactification is also contractive, and that
$X is infinite. By transitivity, L(T) = #X. We write L*(F) = L(T) in case
(a) of Proposition 20.10, and L*(F) = L(T) \ { 0̂} in case (b).

(20.12) Lemma. Suppose that v is a fi-stationary probability measure
on fiX. Let A be a non-empty, compact proper subset of L*(T) such that
7A = A or 7A fl A = 0 for any 7 G F. Then v(A) = 0.

Proof. From Proposition 20.10 and its proof, we know that there must
be a hyperbolic element 7 G F which does not fix A, and hence AflFix7 = 0.
But then jnA is contracted to one of the fixed points of 7. Therefore L*(F)
contains an infinity of mutually disjoint F-translates of A.
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Let M = max{ 1/(7.4) : 7 E F}. Suppose that M > 0. Then there are
mutually disjoint sets A\ = 71A , . . . , An = ^nA such that

Let B = (J?=1 Ai. We claim that a XB = B for all a € supp/i. Suppose
the contrary. Then a~xAi fl B = 0 for some i, and v{a~lAi) = c < M.
The above discussion shows that then u(/y~1Ai) = c for all 7 in the open
neighbourhood aTo of a in F. Therefore

nM = i/(B) = I via^B) /x(d7) < (n - 1)M + c,

a contradiction. Consequently each element of supp/x fixes B. Now
(Jn€N(supp//)n = F. Thus, F leaves B invariant. But this is impossible
by Proposition 20.10, as B is a compact, proper subset of L*(F). Therefore
Af = 0. •

In particular, v must be continuous on I/*(F), that is, ^({£}) = 0 for
every £ 6 L*(F). We have now collected all the ingredients for a solution of
the Dirichlet problem in the transitive case.

(20.13) Theorem. Suppose that the closed subgroup F of AUT(X,P)
acts transitively on the locally finite graph X. Let X be a contractive F-
compactification of X whose boundary fiX is infinite and does not have a
point fixed by F.

Then the Dirichlet problem with respect to P and X is solvable.

Proof. For /x given by (8.12), there is at least one stationary probability
measure v on fiX. Indeed, start with any Borel probability a on F, and
consider the sequence of measures (̂<7 + /x*cr + --- + jin~l * a). By com-
pactness (recall that fiX is metrizable), there must be a weak accumulation
point v in the space of Borel probabilities on fiX. This is stationary.

Lemma 20.12 implies that v is continuous. Let (p € C($X). We define

Recall the discussion before Lemma 20.12: setting vx = <S7x * z/, we have
^2yP(x,y)vy = vx- Therefore h^ is harmonic. We show that it provides the
solution of the Dirichlet problem. Let f € &X. Take a sequence (xn) in X
that converges to £, and let j n = j X n . Thus, 7no —• £. By compactness, we
may assume that 7~xo converges to some 77 e fiX. Now v{{q}) = 0, while
the convergence property guarantees that 7nC —> £ for all £ G &X \ {rj}.
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We see that <£>(7nC)
yields h^Xn)

<f(O f°r ^-almost every £. Dominated convergence

•
A posteriori we see that v is the unique //-stationary probability measure

on fiX. The proof does also work in case (b) of Proposition 20.10, if we
assume we have a stationary probability measure with ^({£o}) — 0- I*1

practice, this requires that one first proves a.s. convergence of the random
walktoL*(r).

21. Ends of graphs and the Dirichlet problem

The end compactification can be defined for an arbitrary graph, and pro-
vides the simplest class of examples where projectivity and the convergence
property hold. We have already encountered it in the special case of trees
in §6.B.

Let X be a connected, locally finite graph. An infinite path or ray is a
sequence n = [XQ, X±, . . . ] of distinct vertices, such that X{ ~ xi-i for all i.
(Contrary to trees, this is not the same concept as a geodesic ray, where in
addition one requires d(xi, Xj) = \i— j\.) If F is a finite set of vertices and/or
edges of X, then the (induced) graph X \ F has finitely many connected
components. Every ray n must have all but finitely many points in precisely
one of them, and we say that n ends up in that component. Two rays are
called equivalent, if for any finite F C X U E(X) they end up in the same
component of X \ F. This is the same as saying that there is a third ray
which meets each of the two infinitely often. An end of X is an equivalence
class of rays. We write $X for the space of ends of X, and X = XU fiX. If
C is a component of X \ F (F finite), then we write fiC for the set of those
ends whose rays end up in C, and C = CU fiC for the completion of C. See
Figure 17.

Figure 17

We now explain the topology of &X. If F C X U E(X) is finite, and
w G X\F, then there is precisely one component of X\F whose completion
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contains w. We denote it by C(w,F). Varying F (finite, with w £ F), we
obtain a neighbourhood base of w. If x G X, we can take for F the (finite!)
set of neighbours of X to see that the topology is discrete on X. It has
a countable base and is Hausdorff. If £ G $X, then we do not need all
C(w,F), where F is finite, to obtain a neighbourhood basis. For each end
£, we can find a standard neighbourhood base, that is, one of the form

fe), k G N, where the finite F f e d are such that

(21.1) F f c U C K , f t ) c C K , F f c . i ) for al l* .

See Figure 18. Another neighbourhood base of £ is given by {C(£, #&) : fc G
N}, with the balls Bk = B{o, k) and arbitrary (fixed) root o G X.

Figure 18: a standard
neighbourhood base of £

(21.2) Exercise. Show that X is compact. [Hint: Let (wn) be a sequence
of distinct elements in X. Then X\Bi has some component C\ such that
C\ contains infinitely many wn. Among the components of X \ B^, there
must be C<i such that C2 C C\ and C2 contains infinitely many wn. Now
continue inductively: f|fc Cfc contains precisely one end £, and by the obvious
diagonal argument, there is a sub-sequence converging to £.]

As the number of components of X \ F (for finite F) is finite, each
C(w, F) is open and compact, and X is totally disconnected.

For a subset A of X, its diameter in the graph metric is denoted by
diam(v4). An end £ of X is called thin, if it has a standard neighbourhood
base (21.1) with Fk C X, such that diam(Ffc) = m < 00 for all A:. The
minimal m with this property is the diameter of £. Otherwise, £ is called
thick.

As usual, we fix a reference vertex o and write |rr| = d(x,o).

(21.3) Lemma, (a) Let k > 1 and x,y e X\Bk. If \x\ + \y\ -d{x,y) > 2k
then x and y belong to the same component of X\Bk.

(b) Any sequence (xn) of vertices satisfying \xn\ + |xn +i | - d(xn, xn+i) —* 00
converges to an end of X.

Proof. Let x, y be vertices that belong to different components of X\Bk.
Any path from x to y must pass through I?fc. Hence there is w G Bk such
that d(#, y) = d(x, w) + d(w, y). We obtain d(x, y) > \x\ + |y| - 2k.
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If \xn\ + |x n + i | - d(xn,xn+i) -» oo then \xn\ —• oo. Suppose that (xn)
has two distinct accumulation points in $X. Then there must be k and
infinitely many n such that xn and xn+i lie in distinct components of X\Bk,
a contradiction. •

For the last preparatory step, recall Definition 3.7, of rough isometries.

(21.4) Lemma. Let X and Xr be roughly isometric, locally finite graphs.
Then the rough isometry extends to a continuous mapping from X to X',
whose restriction to $X is a homeomorphism onto fiX'', which preserves
thickness and thinness.

Proof. Let <p : X —• X' be our rough isometry, with constants a, b (in
place of A, B) as in (3.7). Let o' = tpo, and write \x'\ = d'(x', o') for x' G X'.

Given £ G fiX, consider a ray IT — [xo,xi,X2,...] representing £. Then
\xn\ —» oo and d(xn ,x n +i ) = 1. Consequently also \<pxn\ + |y?a;n+i| —
d((pxn, (pxn+i) —> oo. By Lemma 21.4, (<pxn) converges to an end £' of X'.
We define ip£ = £'. In proving continuity, we shall see that this does not
depend on the choice of the ray TT.

Let (wn) be a sequence in X converging to £. This means that for every
k we can find n& such that each wn, n > n^, is connected to n outside of
Bk> That is, there are a?r(n) and a path or ray 7rn — [yo, yi,... ] in X \ Bk
such that yo = #r(n)> a n ( i ̂ n terminates in wn (if wn G X), or represents wn

(if wn G $X), respectively. We find that all points of (p(TTn) lie outside the
ball B',k_bya around o'. Now, </?(7rn) is not necessarily a path or ray, but
d'((pyi+i, (pyi) < a + b. Therefore we can fill the gap between tpyi and <pyi+i
by a path in X' of length at most a + b. We see that (pwn is connected to
</?£r(n) by a path or ray (respectively) in X'\B'£, where £ = (k — b)/a—(a+b).
If k —> oo then -£ —> oo, whence (^^n -^ <p£.

We now leave it as an exercise to show that <p is one-to-one and onto
from $X to ftX1', and that thickness and thinness of ends are preserved. •

In particular, for Cay ley graphs of a finitely generated group, the end
compactification is independent of the choice of the finite generating set,
and one speaks of the ends of the group itself. The simplest examples of
groups with infinitely many ends are free products (with the exception of
Z2 * Z2, which has two ends). More generally, the free product of two (or
more) rooted graphs has infinitely many ends, unless both have only two
elements. On the other hand, every Cartesian product of two infinite, locally
finite graphs has one end only.

A. The transitive case

The considerations that follow are not restricted to the transitive case,
but this is the context where they will be applied.
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(21.5) Proposition. The end compactification of a locally finite graph X
is a contractive A\JT(X)-compactification.

Proof. Suppose that (xn) and (yn) are sequences in X such that xn

converges to some end £, and d{yn,xn) < M < oo. Then xn G C(£,Bk)
and d(xn, 6) > k + M for all n > nk. As yn is connected to xn by a path
of length < M, also yn G C(£, Bk) for n > n^. Therefore yn —• £, and X is
projective.

If 7 G AUT(X) then it maps rays onto rays, and preserves equivalence
between rays. Therefore 7 acts bijectively on fiX. It is straightforward that
this action is continuous.

Finally, let (jn) be a sequence in AUT(X) such that jno —> £ G &X
and 7r^

1o —> 77 G #X. Take X-neighbourhoods of £ and 7/ of the forms
U = C(£,Bk) and V = C(r},Bk). We can find n0 such that 7nJBfc C (7
and 7^1£fc C V for all n > no- Now X \ V induces a connected subgraph
of X that is disjoint from ^~xBk and contains Bk- Therefore ^n{X \ V)
contains jnBk and induces a connected subgraph that must be contained
in a component of X \ Bk. But the component of X \ Bk containing jnBk
is U. Consequently, jn(X\V) C U, and the convergence property holds. •

In particular, we see that a quasi-transitive (locally finite, connected)
graph has one, two, or infinitely many ends (Proposition 20.9), and in the
last case, Proposition 20.10 applies to every quasi-transitive subgroup of
AUT(X). Before stating the obvious corollary of Theorem 20.13, we need
more structure theoretic information for a better understanding of case (b)
of Proposition 20.10. For this purpose, we give a brief introduction to the
powerful theory of cuts and structure trees developed by Dunwoody [108],
[109]; see the book by Dicks and Dunwoody [96].

A cut of a connected graph X is a set F of edges whose deletion disc-
onnects X. If it disconnects X into precisely two connected components
A = A(F) and A* = A*(F) = X\ A, then we call F tight, and A, A* are
the sides of F.

(21.6) Lemma. Let X be connected and e G E(X). For any k G N there
are only finitely many tight cuts F containing e with \F\ = k.

Proof. We use induction on k. For k = 1, there is nothing to prove.
Let k > 1, and suppose that e = [x,y] is contained in some tight cut F with
cardinality k. Then the graph X1 = X \ {e} is connected and contains a
finite path n from x to y. Therefore F \ {e} is a tight cut of X' and must
contain an edge of TT. By the induction hypothesis there are only finitely
many tight cuts F' of X' with \Fr\ = k — 1 that contain some edge of n. •

We say that two cuts F, Fr cross, if all four sets
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A(F) n A{Ff), A(F) n A*(F'), A*(F) n A(F'), A*(F) n
are non-empty. Dunwoody [109], [96] has proved the following important
theorem.

(21.7) Theorem. Every infinite, connected graph with more than one end
has a finite tight cut F with infinite sides, such that F crosses no 7F, where
7 G AUT(X).

A cut with these properties will be called a D-cut. Now let F be a D-
cut of the locally finite, connected graph X, let F be a closed subgroup of
AUT(X), and define

(21.8) £ = {A(<yF), A*(>yF) : 7 G AUT(X)} .

This collection has the following properties.

(1) All A € £ are infinite and connected.
(2) UAeS then A* =X\Ae£.
(3) If A, B G £ and A C B then there are only finitely many C G £

such that AcC CB.
(4) If A, B G 5, then oneof A c 5 , A c F , A* c 5 and A* C 5*

holds.

Here, (3) follows from Lemma 21.6 and (4) from Theorem 21.7. These
properties can now be used to construct a tree T, called the structure tree
of X with respect to T and the D-cut F: think of an unoriented edge of T
as a pair of oriented edges, where the second edge points from the endpoint
to the initial point of the first one. Then the edge set of T is £. That
is, if A G £ then A, A* constitute such a pair of oppositely oriented edges
between the same two vertices. If A, B G £ and B ̂  A* then the endpoint
of A is the initial point of B, HA D B and there is no C G £ such that
A D C D B properly.

In this way, we have defined T in terms of its edges and their incidence,
contrary to our usual approach of defining a graph by starting with its
vertices. We now formalize the latter. A vertex of T is an equivalence
class of edges "with the same endpoint", that is, A, B G £ are equivalent
in this sense, if A — B, or else, if A D JB* properly and no C G £ satisfies
A D C D B* properly.

We verify that this is indeed an equivalence relation. Symmetry is obvi-
ous. To see transitivity, let A, B, C G £ be distinct and B equivalent to both
A and C. Then A n C D B*. Using (4), of the four possibilities i c C ,
A D C, A c C* and i D C*, the first is impossible because otherwise
B* C A C C properly, the second because otherwise B* C C C A properly,
and the third because otherwise B* C C*. Therefore A D C*. Now sup-
pose D G £ is such that A D D D C* properly. Again using (4), if D C 5
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then C D D* D B*, whence D = B and A D JB U B*, a contradiction. If
D D B, the same contradiction arises. If JD C 5* then C D D D C*, a,
contradiction. Finally, it D D B* then ADDDB*, whence D = B* and
C D B* DC*, again a contradiction. •

The vertex set is the set of all equivalence classes [A], where A G 8.
Neighbourhood in T is described by [A] ~ [A*]. It is then straightforward
to verify that T is a tree: connectedness follows from (3), and there can be
no cycles, as neighbourhood is defined in terms of inclusion of sets (reading
around a cycle would give A C A properly for some A G 8). The tree is
countable by Lemma 21.6, but in general not locally finite. Still, we can
define the set #T of ends of T as equivalence classes of rays, as in §6.B,
and T = T U #T. However, we do not specify a topology. The group F
acts by automorphisms on T via A \-+ 7 A, where 7 G F and A G 8. The
action has one or two orbits on 8 according to whether /yA(F) = A*(F)
for some 7 G F or not. Consequently, F acts transitively on T or else
acts transitively on each of the two bipartite classes of T (that is, the sets
of vertices at even/odd distance from a chosen origin). The kernel of the
action consists of those a G F that leave all F-translates of F invariant; in
particular, it is compact in F. The stabilizer in F of a vertex of T is not
necessarily compact. However, this is true for the stabilizer of any (oriented)
edge of T. Indeed, if A G 8, then jA = A implies that 7 fixes the (finite)
D-cut of which A is a side.

The reader is invited to draw a few examples. If X = TM then any single
edge constitutes a D-cut. If F is the whole of AUT(Tjvf), then the structure
tree is T M again. This is not the case when F = Z2 * • • • * Z2 (M times) or
the free group. As another example, let F = Zr * Zs = (a, b \ ar = bs = o)
with rs > 6, and X its Cayley graph with respect to {a±1,b±1}. In this
case, F = {[o, a±1]} is a D-cut, and with respect to F, the structure tree is
the bi-regular tree, with degrees r and s for vertices at even and odd distance
from the origin, respectively. As an example with thick ends, consider the
standard Cayley graph X of the free product F = Z2 * Z2 = (a, 6, c | ab =
ba,c2 = o), acted upon by F itself. Each copy 7Z2 of the square grid within
X, where 7 G F, gives rise to a thick end (as an equivalence class of rays
that end up in such a copy). The other ends are all thin, they have zero
diameter. Let F consist of the single edge [o,c]. This is a D-cut, and the
structure tree has infinite vertex degrees.

Next, we define the structure map (p : X —» T. This is easiest by
explaining the inverse map. For A G 8, let A be its completion in X. Then,
given w G T, we say that A points towards id, if the vertex [A*] of T lies
on the geodesic from [A] to w, and

(21.9) <£-~1{w)} = P ) { ^ : A points towards w} .
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Every element of X is captured in this way: if x G X then it must be
contained in some A G £, and by Lemma 21.6 there must be a minimal A G 8
with x G A. Then cpx = [A]. If £ G $X, then there are two possibilities: (1)
there is a minimal A, A G 5, containing £, and y>£ = [A] G T, and (2) there
is a (strictly) descending sequence (-An)n>i m £ s u c n that £ G P | n ^^- ^n

this case, the An constitute a neighbourhood base of £ in X, while in T
they constitute the edges of a ray (with vertices [An]) which defines an end
£ G i?T, and ip£ = £. We see that <p is compact-to-one. Note that <p is not
necessarily onto, as ip~l{w} may be empty. This is the case, for example, for
the structure tree of Zr * Zs described above: assuming r ^ s, the vertices
with degree r in T have empty preimage.

We also note that <p commutes with the action of F on X and T, respec-
tively. We can now prove two useful theorems on the structure of (con-
nected) vertex-transitive graphs with infinitely many ends.

(21.10) Theorem. Let X be a locally finite graph with infinitely many
ends, and T a closed, transitive subgroup of AUT(X).

Then the space of ends of X has a decomposition

tfX = r 0 , tfX = ToUTi, or #X = To U Ti U T2

with the following properties.

• Each Tf is T-invariant.
• There is m < oo such that diam(£) < m for each £ in To, and To

is dense in ftX.
• For i = 1,2, if Ti is non-empty then it has a T-invariant partition

into countably many compact sets.

Proof. We set To = ^ ( i W ) . This is clearly T-invariant. If V is the
set of end vertices of the D-cut F, then diam(£) < diam(F) < oo for every
£eT0.

To see denseness, given £ G &X, let F' be a finite, connected subgraph
of X, and C = C(£, F'). By transitivity, there is 7 G Y mapping the D-cut
F into (the edge set of) C. One of the sides of 7F must contain Ff. The
other side, say A±, is connected, does not intersect F', but does intersect C.
Therefore A\ <Z C. Again using transitivity, and property (4) of £, we can
now find a strictly descending sequence A\ D A2 D • • • of elements of £. It
gives rise to an element of To contained in C. (In particular, every vertex
of T has at least two neighbours.)

If F acts transitively on T then we set Ti = $X Pi y?~1(T). This may
be empty. Otherwise, $X = To U Ti , and Ti has the T-invariant partition

PI ip~lx) with compact pieces.
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If T has two orbits 7i and T2 on T then we set T* = *&X D y?~1

, D

The second result regards the "degenerate" case (b) of Proposition 20.10.

(21.11) Theorem. Let X be a locally finite graph with infinitely many
ends, and F a closed, transitive subgroup of AUT(X) fixing an end u of X.

Then the structure tree T with respect to F and a D-cut F is locally finite.
The structure map if : X —> T is a rough isometry, F acts transitively on T
and fixes the end (put of T. In particular, F must be non-unimodular.

Proof. As the action of F commutes with <p, it is clear that F fixes tpu.
We first show that this is an end (and not a vertex) of T. Let F be our
D-cut, and let A = A(F) be the one of its sides with u G A. Then the open
set A* must contain some end that is fixed by a hyperbolic element 7 of F,
see Proposition 20.9. Now 7 must fix u, and we may assume without loss
of generality that this is the "forward" fixed point of 7. As A is an open
neighbourhood of LJ, and by contractivity, there is k such that jkA C A
properly. The sequence An = ^knA G £ is strictly decreasing, and u G An

for each n. Therefore tpu cannot be a vertex of T.

Now let x G T, and let A G £ be the unique oriented edge of T incident
with x that points towards (put, that is, x = [A]. Let y = [A*] be the
neighbour of x on the geodesic ray to cpu, and B G £ the edge incident
with y pointing towards <pu. Then B = 7A or B = 7A* for some 7 G F.
But UJ = 70; G B n 7A, so that it must be that B = jA. Consequently
y = 7#, and (recalling that F acts transitively on the bipartite classes) F
acts transitively on T. In particular, ipX = T.

The stabilizer of x in F also stabilizes A as an edge of T and hence as
a subset of X. Therefore F^ is compact. Now let Bi,B2, • • • G £ be the
oriented edges of T whose endpoint is 5, and let Fi denote the F-translate
of F having Bi as one of its sides. Write yi = [Bi], i > 1, for the initial
vertices of Bi in T. For each i > 2 there must be 7$ G F such that 7^1 = ?/*,
whence 7^1 = i^. On the other hand, each 7* fixes ĉ o; and hence also x,
that is, 7J G F s . By compactness, F^JPi is finite, and there are only finitely
many y^ so that T is locally finite.

Now (f~x{x} is a finite intersection of open and compact sets A with A G
£. It is therefore open. If it contains an end, then by Theorem 21.10 it also
contains some element £ G To, that is, (p£ is a vertex of T, a contradiction.
Therefore (^~1{x} must be a finite subset of X and has finite diameter a. As
F acts transitively on T, this a is the same for each x. That is, if dx (x, y) > a
then drr(^px,(py) > 1. Clearly dx(x,y) = 1 implies dj-((px,(py) < 1. Thus,
^ is a rough isometry.

We see (compare with Lemma 21.4) that F acts on T continuously in
the topology of pointwise convergence, and we know that the kernel F°
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of the action is compact. Furthermore, F fixes <pu, and T has infinitely
many ends. That is, we have precisely the picture of §12.C, Figure 12. As
in (12.15), Lemma 1.29 implies that F/F0, and consequently also F, are
non-unimodular. •

We now see how fruitful a detailed study of structure theory may be for
obtaining information on the behaviour of random walks.

(21.12) Corollary. Let X be a graph with infinitely many ends, and sup-
pose that there is a closed, transitive subgroup F of AUT(X, P). Unless F
fixes an end of X, the Dirichlet problem for P-harmonic functions is solv-
able with respect to the end compactification, and the random walk with
transition matrix P converges a.s. to a random end which is thin.

This applies, in particular, to random walks on finitely generated groups
with infinitely many ends, and also to the case when X has thick ends.

Proof. If F fixes no end, then we can apply Theorem 20.13 to see that
the Dirichlet problem is solvable. Convergence to the boundary follows
from Theorem 20.3. If v is the limit distribution on fiX, then it is \x-
invariant, where \x is the probability on F defined in (8.12). Now Lemma
20.12 combined with Theorem 21.10 implies that i/(Ti) = 0 for i = 1,2,
whence ^(Yo) = 1.

If F is discrete, then it is unimodular and cannot fix an end by Theorem
21.11. If X has thick ends, then it cannot be roughly isometric with a tree
by Lemma 21.4, and again by Theorem 21.11 there is no end fixed by F. •

In the context of finitely generated groups, this result applies to arbi-
trary (irreducible) random walks on free groups, and more generally, on free
products with the sole exception of the infinite dihedral group Z2 * Z2. If
F = Fi * F2, then its end compactification can be described in terms of
the two factors as follows. Let tfF* be the space of ends of F^ (empty, if F^
is finite), i = 1,2. It is best to have in mind a Cayley graph of F of the
form X = X\ * X2, where each Xi is a Cayley graph of F^. In particular,
deletion of a single vertex disconnects the graph into two or more infinite
components. We set

(21 13) { V ^ l X 2 X 3 :xJ e Tij \ M ' H ^ *i-i) a n d

where all ij G {1,2}. Each "infinite word" in Y' is the limit in the end
topology of the sequence of its initial pieces x\ • • • xn as n —> 00. Two
different infinite words represent different ends, which have diameter 0 in
X. An element in Y" is the limit of the sequence X\ • • -Xk-\Xk(n), where
#fc(w) ^ r f̂e tends to &. in the topology of F ^ , as n —> 00. We can further
decompose Y" = Y'{ U Y2, where Y" consists of all elements of T;/ as in
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(21.13) with ik = i. The decomposition # r = V U V{ U T£ does not
in general coincide with that of Theorem 21.10 (as it arises from deleting
vertices, not edges), but is easily seen to have the same properties. It will
be reconsidered in §26.B.

(21.14) Corollary. Let T = I \ * T2, where the I \ are finitely generated
and we do not have \Ti\ = |F2| = 2. Then any random walk on T con-
verges almost surely to a random infinite word, and the limit distribution
is continuous.

This applies also to free products of more than two groups. Besides free
products, there are more general ways for constructing groups with infinitely
many ends from given ones, namely, amalgamated free products and HNN-
extensions of groups over finite subgroups. All groups with more than one
end are of this type. We do not go into further details here; the interested
reader may refer to the books by Stallings [308] and Lyndon and Schupp
[218].

B. Geometric adaptedness conditions

When (X, P) is transitive, we have seen that with the exception of the
"degenerate" case when an end is fixed under AUT(X, P), convergence to
the boundary and solvability of the Dirichlet problem hold without addi-
tional assumptions such as moment conditions, etc. Group invariance alone
is so strong that no further adaptedness conditions are needed. If the ran-
dom walk is not invariant under a "big" group, then we need adaptedness
conditions of a geometric nature instead of the algebraic one of transitivity
(or at least quasi-transitivity). We first consider the simplest case.

(21.15) Theorem. Suppose that P has bounded range and is transient.
Then the random walk converges to a random end of the graph X.

If supp vx has more than one element for some (<=> every) x € X, then
an end £ € fiX is regular if and only if the Green kernel vanishes at £. In
particular, the Dirichlet problem with respect to the end compactification
is solvable if and only if the Green kernel vanishes at oo.

Proof. By local finiteness of X, transience is equivalent with \Zn\ —> oo
a.s. Bounded range yields |Z n |+ |Z n +i | -d(Z n ,Z n + i ) —• oo, and convergence
to the boundary follows from Lemma 21.3.

Let K = max{d(x1 y) : p(x, y) > 0}. Then the K-fuzz X^ is metrically
equivalent to X and has the same end compactification, by Lemma 21.4.
Therefore we may assume without loss of generality that K = 1, that is, P
is nearest neighbour.

Assume |supp vx\ > 2. We know from Lemma 20.4 that the Green kernel
vanishes at f if £ G $X is regular. Conversely, let C = C(£,F), F C X
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finite, be a neighbourhood of £ such that vx(X \C) > 0 for all x G X. If
x e C Ci X, then in order to reach X\C, the random walk starting at x
must pass through F. Therefore, denoting by sF the hitting time of F,

ux(X \ C) = £Px[Z.p = y] vy{X \6)<Y, G(*>») •
yeF

If the Green kernel vanishes at £, then limx_,£ G(x, y) = 0 for all y £ F.
Therefore limx_>£ vx(C) = 1. This is true for every neighbourhood C(£, F),
so that i/x —> 6% weakly when x —• £. D

We remark that it may well be that supply is the whole of $X, while
there are non-regular points in fiX. An example may be constructed as
follows. Consider the half-line No with its end +oo. To each point k € N
attach a finite path (a "hair") of length f(k). At the endpoint of each
"hair", we attach a copy of the binary tree (by its root). For the tree T
obtained in this way (Figure 19), $T consists of the ends of all these binary
trees (which are all regular) plus the end +oo of the base line N. The latter
is not isolated in #T, so that suppi/x = fiT. If f(k) increases quickly, e.g.
f(k) > /c3, then one finds that the Green kernel does not vanish at +oo.
This can verified by showing that the hitting probabilities F(k, 1) do not
tend to 0, when k —> oo. We omit the details, which consist of lengthy
computations.

Figure 19

Next, we want to know what can be obtained when P does not have
bounded range. We start with convergence to the boundary.

(21.16) Theorem. If {X,P) is uniformly irreducible and has a uniform
first moment, and p(P) < 1, then Zn converges almost surely to a random
end of X.

Proof. This is immediate from Lemma 20.4 and the distance estim-
ates of §8.A, as Propositions 8.2 and 8.8(a) imply that \Zn\ + |Zn+i| -

Zn+i) ->oo a.s. •

Note that via the results of Chapter II, in particular of Section 10, the
property p(P) < 1 is well understood. For convergence to the boundary, we



21. Ends of graphs and the Dirichlet problem 241

have used those distance estimates of §8.A that yield almost sure conver-
gence. The Dirichlet problem cannot be solved under the same hypotheses
as Theorem 21.16. Indeed, consider the nearest neighbour random walk on
Z withp(fc,fc + l) = p > 1/2 andp(/c,/c-l) = 1-p. Then #Z = {±oo}, but
Zn —> +oo by the law of large numbers. Therefore the limit distribution is
not supported by — oo.

Instead of p(n\x,y) < Ad(^x^ p(P)n, we shall need the stronger bound
of Lemma 8.1(b). We shall now apply those distance estimates of §8.A
which give convergence in probability uniformly in |x|, plus an additional
(decisive) estimate. Recall the constant m > 0 of Proposition 8.2.

(21.17) Lemma. Suppose (X,P) is uniformly irreducible and has a uni-
form first moment, and p(n\x,y) < C pn for all x,y and n, where p < 1.
For a, £ > 0 and x G X, consider the event Ax = Ax(a, e) in the trajectory
space defined by the following properties:

(1) Z0 = x,

(2) d{Zn,Zn+i) <e\x\ for alln<a\x\,

(3) d(Zn,Zn+1) <£n for alln>a\x\,

(4) d(Zo, Zn) > xnn for alln> a |x|,

(5) \Zn\>£\x\ foralln>0.

Then there is £o > 0 such that for all £ < £o and a > 0,

lim FX(AX) = 1.

Proof. For i = 2,3,4,5, write Ax,i for the set of trajectories with ZQ =
x that satisfy property (i). Then lim|x|_>ooPx(v4x,i) = 1 for i = 2,3 by
Proposition 8.8(b) and for i = 4 by Proposition 8.2. To complete the proof,
we have to settle Ax$. Let £ < 1/2 and b > 0. Then

Fx[3n: \Zn\ <e\x\] < ¥x[3n<b\x\ : \Zn\ <e\x\]

+ Fx[3n>b\x\ : \Zn\ <e\x\] .

As \Zn\ < £ \x\ implies d(x, Zn) > (1 - e)\x\ > |x | /2 ,

— - sup d(Z0,Zn) > —
°\x\ n<b \x\ *b

If we choose 26 < 1/m then this probability tends to 0 as |x| —> oo by
Proposition 8.8(b). With this choice of 6,

Fx[3n>b\x\:\Zn\<£\x\]< ] T ^ P{n\x,y) < c (pbM*) * ,

where M > 3 is an upper bound on the vertex degrees and c = C/(l — p). If
£ is small enough so that pbM£ < 1 then this also tends to 0 as \x\ —• oo. •
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(21.18) Theorem. Assume that that the graph X satisfies IS and that P
is strongly reversible and uniformly irreducible and has a uniform first mo-
ment. Then the Dirichlet problem with respect to the end compactification
is solvable.

Proof. We use once more the method provided by Theorem 20.3. The-
orems 10.3 and 10.6 imply that p(P) < 1, and we have convergence to the
boundary. In view of Lemma 8.1(b), we may apply Lemma 21.17.

Let £ G fiX, and consider a neighbourhood C = C (£,£?&), where B^ =
B(o,k). Let x G C n l , and consider Ax = Ax{s,a) as in (21.17). If u G Ax

then

\Zn(cj)\ + |Zn +iMI - d(Zn(o;),Zn+i(a;)) > e\x\

for all n < a |x|, while for n > a \x\ we get

\Zn(cj)\ + |Zn+i(u;)| - d(Zn(w),Zn+iM) > 2(mn - |ar|) -en>b\x\,

where b = ((2m — e)a — 2). Choose e < minjeo, 2m} with eo as in Lemma
21.17, and a = (e + 2)/(2m - e). Then

\Zn(u)\ + \Zn+1(u)\-d(Zn(Lj),Zn+1(u)) > e \x\ for all n > 0 and u G Ax .

Thus, if e\x\ > 2k then Lemma 21.3 implies Zn(u) G C for all n. As
limnZn(u;) G fiX exists almost surely, we obtain vx{C fl &X) > VX(AX),
which tends to 1 as x —> £. D

In the hypotheses of the last theorem, we may replace IS and strong
reversibility by the condition p^n\x,y) <Cpn, with p < 1.

22. Hyperbolic graphs and groups

Once more, let (X, d) be a proper metric space, and suppose that it is
also geodesic: for every pair of points x,y G X, there is a geodesic arc
iv(x,y) in X, that is, (the image of) an isometric embedding of the real
interval [0, d(x, y)] into X which sends 0 to x and d(x,y) to y. We do
not require that geodesies be unique. Any locally finite graph is proper and
geodesic, when we consider it as a one-dimensional complex where each edge
represents a copy of the unit interval, and the graph metric is extended to
the interior points of the edges in the natural way.

A geodesic triangle consists of three points u,v,w together with geodesic
arcs 7r(w, v), TT(V,W), TT(W,U), the sides. The triangle is called 8-thin (where
6 > 0), if every point on any one of the sides is at distance at most 6 from
some point on one of the other two sides; see Figure 20.
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(22.1) Definition. One says that X is hyperbolic, if there is 8 > 0 (possibly
large) such that every geodesic triangle in X is 6-thin.

Figure 20

The two most typical examples are trees (where 8 = 0) and the hyperbolic
plane H = Efe (where 8 = log(l + A/2)), or more generally, the hyperbolic
n-space Hn.

There is a vast literature on hyperbolic spaces, in particular on hyperbolic
groups (i.e., groups which have a hyperbolic Cayley graph). See the essay
by Gromov [151], the notes by Cannon [50], Short (and collaborators) [300],
Bowditch [46], and in particular the books by Ghys and de la Harpe [142]
and Coornaert, Delzant and Papadopoulos [78].

The proof of the following theorem can be found, e.g., in [142], §5.2.

(22.2) Theorem. Hyperbolicity of geodesic metric spaces is preserved by
rough isometry.

In particular, we deduce that for a finitely generated group hyperbolic-
ity of one Cayley graph implies that all its Cayley graphs are hyperbolic.
Furthermore, every group having a free subgroup with finite index is hyper-
bolic.

More examples are provided by all finitely generated Fuchsian groups,
that is, discrete groups of Mobius transformations of H. Nice expositions of
their theory are the books by Beardon [28] and Katok [196]. In particular, if
G is a co-compact finitely generated Fuchsian group, then it has a compact
fundamental domain whose G-translates tessellate H, and the dual graph of
the tessellation is a Cayley graph of G which is roughly isometric with HL
We see that hyperbolic graphs, though being tree-like in some sense, may
have a single, thick end.

Also, many small cancellation groups are hyperbolic; see the Appendix
in [142].

(22.3) Exercise. Show that the graph in Figure 11 (§10.C) is hyperbolic:
it is roughly isometric with the hyperbolic upper half plane. [Hint: every
point in HI is at bounded distance from some vertex, and the discrete graph
metric is equivalent to the restriction of the metric of HI to the vertex set.]
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Returning to (X, d), we choose a reference point o and define for x, y G X

\ A \ (\ \y\-d{x,y)),

where \x\ = d(x,o). If X is a tree, then this is the length of the confluent,
as defined in §6.B, or equivalently, the distance between o and TT(X,?/). For
hyperbolic metric spaces, this remains "roughly" true:

(22.4) Lemma. If X is 6-hyperbolic and 7r(x,y) is a geodesic arc, then

d(o, TT(X, y)) -26<\xAy\< d(o, TT(X, y)).

Proof. The upper bound is straightforward and does not require hyper-
bolicity.

Choose geodesic arcs TT(O, X) and ?r(o, y). By continuity, we can find
w G n(x,y) such that d(w,7r(o, x)) = o?(n;,7r(o, y)). By ^-thinness there
must be u G TT(O, X) and i; G TT(O, y) such that d(n, it;) = d(v,w) < 8. Then

= \u + d(u, x) > \w\ + d(w, x) — 26 and

|2/| = \v\ + d(v, y) > \w\ + d(^, 2/) - 28.

Summing the two inequalities, we find the lower bound. •

(22.5) Lemma. If X is 8-hyperbolic then, for any choice of o and all
u,v,w G X,

\uAw\ > min{\u A v|, \v A w\} — 38.

Proof. Take geodesic arcs between u,v and w. (The reader is invited
to draw a figure.) Let x G TT(U,W) be such that \x\ = d(o,7r(u,w)). By
thinness, there is y G TT(IA, V) U 7r(i>, W) such that d(x, y) < 8. Using Lemma
22.4,

\uAw\> \x\ -28> \y\ - 38 > min{d(o, n(u, v)) , d(o, TT(U, W)) } - 38,

and the statement follows. •

We remark that the converse of (22.5) also holds: if for any choice of o
and all u,v,w G X,

(22.6) \uAw\> min{|^ A v\, \v A w\} - 8,

then X is 4<5-hyperbolic in the sense of (22.1). Also, if (22.6) holds for some
reference point o, then it holds for every other reference point with 28 in
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place of 6. We will not need these facts here, and their proofs are rather
simple; see [142] or [78].

Next, we describe the hyperbolic boundary fiX and compactification X of
X. We assume that X is a locally finite, 6-hyperbolic graph (but everything
works for any proper, geodesic hyperbolic space). When confusion could
arise, we shall write $eX for the space of ends and fihX for the hyperbolic
boundary. Geodesies are determined by their vertices, so that we shall not
need the extension of the metric to the edges.

We choose a > 0 such that a1 — es6a — 1 < \/2 — 1 and define for x, y G X
and a fixed base point o

exp(-a\x Ay\), x^y.

This is similar to (6.10), but not necessarily a metric unless X is a tree.
Lemma 22.5 implies

(22.7) Qa(u, w) < (1 + a') max{^a(w, v), ga(v, w)} for all u, v, w G X

We now define

^ - i , ^ ) : n > 1, x = xo,xi,... ,xn = y G X > .

J
Then Oa is a metric on X.

(22.8) Proposition. (1 - 2a') ga < 0a < ga .

Proof. Only the first inequality needs a proof. We show by induction
on n that for all x — Xo, xi > • • •> xn — V £ X,

n

(1 - 2a') ga(
x,y) < ^^ga(

xi-i,xi) •

For n = 1 there is nothing to prove. Let n > 2, and write R for the right
hand side of the proposed inequality. If R > 1 — 2a' then the latter is
certainly true, because ga(

x,y) ^ 1- Suppose R < 1 — 2a'. Let m be the
maximal index < n satisfying YMLI Qa(xi-i,xi) ^ R/2. Then m < n and
also Yl7=m+2 Qa(xi-iixi) £ #/2. By the induction hypothesis,

a ^m+l5y) ^ 2(l-2aO

and in addition ^ (^m^m+i ) < R> Now (22.7) implies

max{|(l + a')2 , (1 - 2a')(l + a')2} .
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The last "max" is < 1, completing the proof. D

Note that X is discrete in this metric, as y ^ x implies Qa{x, y) > e~a^xK
We now define X as the completion of X in the metric 6a. Prom Proposition
22.8 we see that a sequence (xn) with \xn\ —> oo is Cauchy if and only if

(22.9) lim |:rm A £n | = oo ,
m,n—> oo

and another Cauchy sequence (yn) will define the same boundary point if
and only if

(22.10) lim \xn Ayn\ = oo .
7 1 — • O O

Thus one can also construct the boundary by factoring the set of all se-
quences in XN that satisfy (22.9) with respect to the equivalence relation
given by (22.10). Prom (22.8) we also see that the topology of X does not
depend on the choice of a, as long as a! < y/2 — 1. Furthermore, it is
independent of the choice of the base point o.

Similarly to trees, a third, equivalent way is to describe fiX via equiva-
lence of geodesic rays. Call two rays TT = [xo, x i , . . . ] and IT' = [2/0? 2/i> • • • ]
equivalent if

liminf d(yn,7r) < oo .
n—>-oo

The following is true in any connected graph.

(22.11) Lemma. If TT = [xo,x\,...] is a geodesic ray and u € X, then
one can find integers k, £ > 0 and points u = uo, u±,... Uk = %e such that
[u,ui,...,uk, xi+uXt+2, • • • ] is again a geodesic ray.

Proof. It suffices to show this when d(u, xo) = 1. In this case, d{xn, u) €
{n — 1, n, n + 1} for all n.

If there is £ such that d(xt, u) = £ — 1 then for all n > £

n - 1 < d(xn, u) < d(xn, Xk) + d{xk, u) < n - 1,

and "=" holds in all three inequalities. We set k = £ — 1 and join a geodesic
arc [u = uo,...,Uk = xg\ with [xi, X£+i,... ].

So now suppose that d(xn, u) > n for all n. If d{xn, u) = n + 1 for all n
then we just add the initial vertex u to the ray TT. Otherwise, we can find
£ such that d(xt,u) = £, and as above, we find d(xn,u) = n for all n > £.
Then k = £, and we proceed exactly as in the first case. •

We now return to hyperbolic graphs.
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( 2 2 . 1 2 ) P r o p o s i t i o n , (a) If TT1 = [yo»2/i>--«] IS equivalent to TT =
[xo,xi,...] then there is fc G Z such that d(ynixn-k) < 26 for all but
finitely many n. If xo = yo then this holds for all n with k = 0.

(b) Equivalence of geodesic rays is an equivalence relation.

(c) Every geodesic ray converges to a point in fiX. Every boundary
point is the limit of some geodesic ray starting at o. Two geodesic rays are
equivalent if and only if they converge to the same boundary point.

Proof. Let TT and TT' be equivalent. Assume first that XQ = yo. There
are sequences ra(l) < ra(2) < • • • and n(l) < ra(2) < • • • such that
d(yn(i),%m(i)) < M < oo. Given n > 0, choose i such that n < n(i)-M-6.
Consider the geodesic subarcs of TT and TT' from o to xm^ and to yn^, re-
spectively. Add an arc from xm^ to yn^ to obtain a geodesic triangle.
Then yn lies on one of its sides, and there must be a point on one of the
other sides at distance at most 6. By our choice of n and i, this point
cannot lie on 7r(xm(i),2/n(^)). Therefore it is a point xt on TT. We have
\n-*\ = \\yn\-\xi\\ <6, whence d(yn,xn) < \n-e\ + d(yn,x£) <26.

If yo 7̂  xo, then Lemma 22.11 tells us that we can modify a finite initial
piece of nf to obtain a geodesic ray starting at XQ. This yields the first
statement of (a).

It is clear that equivalence of geodesic rays is symmetric. Transitivity
follows immediately from (a), and (b) is verified.

For (c), start with a geodesic ray TT = [#o,#i, • • •]• With respect to
the origin ^o, we have \xm A xn\XQ — min{m,n} —» oo, as m,n —> oo.
Convergence to oo does not depend on the choice of the origin, so that (xn)
converges to some £ G fiX by (22.9). Let nf = [2/o>2/i» • • •] De a second
geodesic ray. If it is equivalent with ix then, by (a), for each n > no there is
m(n) such that d(yn,xm^) < <5, and m(n) —>• oo. Then \yn A xm(n)| —̂  oo5

and 6a(yn, xm(n)) —>• 0 in view of Proposition 22.8, whence also yn tends to
£. Therefore we have a mapping r from the equivalence classes of rays to
$X.

Next, let £ € #X, and choose (xn) in X converging to £. Consider the
geodesic arcs 7rn = ?r(o, #n). By the standard "diagonal" argument, we
find a sub-sequence of (7rn) having longer and longer common initial pieces;
without loss of generality we assume that this is the whole sequence. That
is, there are yn G r\k>nftk such that \yn-i\ < \yn\ —• oo. The yn lie on a
unique ray TT starting at o. Let Tr(yn, xn) be the terminal piece of TTU. Then
d(p,TT{yn,xn)) = \yn\, whence yn -* ^. Therefore r is surjective.

To see injectivity, let TT and TT1 as above be two rays converging to £ G $X,
and such that xo = yo = o- Then |xn Ayn| —• oo. Take y^ G TT'. By Lemma
22.4 there is n such that d(o,Tr(xn,yn)) > k + 6. On the geodesic triangle
with vertices o, :rn, yn obtained by cutting TT and TT' at length n and adding
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the third side 7r(xn,yn), the point y^ must have distance at most 8 from a
point on one of the other two sides. By our choice of n, the latter must lie
on 7T, and d(yk,ft) < 8. Therefore TT and TT' are equivalent. D

(22.13) Corollary. If X is a hyperbolic graph then X is compact.

Proof. Let (xn) be a sequence in X. If \xn\ does not tend to oo then it
has a constant sub-sequence by local finiteness. Otherwise, we proceed as
in the proof of Proposition 22.12 (surjectivity of r) to find a sub-sequence
that "converges" to a geodesic ray and thus tends to a limit in $X.

If (wn) is an arbitrary sequence in X then there is xn G X such that
#a(wn, xn) < 1/n, and if a v —> w £ X then also wn> —• w. D

If X is a hyperbolic graph, then it is easy to understand how its hyper-
bolic compactification is related to the end compactification: the former is
finer, that is, the identity on X extends to a continuous surjection from the
hyperbolic to the end compactification which maps fihX onto $eX. This is
obvious from the construction of fihX via equivalence of rays. (Note that
each end is represented by some geodesic ray. Local finiteness is used here.)
For trees, the two compactifications are the same. It is easy to construct
graphs where this is not true. For example, take a typical Cayley graph
of the free product of two one-ended infinite hyperbolic groups (e.g. co-
compact Fuchsian groups): each thick end corresponds to a translate of the
hyperbolic boundary of one of the free factors.

On the other hand, observe that a graph with infinitely many ends will
in general (even when it is transitive) be far from hyperbolic. Examples are
provided by the Cayley graphs of Zdl * Z^2, where d{ > 2.

(22.14) Theorem. The hyperbolic compactification of a hyperbolic graph
is a contractive AUT(X)-compactification.

Proof. Projectivity is obvious. Indeed, if \xn\ —> oo and d(yn,xn) < M
for all n, then \xn /\yn\ —* °°-

Note that the metric 6a also depends on the base point: 6a — 6a,o- If
g G AUT(X), then g is an isometry (X,6a,o) —* (X,6a^go). Both metrics
induce same topology, and X is an AUT(X)-compactification.

The convergence property needs a little more work. Let (gn) be a se-
quence in AXJT(X) with gno -> £ and g~xo = rj G fiX. Denote by Be{w,r)
the open #a-balls, where w G X and r > 0. Take open X-neighbourhoods
U, V of £ and 77, respectively. We can find 0 < e < 1 and no such that

{gno : n > n 0 } U {£} C B0{gnoo,e/S) C Be(gnoo,e)cU and

{g-'o : n > n 0 } U {n} C Be(g^o,e/S) C B9(g^o,e) CV.
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Let x G X with 6a(g~^oJx) > 2s/3. Choose n > TIQ. Then 6a(g~1o,x) >

e/3 and hence \g^xo A x\ < C = — ̂  log | . But then

\gnx A gno\ = | # n o | - \g~xo f\x\> \gno\ - C - • oo a s n ^ o o .

Hence there is ni such that Oa(gnx,gno) < exp(—a(|gno| — C) < e/3 for all
n > ni and all x as above. As every £ £ $X \ V can be approximated by
elements of X \ Bg(g~^o, 2e/3), the convergence property follows. •

We now want to study the Dirichlet problem in the transitive case.
Again, we first derive information on the "degenerate" case (b) of Prop-
osition 20.10. This requires a preliminary step.

A two-way infinite path [... ,x_i ,xo,xi , . . . ] in a graph X such that
d(xk, Xi) — \k—£\ is called a geodesic line. If X is hyperbolic then [xo, x\,... ]
and [#o, x_ i , . . . ] are rays denning two different elements £, 77 G #X, and we
say that the line is a geodesic from rj to £, denoted by TT(77, £).

(22.15) Lemma. If X is a hyperbolic graph and £,77 G $X are distinct,
then there is a geodesic between the two.

Proof. Consider rays [a?o, # i , . . . ] and [2/0? 2/i> • • • ] converging to £ and
77, respectively. By (22.10), the sequence \xn A yn| must be bounded, as
otherwise (xn) and (yn) would have sub-sequences converging to the same
boundary point. Let k = max{|xnA2/n| : n > 0} and £ such that |x^Ay |̂ = k.
Thus, d(xn, yn) >2n-k, and d(xi, yi) = 2£- k. ltn>£ then d(xn, yn) <
2{n -£) + d(x£, ye) = 2n-k. Therefore d(xn, yn) = 2n - k for all n > L

Now insert a geodesic arc ^{yt^Xf) between the rays [... ,^_|_2,^+i,^]
and [x£, X£+i,X£+2,... ]. This gives 7r(r],£) as required. •

(22.16) Proposition. Let X be a hyperbolic graph with |#X| > 2 and G a
closed, transitive subgroup of AUT(X). IfG fixes a point on the boundary,
then G is non-unimodular.

Proof. Let M be the constant vertex degree of X, and let £ be the
unique point in fiX fixed by G. By Proposition 20.9(1), dX is infinite. For
every N > 0 we can find distinct points 770,... ,rjN G fiX \ {£}. Choose
geodesies 7T(77J,£) = [x^,n G Z]. Proposition 22.12(a) allows us to label the
sequences in such a way that

d(x\, x°n) <26 for alH = 1, . . . , N and n > 0 .

By transitivity, we may assume that XQ = o.
If K is sufficiently large, the points yi G {x^ : n < 0} with |yi| = K

(i = 0 , . . . , N) must be distinct. In particular, yo = x°_K and yi = xl_£^

with \K-£{i)\ < |4 | <28.
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For every i = 1 , . . . , JV, there is gi G G with ^yo = V%- As ^ fixes £,
the ray [<7i#™_x,n € No] is a geodesic from yi to £. The same is true for
[xn-eu))jn € No]- Hence, by Proposition 22.12(a),

\9io\ < d(giO,xl
K_u) + d(a?J^_tt,Xo) + \xl

0\ < 66.

Now there are at most M66 elements x G X with |x| < 6<5. Hence for one of
these x we must have |/ | > N/M66, where I = {i G { 1 , . . . , N} : gio = x}
(the pigeonhole principle). Choose and fix i € / . Then g~xgj G Go for all
j G / , and the points g^gjVo are all distinct. Thus \G0yo\ > N/M66.

On the other hand, let h G Gyo. Then [ ^ ^ - K ' n e ^o] is a ray from 2/0
to C, and (22.12.a) yields \ho\ < 26. Therefore |Gyoo| < M26.

For g G G with go = yo we get from Lemma 1.29 that A(#) =
\G0yo\/\Gyoo\ > N/M86. As N may be chosen arbitrarily large, we find
g G G with A(g) > 1. D

As in the case of ends, we can now apply Theorems 20.13 and 20.3:

(22.17) Corollary. Let X be a hyperbolic graph with infinite boundary,
and suppose that there is a closed, transitive subgroup T of AUT(X, P).
Unless F fees an element of X, the Dirichlet problem for P-harmonic func-
tions is solvable with respect to the hyperbolic compactification, and the
random walk with transition matrix P converges a.s. to a random point of
•9X.

This applies, in particular, to random walks on finitely generated hyper-
bolic groups with infinite boundary.

For the following, combine Corollary 12.12 with Exercise 20.11 and Prop-
osition 22.16.

(22.18) Exercise. Every vertex-transitive hyperbolic graph with infinite
hyperbolic boundary satisfies IS.

Again, we conclude this section with results where group-invariance is
replaced by geometric adaptedness conditions. The following is the analogue
of Theorem 21.16.

(22.19) Theorem. Suppose that X is a hyperbolic graph. If (X,P) is
uniformly irreducible and has a uniform first moment, and p(P) < 1, then
Zn converges almost surely to a random point of'dX.

Proof. Propositions 8.2 and 8.8(a) imply that liminf \\Zn A Zn+i| >
m > 0 almost surely. Consequently, if m, n G N and n > m then

oo

da(Zm, Zn) < J2 exp(-a|Zfc A Zk+1\),
k=m



22. Hyperbolic graphs and groups 251

which tends to 0 almost surely. Therefore, (Zn) is a Cauchy sequence and
converges almost surely in X. Transience of (Zn) and local finiteness of X
imply that the limit must be a boundary point. •

A hyperbolic analogue of Theorem 21.15, with the additional condition
p(P) < 1, will be considered later, in Exercise 27.17. The following is the
hyperbolic analogue of Theorem 21.18.

(22.20) Theorem. Assume that the hyperbolic graph X satisfies IS and
that P is strongly reversible and uniformly irreducible and has a uniform
first moment. Then the Dirichlet problem with respect to the hyperbolic
compactification is solvable.

Proof. As Theorems 10.3 and 10.6 imply p(P) < 1, we have convergence
to the boundary (Theorem 22.19) with harmonic measures vx, x G X, on
•&X. Consider £ G fiX and a neighbourhood Be(^ r), where r > 0.

We apply Lemma 21.17 and take Ax = Ax(a,e) with e < min{eo,IQ:/2}
and a = 2/m.

Let LJ £ Ax- We claim that 0a(x, Zn(ui)) < r/2 when x is sufficiently
large. Thus, if in addition x 6 -£?#(£, r/2), then limZn(u;) G £?#(£, r), and

vx{®X H Bo(£, r)) > ¥X{AX) -> 1, as x -> £.

To prove the claim, first observe that for n > 2|x|/tn, (21.17.4) implies
|^n(^)| > Bl^ — \x\ ^ van/2. In combination with (21.17.3), our choice of
e implies

\Zn(uj) A Zn+i(v)\ > mn/4 for all n > 2|x|/m.

On the other hand, (21.17.2) and (21.17.5) yield

\Zn(u) AZn +i(w)| > e\x\/2 for all n < 2|x|/m.

Therefore

oo

0a(x, Zn(w)) < ^exp(-a|Zf e(w) A Zk+1(uj)\)
fc=0

fc>2|z|/m

which tends to 0 as \x\ —> oo. D

Again, in this theorem IS and strong reversibility may be replaced by
the condition p(n\x,y) <Cpn, with p < 1.
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23. The Dirichlet problem for circle packing graphs

In this section we continue the considerations regarding simple random
walk on the graphs studied in §6.D. Recall in particular Theorems 6.29
and 6.34. If X is a disk triangulation graph which is CP-hyperbolic, then
we realize it as the contacts graph of a circle packing whose carrier is the
open unit disk D. Thus, the set of accumulation points of (this isomorphic
copy of) X coincides with the unit circle #B. In this way we obtain a
compactification of X.

(23.1) Theorem. Let X be the contacts graph of a circle packing V of the
unit disk D, and suppose that X has bounded geometry. Then the Dirichlet
problem with respect to the boundary #D is solvable for the simple random
walk on X.

We now collect the tools for proving the theorem. For an arbitrary
Markov chain (X, P), consider the first hitting time sA of A C X, and
define the transition matrix PA by

pA(x, y) = Px[sA < oc , ZSA = y],

the probability that the first visit to A occurs in y. We start with a lemma on
functions with finite Dirichlet sum for reversible chains. Recall the relevant
notation (Section 2).

(23.2) Lemma. Let (X,P) be reversible and f a function on X with
D(f) < oc. If A C X is finite then mm{D(h) : h = / on X \ A} is
assumed for the function h = Px\Af.

Proof. Analogously to (2.11), the minimum is attained for a unique
function h.

For arbitrary functions h with h = f on X \ A, consider D(h) as a
function of the real variables h(x), x G A. The function h that gives the
minimum must be a stationary point. But dD(h)/dh(x) = 0 just means
that h is harmonic at x, and this holds for every x £ A.

As A is finite and X \ A / 0, the matrix PX\A is stochastic, and by
factoring through the first step of the random walk, one finds that Px\Af
is harmonic on A, while it coincides with / o n X \ A Therefore h — Px\Af
is harmonic on A and = 0 on X\A. By the maximum (minimum) principle,
we must have h - Px\Af = 0 on A. •

We return to the setting of Theorem 23.1. Note that the assumptions
(which we shall use throughout this section) contain the fact that the centre
of each circle Cx of V is z(x) = x. As usual, M denotes the maximum vertex
degree in X. We shall use the last lemma in the following, crucial, distance
estimate.
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(23.3) Proposition. Let x0 G X, 6 = M{\x0 - f | : £ G #0} and £ > 1.
There is a constant c depending only on M such that

FXo[3n: \Zn - xo\ > t6] < 4c/log*.

The proof requires another auxiliary lemma. Let r, s G R, r < 5. We
define the projection -0 = ^r>a : R —• [r, s], to wit, ip(u) = max{r, min{s, u}}
is the element of [r, s] closest to u G R. We then define f = fr,s : C —• R

and consider its restriction # = gr,s to X.

(23.4) Lemma. There is a constant c depending only on M such that
D{g) <Ac(s-r).

Proof. The natural logarithm maps C \ {0} onto the strip R x (—it, re].
In addition to I/J and / , we define the functions ^(u + iv) = tp(u) + iv and

F(z) = Fr>s(z) = V(log

Recall the ring lemma 6.33 and the argument that led to (6.35), with XQ in
the place of o = 0: if x ^ ^o then r(x) < as(x), where $(x) is the smallest
radius of a circle tangent with x, and

— Xo\ : z G Cx} < 2a$(x) + minjlz — xo| : z G Cx}

< (2a + 1) min{|z - xo| : z G Cx} .

Let U be any closed disk contained in the annulus {6er < \z — xo\ < 6es},
and such that max{|z — XQ\ : z G U} < (2a+ 1) min{|z — XQ\ : z G U}. Then
I F ' ^ O / F ' ^ ) ! < 2a+lforal l^ i ,z 2 G C/. By the chain rule, area(F(t/)) >
area(*7) mmzeU \F'(z)2\ and diam(F([/)) < diam(C/) maxzGt/ |F7(^)|.

Therefore diam(F([/)) < c\ area(F(C/)), where c\ = (4a + 2)2/?r depends
only on a (and thus only on M). This implies in turn

cx area(F([/)) > [max{/(z) : z e U} - min ) : z €

Now, if x G X is such that Cx intersects {6er < \z — XQ\ < Ses}, then it
contains a disk U such that {\z - xo\ : z e U} = {\z - XQ\ : z G Cx} fl
[^er, ^es] . Therefore

(23.5) cx area(F(C:r)) > )

If Cx does not intersect the annulus, then both sides of (23.5) are 0. There-
fore (23.5) holds for all x G X.
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Take two neighbours x, y G X. Then g(x) — g(y) = (/(#) -
(/(*) ~ f(v)), where {z} = CxnCy, and (23.5) yields

(g(x) - g(y))2 < 2Cl (area(F(Cx)) + axea(F(Cy))) .

We sum over all edges of X. Since the circles of V have disjoint interiors,
we find

D(g) < 2ciMarea(F(C \ {0})) = 4TTCIM (S - r). •

Proof of Proposition 23.3. Let B = {x e X : \x - xo\ < t6}. We
assume that X \ B 7̂  0, as otherwise we have nothing to prove.

We set r = log y/i, s = 2r, and g = gr,s. Next, let A\ C A2 C • • • be a
sequence of finite subsets of B with (Jn ^n — B, and define ^n = Px\Ang.
We shall show that

(23.6) (gn(x0)-r)r < y/crD(gn).

If this holds, (23.2) and (23.4) imply gn(x0) <2c + r. On the other hand,

xex\B

We let n —> oo and take the lim sup of the last expression. Then we get

2rPX 0[3n: \Zn - xo\ > t6] + rFXo[\Zn - xo\ <tS Vn] <2c + r ,

and PXo[3n : \Zn — XQ\ > t6] < 2c/r = 4c/logt, as required.

In order to prove (23.6), let A be a finite subset of B, and set gA =
Px\Ag. Choose r G (1, >/i). Let XT be the set of all x G X such that
Cz intersects the circle {\z — xo\ = 6r}. We claim that there is xT G XT-
satisfying gA{xr) > 9A{XO)-

If xo £ A then ^A(^O) = r < gA(x) for all x. So suppose that x0 G A.
Let A' be the component of A \ Xr that contains xo, and dA' the set of
vertices in X \ A! having a neighbour in A!. As gA is harmonic in A!', the
maximum principle implies that there is y G cL4/ such that gA{y) ^ ^ (^o) -
If y G X r then we are done. Otherwise, y G X \ A and \y — XQ\ < 6T.
Therefore gA{y) — g(y) — f. Note that X r is infinite. Consequently there
must be x G Xr \ A, and <M(#) = p(^) > r = #A(#O)-

Now start at a point of CXT that lies on the circle {\z — Xo\ = 6r} and
move along that circle in (say) the clockwise direction towards #B. Any
two consecutive disks of the packing that are met on the way must be such
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that their centres are neighbours in X (because X is a triangulation graph).
Thus, we obtain an infinite path starting at xT, all of whose vertices are in
XT. Also, t(x) —> 0 as x —> $B. In particular, there must be a vertex
yT G X \ A on this path such that \yr — XQ\ < 6 y/i, and <M(y-r) — T. We
write 7rr = [xr = yo, yi, . -., yn — Vr\ for the truncation of the path at yr.
Then

- r <9A{XT) - I
i=l e£ET

where ET is the set of edges of X having both endpoints in XT. As a
function of r, the last term is piecewise constant and has finite support by
finiteness of A. Therefore, dividing by r and integrating over (1, \/i),

(23.7)
eeET

eeE{X)

Now e G ET implies Cx fl {\z — xo\ = 6r} / 0, where x = e~, and

^ T dT<max{fOtr(z).zeCx} mm{fo,r{z) : z e Cx}

< y'ci area(F0,r(Cx))

by (23.5). As in the proof of Lemma 23.4, we conclude that

The Cauchy-Schwarz inequality applied to (23.7) now yields (23.6). •

Proof of Theorem 23.1. We use Theorem 20.3 and first show conver-
gence to the boundary. Let Ho = {w G O : d(Zn(cj), Zo(u>)) —» oo} , where
d(-, •) is the graph metric. By transience, Px(Ho) = 1 for every x £ X. For
wG^o , the set L(UJ) of all accumulation points of (Zn(uj)) is contained in
#D. Choose e G (0, 1), and let ft£ = {a; G ft0 • diam(L(a;)) > e} .

Now take ^ = £2/4, t = 1/e and consider the set A = {x G X : |x — £| >
6 for all f G tfD}. If y G X \ A then by Proposition 23.3

Fy(tt£) < ¥y[3n : \Zn - y\ > e/4] < 4c/log(l/e).
If x G X is arbitrary then by transience

yex\A
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If we let e —> 0 then we see that Px[diam(L(-))] = 0, and Zn converges
Px- almost surely.

Now let f G #B and e > 0. Consider U = {2 € S : |^ - f | < e}. With
6 = £2/4 and t = 1/e as above, take x G X with |x - f | < 5. Then

vx{U H #B) > P*[ \Zn -x\< e/4 Vn] > 1 - 4c/log(l/e).

Thus, i/x tends to the point mass at £ when x —» £. D

24. The construction of the Martin boundary

In this section we briefly introduce the essential features of the construc-
tion of the compactification associated with the cone of positive harmonic
functions for an irreducible Markov chain (X, P).

Recall the definitions (§7. A) oft-harmonic and t-superharmonic functions
and the respective positive cones 7Y+ (P, i) and <S+ (P, i) with the base B(P, t)
of the latter. We start with t = 1, and omit £ (as well as P, when no
confusion can arise) in this case.

Suppose that (X, P) is transient, so that 0 < G(x, y) < oo for all x, y G
X. For a function / : X —> R, its potential is the function # = Gf,
where Gf(x) = J2y G(x,y)f(y). Here, the last sum is assumed to converge
absolutely (/ is G-integrable).

(24.1) Exercise. Ifg is the potential off, then f = (I—P)g. Furthermore,
Png —> 0 pointwise, as n —> oo. If f > 0 then g € <S+, and g is harmonic
(that is, Pg(x) = g(x)) in every x G X \ supp / .

We deduce the discrete version of a basic theorem of potential theory.

(24.2) Riesz decomposition theorem. Ifu G <S+ then there are a unique
potential g = Gf and harmonic function h > 0 such that u = g + h. In
particular, ifu is bounded above by a potential, then h = 0.

Proof. We have Pnu > Pn+1u > 0. Define h(x) = limnPnii(x). As
Pu(x) is finite, we can use monotone convergence to obtain

Ph(x) = P ( lim Pnu) {x) = lim Pn+1u{x) = h{x),
Vn—>oo / n—KX>

whence /i G 7Y+. The function f = u — Pu is Pfc-integrable, and

k=0 k=0

Letting n —> CXD, we find u — h — Gf = g.
To see uniqueness, suppose that u = g\ + h\ is another decomposition.

Then Pnu — Png\ + /ii for each n. Letting n —• oo, Exercise 24.1 yields
Pn9i —> 05

 s o that hi — h and consequently g\ — g.
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Finally, tiu<g = Gf, then h < limn P
ng = 0. •

We now want to gain some information about the compact convex set
B — {u ^ <S+ : u(o) — 1}, where o is our reference point in X. If y G X,
then K(-,y) G B, where K(x,y) = G(x,y)/G{o,y) = F(x,y)/F(o,y).

(24.3) Definition. (1) The Martm fcerne/ is K{x,y) = F(x,y)/F{p,y).
(2) A minimal harmonic function is a function /i G H^~ such that /i(o) = 1

and, whenever h > hi on X for /ii G W+, the function /ii//i is constant.

(24.4) Proposition. The extremal elements ofB are precisely the Martin
kernels K(-,y), where y G X, and the minimal harmonic functions.

Proof. Let u e B be extremal. Then one of the two pieces in the Riesz
decomposition must vanish. Suppose u = G/, where / > 0, / ^ 0. Then
u = ^2 cy K(-, y), where cy > 0 for y € supp/, a convex combination. By
transience, all K(-,y) are different (strictly superharmonic at y, harmonic
elsewhere). Extremality yields that |supp/| = 1, and u = K{-,y) for some
y G X. Otherwise, u is harmonic, and obviously minimal.

Conversely, suppose that K(-,y) — c • u\ + (1 — c) • U2 with ui € B.
By (24.2), each ui is a potential G/^. Along with K(-,y), Ui must also be
harmonic in X \ {y}. Therefore supp/^ = {y}, and ui = K(-,y). Finally, if
h is minimal harmonic and h = c-ui + (l — c)-U2 with Ui G B then ŵ  G 7V~,
and minimality implies U{ = h. •

Now note that, by transience, we can embed X into the set of extremal
elements of B via the map y *-+ K(-,y), and identify X with its image. It
will turn out that the other extremal elements, namely the minimal har-
monic functions, all sit in the closure of X in B, that is, they are pointwise
limits of sequences K(-,yn). One possibility is now to define the Martin
compactification just as this closure. This coincides with the original ap-
proach of Doob [101]. However, when P does not have finite range, it may
happen that X is not discrete in B, while this is one of our requirements for
a compactification of a discrete set.

(24.5) Definition. The Martin compactification X(P) is the unique small-
est compactification of the discrete set X to which all kernels K(x,-),
x G X, extend continuously. The Martin boundary is M.(P) = M(X,P) =
X(P)\X.

The term "smallest" refers to the partial order on compact ificat ions,
where idx extends to a continuous surjection from the "bigger" onto the
"smaller" compactification; "equal" means homeomorphic.

We can think of the Martin boundary in terms of equivalence classes
of sequences: a sequence (yn) G XN converges to the Martin boundary, if
it tends to oo (i.e., leaves every finite subset of X), and K(-,yn) converges
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pointwise. Two sequences are equivalent, if the limits coincide at each point
of X. The extended kernels are also called Martin kernels and written
K{x,fi), w n e r e x G X and £ G X(P). By construction, the kernels separate
the points of the boundary: if £, rj G M are distinct then there is x G X
such that K(x,£) ^ K{x,rj).

Another way of constructing the Martin boundary is the following: note
that F(o,y) > F(o,x)F(x,y), so that K(x,y) < l/F(o,x). Choose positive
weights wx (x G X) such that Ylx (Wx/F(o, x)) < oo, and define the metric

%i,2/2) =^2^x \\K{x,yi) - K(x,y2)\ + \6x(yi) - 8x(y2)\)
xex

on X. The completion of (X, 6) is (homeomorphic with) the Martin com-
pactification. We now prepare for the integral representation theorem.

(24.6) Approximation theorem. If h G 7Y+ then there is a sequence of
potentials gn = Gfn with fn > 0 such that gn —• h pointwise from below.

Proof. We use the method of "balayage". Let A C X be finite. The
reduced function of h on A is

RA[h](x) = mi{u(x) : w e 5 + , u > h on A} .

This is a superharmonic function, RA [h] < h on X and = h on A. Let /A =
h - 1A- Then (A being finite) G/A is finite and G/A > h on A. Therefore
RA[h] < GfA, and by Theorem 24.2, RA[h] is a potential. Furthermore, if
Ac B, then RA[h] <RB[h}.

We now choose an increasing sequence {An) of finite subsets of X with
union X. Then the sequence of potentials RAn[h] tends to h from below. •

The following is one of the two main theorems in Martin boundary theory.

(24.7) Poisson-Martin representation theorem. For every h G 7Y+

there is a positive Borel measure vh on M. = M (P) such that

h(x)= [ K{x,-)dvh.
JM

Proof. By the approximation Theorem, we have h = limn Gfn point-
wise, where fn > 0. We can write

Gfn(x) = K{x, •) dvn , where vn = V ] —j—r 6y .
I V I\ (0 ,1 / )

JX y e X K ,y)

We consider the vn as Borel measures on the compact metric space X —
X(P). For all but finitely many n, their total mass is h(o). By Helly's
principle for measures on compact metric spaces (see e.g. Parthasarathy
[253]), some sub-sequence of the vn converges weakly to a measure vh on
X. All K(x, •) are continuous, whence h(x) = Jx K(x, •) dvh .
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The integral defines a superharmonic function. If we had vh (y) > 0 for
some y G X then h would be strictly superharmonic at y. Therefore vh

must be supported by M.. •

We can now show that every minimal harmonic function corresponds to
some point of M(P).

(24.8) Theorem. Ifh is minimal harmonic then the representing measure
vh is unique and a point mass. Thus, h = K(-, £) for some £ G M{P).

Proof. Note that vh(M) = h(o) = 1. Let B G M be a Borel set with
0 < vh(B) < 1 (we shall see that this is impossible). Then we can write
h = uh(B) • hB + (1 - v\B)) • hM\B, where

By minimality of h we must have h = KB = ^ .M\B, whence

/ h(x)dvh(O = vh{B)hB{x) = f K(x,Odvh(O
J B JB

for every x G X and every Borel set B C M. (If vh(B) = 0 or = 1 then
this is trivially true.) Therefore K(x, •) = h(x) holds i/^-almost surely for
every x, and, X being countable, also vh(A) = 1, where

A = {£eM: h(x) = K(x, 0 V x G X} .

We infer that /i = K(-,£) for some ( G A i . This ^ must be unique, as by
construction if(-,£) 7̂  K(-,rj) when £,77 G .M are distinct. •

We shall write Mmin = Mmin(P) for the minimal Martin boundary, i.e.,
the set of all £ G M. for which if(-,£) is minimal harmonic. We now state
further important results on the Martin compactification without proofs.

(24.9) Uniqueness theorem. jMmin is a Borel subset of A4. Given h G
H+, there is a unique measure vh such that vh{M \ .Mmin) = 0 and h(x) =

Henceforth, vh will always denote this particular measure supported by
M.m[n(P). The most important theorem of general Martin boundary theory
is the following.

(24.10) Convergence theorem. For transient (X,P), the sequence (Zn)
converges Fx-almost surely for every x to an Mmin-valued random variable
Zoo. The hitting distributions vx, x G X, satisfy

t(B)= f K{x,-)dvo.
JB
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In particular, we see that vo = is1, the measure on Mmin that represents
the constant harmonic function 1. Also, the Radon-Nikodym derivative
of vx with respect to vo is K(x, •). The measure space (M.,Vo) is called
the Poisson boundary. (More precisely, we should use the whole family of
measures (vx)xex-) If y> is a ^o-integrable function on .M, then

(24.11) h(x)= [ [
JM J M

is a harmonic function. It is called the Poisson integral of cp. If ip is vo-
a.e. bounded then h G H°° = H°°(X, P), the space of bounded harmonic
functions. The converse is also true, that is, (24.11) defines a Banach space
isomorphism between the spaces H°°(XJ P) and L°°(M., vo):

(24.12) Theorem. If h e H°° then there is (p G L°°(M,Vo) such that
h(x) = JM K(x, •) (fduo . The function <p is vo-almost everywhere unique.

Proof. First suppose that 0 < h < 1. Using uniqueness of vh and u1~h

(both supported on A^min), we see that vh + v1~h = v1. Therefore vh is
absolutely continuous with respect to z/1 = r/o, and has bounded Radon-
Nikodym derivative <p. Uniqueness of (p follows from uniqueness of uh. If
h G H°° is arbitrary, then we can find h G H°° and numbers a, b such that
0 < h < 1 and h = a • h + b. We get <ph = a • ip^ + b. D

The last theorem is the starting point of measure theoretic boundary
theory: as a model for the set of limit points at infinity of the Markov
chain, and for describing the space of bounded harmonic functions, one is
primarily interested in (M,vo) as a measure space, and not so much as a
topological space. That is, different models of the Poisson boundary will
be identified when they are isomorphic as measure spaces, while different
models of the Martin compactification are considered the same when they
are homeomorphic, and the homeomorphism extends idx- In particular,
the Poisson boundary is called trivial, if vo is a point mass.

(24.13) Corollary. For transient (X,P), the following statements are
equivalent.

(a) The Poisson boundary is trivial.
(b) All bounded harmonic functions are constant (the weak Liouville

property).
(c) The constant function 1 is minimal harmonic.
(d) There is £ G M. such that Zn —> £ ¥x-almost surely for every x.

The following can be deduced from the martingale convergence theorem.
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(24.14) Probabilistic Fatou theorem. If cp is vo-integrable on M. and
h its Poisson integral, then h(Zn) —> ^(Z^) Po-almost surely.

For the unproven results stated above, the reader is referred to Kemeny,
Snell and Knapp [197], Revuz [276] and - best - Dynkin [110].

We shall use Definition 24.5 also when (X, P) is recurrent. In this case,
K(x,y) = 1 for all x , j / 6 l , and the Martin compactification is the one-
point-compactification. Theorems 24.9 and 24.10 remain trivially true. The
Poisson boundary is trivial (and of course (24.13.d) is no longer valid).

Next, we consider t-harmonic functions, that is, the elements of ?-£+(P, t).
From Lemma 7.2, we know that they can exist only when t > p(P). Let
us assume that G(x,y\l/t) < oo, that is, either t > p(P), or t — p(P) and
(X,P) is p-transient. Then G(-,y\l/t) is a function in <S+(P,t) for each
y G X. We can proceed as in the case t — 1 and define the Martin kernel

F(x,y\l/t)
(24.15) K{x,y\t) =

F(o,y\l/t) •

The associated Martin compactification is X(t) = X(P,t). It is the unique
minimal compactification of X to which all functions K(x, -\t) extend con-
tinuously. The corresponding boundary is M.(t) = M(P,t).

(24.16) Lemma. If P has finite range at x G X (that is, {y : p(x, y) > 0}
is finite) then K(-,£\t) is t-harmonic at x for every £ G M(i).

We leave this as an exercise; compare with Lemma 7.6. In general,
assume that 7i+(P, t) is non-empty, and let h G 7^+(P, t). By the minimum
principle, h(x) > 0 for all x. The h-process is the Markov chain (X, Ph)
with transition probabilities

see (7.5). The associated Green and Martin kernels are

We see that

u G <S(P, i) <̂ => u/h G S{Ph, 1) and u G H{P, t) <=^ u/h G H(Ph, 1).

In the special case when t — p(P) and (X, P) is p-recurrent, h is unique up
to a constant factor (Proposition 7.4), the /i-process is recurrent, and we
see that F(x,y\l/p) = h(x)/h(y) and K(x,y\p) = h(x)/h(o). Otherwise,
the /i-process is transient, and we can apply all the above results. Minimal
t-harmonic functions are defined in the obvious way, and M.min(P,t) =
-M-min(t) is the corresponding Borel subset of M(P, t).
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(24.18) Corollary. For each h G 7Y+ (P, t), there is a unique Borel measure
vh on M{t) such that vh(M{i) \ X m i n ( t ) ) = 0 and

x)= I K{x,-\t)dvh.h{

When the h-process is transient, -^TO)^11 is its limit distribution on M(t). If
h(o) = 1 then h is minimal if and only if the h-process has trivial Poisson
boundary.

The remaining sections of this book will be devoted to the following
questions: given particular classes of graphs or groups and random walks
adapted to their structure, can we describe the set of minimal £-harmonic
functions and the Martin compactification (which so far is only defined
abstractly) in terms of the underlying geometry? The Poisson boundary
will be considered only marginally, in those cases when it is directly linked
with our study of the Martin boundary. Note that when one knows the
minimal harmonic functions, then one can describe all positive and hence
also all bounded harmonic functions. In this sense, determining the Poisson
boundary is "easier" than determining the minimal harmonic functions. On
the other hand, knowing the whole Martin compactification will tell us in
which "directions" one has to go to infinity in X in order to find the extended
Martin kernels, and in particular, the minimal harmonic functions. Thus,
it is "harder" to determine the whole compactification than to determine
the minimal harmonic functions. Therefore it will be no surprise that the
cases where the Martin compactification is known explicitly are fewer than
those where the minimal harmonic functions have been determined, and
many more examples are available where the Poisson boundary is completely
understood.

25. Generalized lattices, Abelian and nilpotent
groups, and graphs with polynomial growth

A. Exponentials and extended exponentials
In this subsection we study the minimal ^-harmonic functions on almost

transitive graphs with polynomial growth, in particular on generalized lat-
tices. Abelian and nilpotent groups will arise as special cases. On several
occasions, we shall apply the following inequality, whose proof is an illus-
trative exercise left to the reader.

(25.1) Harnack inequality. Let (X, P) be uniformly irreducible and t >
p(P). Then there is a constant Ct > 1 such that u(x) < Cf^x^ u(y) for
every u<ES+(P,t).
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An automorphism a of a graph X is called bounded, if supx d(ax, x) <
oo. The following is our first application of the Harnack inequality.

(25.2) Lemma. Suppose that (X,P) is uniformly irreducible and a G
AUT(X,P) is bounded. If h G H+{P,t) is minimal, then h(ax)/h(x) =
h(ao) for every x G X.

Proof. Along with fo, the translate ha(x) = h(ax) is also t-harmonic.
Applying (25.1) to h, we get h(ax) < C[ h(x) for all x, where r =
maxx d(ax,x). Minimality implies ha = c • h, and we must have c —
h(ao). •

Here are two cases where this applies.

(25.3) Proposition. Suppose that F is a quasi-transitive subgroup of
AXJT(X,P).

(1) Let 3 be the centre of T. If h G H+(P,t) is minimal then

h(ax) hhx) r

(2) Let & be a compact normal subgroup of T. Then every function in
H^ (P, i) is constant on each &-orbit.

Proof. (1) Let O{ ,i G X (finite), be representatives of the F-orbits on X,
and o = o\ the reference point. Take a G 3 and define r = max{<i(aoj, oi) :
i G X}. If x G X then x = 70^ for some i G X and 7 G F. As a7 = 7a,
we have d(ax, x) = d('yctOi,'yoi) < r. Lemma 25.2 applies, and h(ajx) =
h(ao)h(/yx) = h(ax)h('jx)/h(x).

(2) In view of the integral representation over M.m[n(t) (Theorem 24.9),
it suffices to show this for minimal h G H+(P,t). This time, let r —
max{d(a0i,0i) : i G X, a G £} . If a G .ft and x G X then # = 70^
for some z G X and 7 G F. We have /? = 7~1o:7 G £. Therefore
d(ax,x) = d(f3oi,oi) < r. Lemma 25.2 implies ha = c- h, where c = h(ao).
If K = &o, which is a finite set, then J^K^ix) = Y1K^(X)' Therefore
c = 1, proving the claim. EH

We now want to determine the minimal t-harmonic functions for random
walks on generalized lattices. We take up the material developed in §6.A
and §8.B. The notation is that of (6.2). Recall the function <£p(c) and the
extended exponentials gc(ik), c G Rd, defined in (8.18).

(25.4) Theorem. If X is a generalized lattice, P satisfies (6.2) and t >
p(P), then the minimal t-harmonic functions are precisely the extended
exponentials gc with <fp(c) — t.

In particular, all bounded harmonic functions are constant.
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Proof. Step 1. Let h G H+(P,t) be minimal. Proposition 25.3(1), with
r = 3(r) = Zd, implies that there are c{ G Rd such that

h(ik) = h(iO) ec*'k for all k G Zd and i <G J .

We now show that the vectors c ,̂ i 6 X, must coincide: in the graph
structure of our generalized lattice X, we have max{d(ik, jk) : i,j G T, k G
Zd} = r < (X). The Harnack inequality (25.1) implies

e(Ci-c,).k < Cr h(jO)/h{iO) for alH, j G T, k G Zd .

This yields that C; = c is independent of i. We find that h(ik) = /i(zO) e c k .
Using the notation of (8.16), the relation Ph = t • h translates into

Thus, (h(iO))iGX is a positive right eigenvector of Pc with eigenvalue t. It
must be the Perron-Frobenius eigenvector gc, and t = (fp(c). This proves
that h = gc , the extended exponential defined in (8.18).
Step 2. Now consider the case t = 1. We want to show that the constant
function 1 = go is also minimal. We know from the first step that

{if(-,£) : £ G .Mmin(-P)} C {gc '- ^ P ( C ) = 1} •

On the latter set, the topology of pointwise convergence coincides with
the Euclidean topology on C\ = {c : </?p(c) = 1}. Thus, we can identify
A^min(P) with a Borel subset of B oiC±, and the uniqueness theorem (24.9)
yields existence of a probability measure v on C\ with supp v C B such that

l = [ gc(k) dv(c) for all k G 7Ld .

If suppz/ ^ {0} then the integral is not bounded in k. Therefore v = <5o>
and 0 G 5 . This shows that 1 is minimal, and the Poisson boundary is
trivial.

Step 3. It is now easy to deduce from Step 2 and the last statement of Corol-
lary 24.18 that each gc is minimal ^-harmonic, where t = (fp(c). Indeed,
gc being an extended exponential, the gc-process is also Zd-invariant and
irreducible, so that it must have trivial Poisson boundary. •

If P has finite range, ipp is finite on all of Rd. From Proposition 8.20
we see that for any t > p(P), the set Ct = {c G Rd : </?p(c) = t} is the
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boundary of the convex open set {(fp <t}. Thus Ct is homeomorphic with
the unit sphere in Rd. The topology of Mm[n(t) (i.e., pointwise convergence
of the extended exponentials gc) coincides with the Euclidean topology of
Ct. At the "bottom", Cp(p) consists of a single point. In particular, every
positive p(P)-harmonic function is a multiple of the unique p(P)-harmonic
extended exponential; by Exercise 8.24, this is true without any moment
condition. If m(P) = 0 then p(P) — 1 by Corollary 8.15, and again, only
existence of the first moment suffices to have this.

(25.5) Corollary. Every h G H+ (P, t) has a unique integral representation
h — Jc gc dvh{c), where vh is a Borel measure on Ct.

If m(P) = 0, then all positive harmonic functions are constant (the
strong Liouville property).

As mentioned above, there is a unique p(P)-harmonic extended expo-
nential even when P does not have finite support. But then the shape and
size of Ct may vary considerably with t. For example, take X = Z and the
random walk with law \i of the form

(25.6) fi(0) = 0 , /i(-ra) - d e-ain/nbl , /x(n) = c2 e-a2fl/nb2

(n G N), with suitable c ,̂ b{ > 0 and Q > 0. Then the function c/?M is finite in
the interval between —a\ and a2, open or closed at the endpoints according
to the choice of the six parameters. Thus, one can find the following be-
haviour: Ct has cardinality 1 for t = p(P), and increasing t, the cardinality
is first 2, then 1 and finally 0 (e.g. choosing a\ — a2 > 0 and b\ > 62 > 1).

(25.7) Exercise. Construct examples where p(P) < 1, and yet the strong
Liouville property holds.

An exponential on a group T is a positive function satisfying g(/3j) —
g(/3)g(j) for all /?, 7 G F. If F is Abelian and /i an irreducible probability
measure on F, then the minimal elements of 7^+(/i, t) for t > p(/j) are
precisely the ^-harmonic exponentials on F. This is seen by an obvious
modification of the proof of Theorem 25.4. (Consider the single orbit case,
and replace Zd by F.)

We shall see that the results regarding the Liouville property extend to
quasi-transitive random walks on graphs with polynomial growth. We first
consider an intermediate case.

(25.8) Theorem. Suppose that AUT(X, P) contains a discrete, nilpotent
subgroup yi which acts quasi-transitively. If h G TL+{P,t) is minimal, then
for every x G X, the function 7 1—> h(jx)/h(x) is an exponential on $1.

Proof. Step 1. Denote by 3 the centre of 9t. We know from Proposition
25.3(1) that h(ax) = h(ao)h(x) for every a G 3 and x G l .
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Step 2. Let ty be the subgroup of 91 generated by all commutators [/?, 7] =
/?7^-17~1 (with /3,7 G 9t) that lie in 3. We claim that h(ax) = ft(x) for
all x G X and a G $ .

To prove this, fix (3 G 9T, and consider the commutators [/?, 7] that lie in
3, where 7 G 9t. If [£,7] G 3 and £ G 91 then [^,^7] = f36f3~1[p^]6-1 =
[/?, £][/?, 7]. In particular, [/3,7n] = [/?,7]n G 3 for all n G Z.

Now consider the the set of functions hn(x) = h(f3nx)/h(f3no), where
n G Z. They are all in H+(P,t). Let 23/3 be the closure of this set with
respect to pointwise convergence, a compact set. Every function u G Bp is
in S+(P,t) and (by Step 1) satisfies u(ax) = h(ao)u(x) for all x G X and
a G3-

Define a transformation Tp : B/3 —• B/5 by Tpu(x) = u(/3x)/u(l3o). It
is continuous, and by the fixed point theorem of Schauder-Tychonoff (see
Dunford and Schwartz [107], I, pp. 468 and 470), there is u G Bp such
that Tpu = zx, that is, u((3x)/u(/36) = u(x) for all x G X. Fix this w. For
all 7 G 91, we have d(j/3o,jo) = d((3o,6) = rp < 00. By the Harnack
inequality (25.1), we have u(jo) < Cu(jf3o) for all 7, where C = C[^ Now
assume that [£,7] G 3- Then /?7n = [/?,7]n7n/3, and

We find /i([/?,7]o)n < Cu((3o) for all n G Z, which implies h([/3,i]o) = 1.
Every element of ̂ 3 is of the form a = [/?i, 71] •••[/?&, 7/e] with [/%, 7̂ ] G 3-

Therefore, using Step 1 once more, /i(ao) = 1.
None of these arguments depends on the choice of the base point o. If

we choose x G l a s the base point, then we have to renormalize, replacing
h with jr^\h. Therefore h{ax) = h(x).
Step 3. We have not yet used nilpotency of our group. Let

91 = 9l0 > 9li > • • • > 9lr_i > 9Ir = {L} ,

where 9lj = [91,01i_i]. We use induction on the degree of nilpotency r. If
r = 1, the group is Abelian and the proposed result is true. Suppose it is
true for r — 1. As 9tr_i is contained in 3, it is also a subgroup of ^3.

Now consider the factor graph X = 9Tr_i\X. It is locally finite, and
9t = 9l/9Ir_i acts quasi-transitively on it. We write n for both the
natural projections X —> X and T —> T. The transition probabilities
p{ft(x),7r(y)) = Ylweyir-xyPi30'™) °^ ^n e factor chain P are 91-invariant.
From Step 2 we know that h is constant on the orbits of ^P, and a fortiori
also on the orbits of 9tr_i in 91. Therefore we can define the function h
on X by /I(TT(X)) = h(x). Then h is t-harmonic on the factor graph with
respect to the factor chain. Minimality of h implies minimality of h, because
every function in 7Y+(P, i) lifts via TT to a function in /H+(/i, t).
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The degree of nilpotency of 91 is r — 1, and we can use the induction
hypothesis to obtain

h(jc(0<yx)) = h(n(l3)ir(x)) h(v(>y)n(x)) = h(0x) h(jx) Q

h(x) h(ir(x)) h(n(x)) h(ir(x)) Kx) Kx)

The last two theorems have several interesting consequences.

(25.9) Corollary. Let 91 be a finitely generated nilpotent group and fj, an
irreducible probability measure on 91. Then

(a) every function in W+(/i, t) is constant on each coset of the commu-
tator subgroup 91', and

(b) the minimal elements of ?^+(/i,t) are precisely the t-harmonic expo-
nentials on 9t.

(c) If, in addition, [i has finite support, then

p{li) = min{ J^ gdfi : g an exponential on 91} .

Proof, (a) Applying Theorem 25.8, with X a Cay ley graph of 91, we see
that every minimal t-harmonic function is a (pure) exponential, and hence
constant on the cosets of 9T. By Theorem 24.9, this must hold for every
element of H+(/i, t).

(b) Let g be a t-harmonic exponential. We have to show that g is min-
imal. Suppose g > h, where h G 7Y+(/i,t). By (a), h is constant on each
coset of 91'. We pass to the factor graph and factor chain with respect to
this normal subgroup. This is the random walk on the Abelian group F/F'
whose law is given by /I(TT(X)) = n(xYf)\ compare with Step 3 of the proof
of Theorem 25.8. We see that h as well as # is in W+(/i, t), and # is minimal.
Therefore lj/h and, equivalently, g/h are constant.

(c) We know that finite range implies p(/i) = min{t : H+(fJ,,t) ^ 0}; see
Lemma 24.16. Now (b) tells us that p(/x) is the minimal t for which there
is a t-harmomic exponential. If g is any exponential, then it is t-harmonic
with t = fiyig dfi, if this number is finite, •

When p(/i) = 1 then p(JT) = 1, and we infer from Exercise 8.24 (see
the observations before Corollary 25.5) that the constant function 1 is the
unique harmonic exponential, even without assuming finite range. Hence,
again, the strong Liouville property holds. This holds in particular when
\x is symmetric. It is quite easy to generalize this to random walks on
quasi-transitive graphs with polynomial growth:
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(25.10) Corollary. Suppose that the random walk (X,P) is quasi-
transitive, and that the graph X has polynomial growth. Then all bounded
harmonic functions are constant. If in addition p(P) = 1 then all posi-
tive harmonic functions are constant. This holds, in particular, for strongly-
reversible random walks.

Proof. Recall Theorem 5.11 and its proof: there is a compact normal
subgroup ^ of F such that T/R is a finitely generated group with polyno-
mial growth acting quasi-transitively and with finite vertex stabilizers on
the factor graph &\X. Proposition 25.3(2) tells us that every function in
?i+(P,t) is constant on each $-orbit.

As above, this allows us to reduce all considerations to the factor
chain on the graph &\X. (The spectral radius of the factor chain is
lim supn p(n) (o, Ro)1/71 = p(P) by finiteness of fio.) We find a nilpotent
subgroup with finite index W. in T/& (Theorem 3.17), which acts with finite
vertex stabilizers on &\X.

Thus, we may assume without loss of generality that we are in the situa-
tion of Theorem 25.8. Then we know that every minimal harmonic function
is constant on each orbit of the commutator group W. Again, by the inte-
gral representation theorem this is true for every function in H~*~(P, t). Now
consider the factor chain P' on X' — W\X. The factor group is finitely gen-
erated and Abelian, and (X\ P') is a random walk on a generalized lattice.
Every bounded harmonic function (which may be assumed positive with-
out loss of generality) is constant (Theorem 25.4), and the same must hold
for (X,P). We have p(P) < p{P'). Suppose p(P) = 1. Then p(P') = 1.
Therefore (X',P') and consequently also (X, P) have the strong Liouville
property. Finally, strong reversibility implies p{P) = 1 (Corollary 12.12.) •

In the context of the last corollary, one can also describe the whole set
of minimal t-harmonic functions. They are obtained by lifting the exponen-
tials gc G H+{P>\t) from the generalized lattice X1 first to the graph R\X
(constant on the W-orbits) and then to X itself (constant on the ^-orbits).

B. The Martin compactification of random walks on the grid
Having found the minimal harmonic functions, we now determine the

whole Martin compactification in the special case of random walks on Zd.
In view of Corollary 25.5, we expect that under suitable conditions, the
Martin boundary will consist of a single point, when the mean vector is 0,
and otherwise will be homeomorphic with the unit sphere in Rd. The first
of these cases is considerably simpler than the second, and is based on the
following Green kernel estimate.

(25.11) Theorem. Let ji be an (irreducible) probability measure on Zd,
d > 3, with finite moment of even order 2r > max{2,d — 2}. If m(/i) = 0
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and E is the covariance matrix, then
r(^n2\ , v-(d-2)/2

G ( O , k ) ~ — 2 (TrE'Mki) as |k |->oo.

Proof. We first assume that ji is aperiodic, and use Theorem 13.10. To
start, consider G(0,k) = YlnLi a n(k) , where

a«(k) =

If we substitute tn = n /E" 1^] (recall that E"1 is positive definite) then
~1[k] tends to 0 as |k| —> oo, and

k (d-2)/2 _
~'0,k) =

7 1 = 1

'det E V^d
 ( E " 1 ^ ] ) G(0,k) = ^ t ~ d / 2 exp(-l/(2tn)) Atn

is a Riemannian sum of /0°° t~d/2 exp( -^ ) dt = 2 ^ " 2 ) / 2 r ( ^ ) . Therefore
G(0, k) has the asymptotic behaviour that we have asserted for G(0,k).
We now show that lim|k|_>Oo(C?(05k)/Gf(0,k)) = 1, or equivalently, that

) = o(|k|-(d-2)). Set

{l, (Ikl/V^^1} |/x(n)(k) - an(k)| .max{

Then fin —> 0 as n —>• oo by Theorem 13.10. Given e > 0, we have /3n < e
for all n > n£. Then

|k | d - 2 |G(0 ,k) -G(0,k) |

< i y &> , i y a. , ikid~2 ^ A .
-|k|(27r)d/2 ^ »i/2 + |k|(27r)d/2 ^ nV2 + (27r)d/2 ^ nd/2 '

1 IV y n = l ' IV y n = n £
 v ; n > | k | 2

The first of the three terms on the right hand side tends to 0 when |k| —+ oo.
The second is bounded by

|2

and the third is bounded by

2e
x^'^dx = —

o

Therefore the error term is bounded by a constant times e, as required.
If ji is periodic, then we replace it with ft = \(6o+n). The corresponding

Green kernels and covariance matrices satisfy G^(0, k) = 2G/x(0,k) and
E^ = ^EM. It is now immediate that the asymptotic formula for Gp, carries
over to GM. •

In particular, lim|k|^Oo(^(rn5k)/G(0,k)) = 1 for each m G Zd.
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(25.12) Corollary. Under the conditions of Theorem 25.11, the Martin
compactification of (Zd, /i) is the one-point compactification.

Next, we study the - harder - case when /z has mean vector m / 0.
We assume that d > 2 and that supp/x is finite; in dimension d = 1 the
result will follow from Corollary 26.14(a) below. We know that the minimal
harmonic functions are the exponentials #c(k) = e c k with c G C\ = ^ ^ { l } ,
where <pM(c) = £ k e ° ' k M k ) -

We shall prove that the Martin compactification is obtained by embed-
ding 2td into the unit ball in Rd via k i—• 1+

1.k. k and taking the closure

Zd. In this compactification, the boundary is the unit sphere S^_i in Ed,
and a sequence (kn) converges to u G §d-i if and only if |kn| —> oo and
7j^rkn —> u. See Figure 21.

Figure 21: the
compactification of'Z2

Take c G Ci. Then the gc-process is the random walk with law /xc(k) =
eck/x(k). Its mean vector mc = grad(/?/x(c) ^ 0 depends continuously on c.
The set C\ is the smooth boundary of a strictly convex set. Hence, given
x G M.d \ {0}, there is a unique c(x) G C\ such that mc(x) is a positive
multiple of x. It is determined by the equation

(25.13) x

For each u G S^_i, let Ru be the rotation that sends u to the first coordinate
vector ei and leaves the orthogonal complement of {u, ei} invariant. For a
vector z = (z i , . . . , zn) G Cd, we write zf — (z^ • • •, zn). We shall need the
(d - 1) x (d - 1) matrix

u = (qu(hj))d
ij=2 with qu(ij) =

The associated quadratic form is Qu[z/] = z ' • Quz', where z; G Cd~1.
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(25.14) Lemma. There is A > 1 such that for all c G Ci, u G §d_i and
x' G M*"1

A"1 < |mc| < A and A"1 |x'|2 < Qu[x'] < A |x'|2 .

Proof. The first statement is a consequence of the fact that c i—> mc is
continuous and mc ^ 0 for all c G Ci.

Let Qc = X^kkkVc(k) be the d x d matrix of second order moments
(without any rotation) of /z, where c = c(u). Then Qc is positive definite
by irreducibility of /x; compare with Lemma 13.1. Therefore RuQcRu is
also positive definite. Prom this matrix we obtain Qu by deleting the first
row and column. Thus Qu is positive definite as well. Again, the mapping
u i—> Qu is continuous, whence there are a positive lower and a finite upper
bound on the eigenvalues of the Qu, and the second statement follows. •

We shall prove the following.

(25.15) T h e o r e m . Suppose that d>2 and fi has finite support and non-
zero mean. Then, as |m| —> oo, setting u = u(m) = m/ |m | and c = c(m),
we have for every k G Zd

G(k,m) - Imd"1 v /d^tQ^(27r|m|)~( d~1 ) / 2exP(c. ( k - m ) ) .

This leads to the proposed description of the Martin boundary:

(25.16) Corollary. Let supp/i be finite and m(/i) ^ 0 . If m tends to
infinity in %d and i ^ m —> u G §d-i, then for each k G 7Ld

K(k, m) —> ec'k where c = c(u).

In order to prove Theorem 25.15, we shall work with the Green function
(2c(k, m) = G(k, m) pc(m—k) of the gc-process. In other words, we take the
exponential from the right to the left hand side of the asymptotic formula.
Note that c = c(m) varies with m, so that we shall have to take care
that all our subsequent estimates are uniform in c and u, respectively. The
characteristic function of fic is 0C(V) — 2k^c (k ) e z k v , where v G W^.

(25.17) Lemma. For m G Zd,

Proof. By Spitzer [307], P. 7.5, the only point where </>c(v) = 1 is
v = 0; compare with Lemma 13.1. (The "aperiodicity" of [307] means that
the group generated by supp/x is the whole of Zd.) By Fourier inversion,



272 IV. An introduction to topological boundary theory

We show that |1 — ^ ( v ) ! " 1 is integrable on W^ (or equivalently, on some
neighbourhood of 0), so that we can exchange the integral with the limit
when N —> oo by dominated convergence.

Since l - 0 c ( v ) = - i m c - v + | Q c [ v ] + (9(|v|3)v_>o , we have | l - 0 c ( v ) | >
£i\ — ixnc • v + ^Qc[v]| in Wd, where S\ > 0. Up to a change of variables
that transfers a suitable neighbourhood U of 0 into another neighbourhood
of 0, we may assume for our purpose that ^Qc[v] = |v|2 and mc =
where €2 > 0. As above, we write v = (vi, v'), where v' G M^"1. Then

Hmc-v+AQc[v]| > \-is2v1+\v'\2\ =

by Holder's inequality, where C > 0. To conclude, we observe that
|Vl |-2/3|v/|-2/3 i s integrable near 0. D

For our asymptotic estimate, we can restrict the integral in Lemma 25.17
to any suitable neighbourhood of 0. To see this, given e G (0, TT), let
/ = f£ G C°°(Wd) be a radial function (i.e., invariant under rotations
around the origin) such that 0 < / < 1, / (v) = 1 for |v| < e/3 and
f(y) — 0 for |v| > 2e/3, v G W^. Then the periodic continuation of
(1 - / ) / ( l - 0C) to Rd is a C°°-function whose derivatives are uniformly
bounded with respect to c, because they depend continuously on c G C\
and C\ is compact. Therefore the Riemann-Lebesgue lemma implies

(25.18) G e ( k > m) = ^

and the o(-) is uniform in c.
Our principal tool is the following extended version of the function

For u G §d_i and c = c(u), we define the "rotated" Laplace transform

(25.19) £u(z) = Y^ e x P ( z * ^uk) /xc(k), z G Cd .

It is analytic on the whole of Cd for each u.

(25.20) Proposition. There is e > 0 such that in Ue = {z G Cd : |z| < e}
one can decompose

1 - £u(z) = (Zl - Aa(z'))Bu(z).

The functions Au and Bu are analytic in U'£ and Ue, respectively, and depend
continuously on u G §d-i &s well as all their derivatives. Furthermore,

^u(z') = -|Qu[z']+O(|z' |3),

and the O(-) is uniform in u when J! -^ 0.
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Proof. Using (25.13), we compute grad£u(O) = ^ k / i c (k ) .R u k =
# u m c — |tnc|ei. Also, £u(0) = 1. Therefore, for fixed u, the proposed de-
composition of 1 — £ u in a suitable neighbourhood of the origin follows from
the Weierstrass preparation theorem; see Hormander [175], Thm. 7.5.1. To
see that the neighbourhood can be chosen independently of u, we have to
look at the first three lines of the proof of Thm. 7.5.1 in [175] in order to
see how the neighbourhood is constructed.

First, we need r > 0 such that £u(zi,O') ^ 1 when 0 < \zx\ < 2r. Now,
the mapping (u, z) »-> ^ - £ u ( z ) is continuous and equal to |mc| > A"1 > 0
at (u, 0) for each u G Sd-i- Therefore it has real part > A~1/2 in a
neighbourhood Uu x Vu of (u, 0). The sphere is covered by finitely many
C/U(j), and p| • Vu(j) is a neighbourhood of 0 in Cd where R e ( ^ - £ u ) > A~1/2
for all u. Therefore r can be chosen independently of u.

Next we need S > 0 such that £u(z) ^ 1 when \z±\ =r and |z'| < S. The
same type of argument as above shows that 6 can be chosen independently
of u (exercise !).

According to [175], the decomposition is then valid in {\zi\ < r , |z'| <
6}.

The function Au satisfies £u(Ai(z')> z ' ) = 1 f°r a n z ' ^ M'e a n ( i u ^ §d-i-
This yields that Au and its derivatives depend continuously on u. Conse-
quently, the same must hold for Bu. Differentiating the implicit equation,
we find grad^tu(0/) = 0' and the matrix of second order derivatives of AU

at 0' is — Qu. Near the origin, each derivative of Au is uniformly bounded,
so that the Odz^3) in its expansion is uniform. •

Proof of Theorem 25.15. Let k e Zd be fixed. Let e be as in Proposi-
tion 25.20 or smaller, u = u(m) and c = c(m). The characteristic function
of nc is 4>c(v) = £u(z i?uv), as Ru leaves the inner product invariant. From
(25.18) we get that Gc(k,m) = G^(k,m) + oflml"^-1)/2) , where

G£(k m) -G c ( k , m ; - (27r )

Now remember that Rum = |m| ei. Substituting Ruv = w, we obtain

Ge
c(k, m) = - - i - , / e~{ lmlWl , /u-kfw)

 A dw , where
(27r)d JM<£ iw1-Au(i*r')

/u,k(w) = - exp(z Ruk • w) f(vr)/Bu(i w) .

We extend /u?k to a function in C°°(M ) by setting it equal to 0 outside
of {w : |w| < e}. It has compact support, and all its derivatives depend
continuously on u G §d-i and hence are bounded uniformly in u. For fixed
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d - 1 , |w7| < £, we consider its Fourier transform in the first variable:

/u,k(*,w')= f ° ei*tOl/»,k
J —OO

It is continuous in (£, w7) and once more by the Riemmann-Lebesgue lemma,
fufrfaw') = o(|£|-(d+1)/2) uniformly in u and w', as t -> oo.

We now choose e small enough that in the expansion Au(iw
f) =

|Ou[w7] + £>(|w'|3), the (9(|w7|3) is bounded in absolute value by |<2u[w
7],

when |w7| < e (see Proposition 25.20). Then Re(iwi — *4u(zw7)) < 0, and

We obtain

i w i - i u ( i w ' ) Jo

(27r)dJlvvn<£J0 J_£

ds.

We decompose the integral into two parts, where the first is over t G
[— |m|, —|m|/2) and |w'| < e, and the second over t G [—|m|/2, oo) and
|w'| < e. Since the exponential is bounded by 1 in absolute value and
/u,k(*, W) = o(|£|-(d+1)/2), the first part is oflml-^-1)/2) as |m| -+ oo. In
the second part, we substitute yjt + |m| w7 = x7. We obtain

Recall that the O(-) is uniform in u when the argument tends to 0. Therefore
(and due to our choice of e), we may use dominated convergence to see that

I I —(d—1)/2 poo n ^

Gc(k, m) ~ ' ' d / / exp(-iQu[x']) /u,k(t, 0') dx! dt
(27r;« 7 - | m | / 2 .

:= Y det Qu (27r|m|) — / /u,k(^?0)dt,

when |m| —> oo. To conclude, we observe that

7T / /u,k(*,0/)dt = /u,k(0) = -l/Bu(0) = l/|mc|. D
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(25.21) Exercise. Let \x have finite support on Zd, d>2. When t = p(fi),
the Martin boundary M(fi,t) consists of a single point.

When t > p(fi), the boundary is homeomorphic with the unit sphere; if
|m| -> oo and ^ - • u € Sd_i then K(k,m\t) -> e c k for each k G Zd,
where c is the unique point with ^ ( c ) = t that satisfies (25.13).

26. Trees, ends, and free products

The theme of this section is the relation between the Martin and end
compactifications of a graph. In comparing different compactifications of
X, by a natural surjection of one onto the other we mean a continuous
mapping that extends idx and maps one boundary onto the other.

We shall start with a general result. Modifying the definition (1.20), we
say that (X, P) is weakly uniformly irreducible if there is K < oo such that
x ~ y implies p^k\x, y) > 0 for some k < K. As usual, X is supposed to be
a connected, locally finite graph.

If A C X and x, w € X then we shall write

FA(X,W) = FX[ZSA =w]

for the probability that the random walk starting at x first hits the set
A at the point w. For a function / : X —> JR. (or A —> R), we write
FAf(x) = Y2weAFA(x,w)f(w), a s usual when dealing with kernels. If
y G X and the random walk starting at x has to pass through A with
probability 1, given that it reaches y (that is, sA < sy almost surely, if
ZQ = x), then

(26.1) F(x,y) = ^ FA(x,w)F(w,y).
weA

This identity will be crucial when dealing with ends.

(26.2) Theorem. If (X, P) has bounded range, is weakly uniformly ir-
reducible and transient, then the Martin compactification X{P) surjects
naturally onto the end compactification Xe.

Proof. As P has bounded range, it is nearest neighbour on some fc-fuzz
X^k\ The latter has the same end compactification as X by Lemma 21.4.
Therefore we may assume that P is nearest neighbour on X.

Let (xn) be a sequence in X converging in the Martin topology to a
boundary point. We write h = limnK(-,xn). We have to show that (xn)
converges in the end compactification.

Suppose the contrary. Then (xn) must have two different accumula-
tion points £,77 G $eX. There is some finite ball B C X such that
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d(C(t;, B),C(r), B)) > K, where K is the bound giving weak uniform ir-
reducibility. We write U for the set of neighbours of B in C(£,B), and
analogously V = {x G C(r],B) : d(x,B) = 1}. There are sub-sequences
(xn/) and (xn») lying entirely in C(£, B) and (7(77, B), respectively. If x G U
then the random walk starting at x has to pass through V in order to reach
any of the xn». We apply (26.1) and divide by F(o, zn»), so that

In the same way, K(y,xn>) = J2xeu Fu{y,x)K{x,xn') for every y G V.
These sums are finite, and letting n1\n" —> 00, we find h(x) — Fvh{x) on
U and h(y) = F^ / i^ ) on F .

Next, let V* = {y G V : Fv(x,y) > 0} be the set of points where the
first visit to V may occur with positive probability, when x G U. This
set is independent of x G C7. Indeed, if #,!<; G Z7 then there is a path
x = Xo,a:i,... ,xe — w that lies entirely in C(B,£), whence d(xi, V) > K
for all i. Weak uniform irreducibility implies p(ki\xi-i,Xi) > 0 for some
ki < K. Being nearest neighbour, in K or fewer steps the random walk can-
not get beyond distance K from the starting point X{-\ and, in particular,
cannot hit V. This implies

Analogously, U* — {x G U : Fu (y, x) > 0} is independent of y G V.
Now let / be the restriction of h to U* and Q the matrix indexed by

U* with entries q(x,w) = J2yeV* Fv(x,y) Fu(y,w). The matrix is sub-
stochastic, and irreducible, as all its elements are > 0. Suppose that there
is xo G U* such that Ylweu* Q(xo,w) < 1- Then, for arbitrary x G £/*,

and p(Q2) < 1. But Q 2 / = / , and the Perron-Probenius eigenvalue of Q2

must be p(Q2) = 1. We conclude that

53 I ] F V ( ^ y)Fu(y, w) = 1 for all z G 7̂* .
weu*yev*

But this contradicts transience, as it implies that for any starting point
x G U*, the random walk returns to U* with probability 1. •
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(26.3) Exercise. Verify that the theorem also holds with X(P, i) in the
place of the "ordinary" Martin compactification, whenever t > p(P) or
t = p(P) and the random walk is p-transient. [Hint: Use a suitable h-
process.]

A. Thin ends and trees

Under the conditions of Theorem 26.2, we have a natural surjection
a : X(P) —> Xei and in this subsection we shall study the following two
questions. (1) When is a a homeomorphism, so that the Martin boundary
is realized by the space of ends of X ? (2) Given an end £, under what
conditions is cr~1(^) a single point in M(P) ?

We shall also give answers for X(P, t) in place of X(P). To simplify, we
shall write t > p(P), when either t > p(-P), or t = p{P) and the random
walk is p-transient.

We start with the simpest case, namely that of nearest neighbour random
walks on trees. Let T be a tree and o the root. Recall that the confluent
v A w of two elements v, w 6 T is the last common element on the geodesies
TT(O, V) and ?r(o, w).

(26.4) Theorem. Let P be an irreducible nearest neighbour random walk
on the locally finite tree T. If t > p(P), then the Martin compactifica-
tion X(P,t) coincides with the end compactification. The extended Martin
kernel is given by

K(x, £\t) = K(x, c\t), where £ £ $T and c = x A ( .

For every £ G $T, the function K(-,£\t) is minimal t-harmonic.

Proof. In view of Theorem 26.2, we only have to show the following
to prove that X(P,t) = Xe : if (xn) converges to the end £ of T, then
K(x, xn\t) converges to K(x, c|t), where c = x A £.

To see this, let y be the point immediately after c on TT(O, £). Then
the branches To?y and Tx^y (see §6.B) coincide. All but finitely many
xn lie in To?z/, and in this case, Lemma 1.23 tells us that F(o,xn\l/t) =
F(o,c\l/t)F{c,xn\l/t) and F(x,xn\l/t) = F(x,c\l/t)F(c,xn\l/t). There-
fore K(x, xn\i) = K(x, c\t) for all those n, and consequently limn K(x, xn\t)
= K(x,c\t).

For minimality, suppose that K(-,£\t) = a • hi + (1 — a) • /i2, where the
hi are t-superharmonic and hi(o) = 1. Finite range implies that K(-,£\t) is
t-harmonic (Lemma 24.16). Therefore the hi are also t-harmonic.

Now let x € T, and y a point on the geodesic ray 7r(x,£). For the
/ii-process (24.17) we know that F^ix^y) < 1. Rewriting this in terms
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of P, we find F(x,y\l/t)hi(y) < hi(x). On the other hand, K(x,£\t) =
F(x,y\l/t)K(y,£\t) by the above. Therefore

K(x, £\t) = a • hx{x) + (1 - a) • h2(x)

> a • F(x, y\l/t) h!(y) + (1 - a) • F(x, y\l/t) h2(y)

The inequalities used cannot be strict, and h{(x) = F(x,y\l/t)hi(y). In
particular, with y = xA(, we find hi{x) = F(x,y\l/t) hi(y) and 1 = hi(o) =
F(o,y\l/t) hi(y). Dividing, we see that hi(x) = K(x,y\t) = K(x,£\t). D

As a matter of fact, we see that the extended Martin kernels are locally
constant: for each x € T and £ € $T, the kernel K(x, -\t) is constant on the
neighbourhood {v € T : x A v = x A £} of £.

In the transient case, we can also compute the hitting distributions vx

on #T, x e T, in terms of the F(x,y). The sets ^Tx,y, y e T\ {z},
generate the Borel <J-algebra of fiT. First, if x, y are arbitrary (x ^ y) and
u> is the neighbour of y on 7r(x,2/), then a variation of Lemma 1.23 yields
Vx(fiTXiy) = F(x,w)iyw('dTw^y), since the random walk must reach w if it
"ends up" in Tx,y = Tw,y. Second,

) = F(w,y)(l - vy(

since $Tw,y = $T\'$Ty,w. Exchanging y and w, we find a second inequality
in the two unkowns vw(fiTWty) and vy{tiTyiW). We can solve the system of
equations, and find

(26.5)

where w € 7r(x,y), w ~ y. Note that F(w,y)F(y,w) < U(w,w) < 1 by
transience. If h € 7Y+(P, t), where (as usual) t > p(P), then we can apply
(26.5) to the /i-process in order to find the (unique) representing measure
vh on the boundary, see (24.18).

(26.6) Example. Consider the simple random walk on the homogeneous
tree T = Tq+i. We know that F(x,y\z) = F(z)d(x>y\ where F(z) has been
computed in the proof of Lemma 1.24. Thus, if x G T, £ G OT and c = x A£
then

K(x,£\t) = ^ ( i / ^ c ) - ^ ) = jF(1/t)«*,0 j

where f)(x,̂ ) is the height (horocycle number) of x with respect to the end
£; see (12.13), where CJ replaces £. In particular, when t = 1, F(l) = 1/g and
K(x, £) = g-^C^^). The hitting distribution vx on the boundary is invariant
under the stabilizer of x in AUT(T). We find vx($Yx,y) = l/\S{x, k)\, where
k = d(x, y) and S(x, k) is the sphere of radius k centred at x. D
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One of the next questions will be what happens when instead of nearest
neighbour, we consider a bounded range random walk on a locally finite tree.
The tool for answering this will also give an answer to question (2) posed
at the beginning of this subsection. Recall that Fv(x,y) is the probability
that y is the first point of V C X reached by the random walk starting in x.
With arbitrary finite subsets U, V of X we associate the matrix #(£/, V) =
(Fv {x,y))x v eV. If V = {y} then we write f(U,y) (a column vector)

instead of $(U, V). With any non-negative matrix Q = (q(x,y))x£U eV we
associate the coefficient

X(Q) = max{c : q(x, y) > cq(xf, y) for all x, x' e U, y G V} .

Finally, recall the definition (21.1) of a standard neighbourhood base of an
end of X.

(26.7) Theorem. Suppose that (X, P) is nearest neighbour and transient.
Let £ be an end of X. If there is a standard neighbourhood base {C(£, Vn) :
n € N}, such that

oo

A(S(Fn, Fn+i)) > 0 for all n and ] T A(ff(Vn, Vn+1)) = oo ,
n=l

then £ corresponds to a unique point in M. (P) under the natural surjection
a, and cr-1(^) is minimal.

Proof. Suppose that U fl C(€,Vk) = 0 and that y € C(£,Vn), where
n > k. Then the random walk starting at any x £ U has to pass through
Vki"")Vn ( m tins order) if it visits y. By (26.1), this implies

(26.8) f(U,y) =3(U,Vk)3(Vk,Vk+i)---3(Vn-i,Vn)f(Vn,y).

If U = {o, x}, the Martin kernel K(x,y) is the quotient of the two entries
of f(U,y). If y —> £ then n —* oo, and as we want to show that K(x,y)
converges, we need a result on convergence of matrix products such as those
occurring in (26.8). We interrupt the proof in order to set up the necessary
machinery.

Denote by Cd the non-negative cone in Rd, by C% its interior (the strictly
positive cone), by Sd the standard simplex in Cd (the vectors summing up
to 1), and by S% its intersection with C°d. Furthermore, Vd is the central
projection from the origin of Cd \ {0} onto Sd> On <Ŝ , we introduce the
hyperbolic metric

a(u)b{u')
0d(a,b) = log max

u,u' b{u)a{uf) '
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where a = {a(u))ueU
 a n d b = (b(u))ueu with \U\ = d. This metric induces

the Euclidean topology in S^. If no confusion can arise, we shall omit the
subscript d. A non-negative, non-zero matrix Q = {q{u^v))u^jj,v^v is said
to have its zeros disposed in columns, if X(Q) > 0, that is, in any column,
either all elements are > 0 or all are = 0. Its Birkhoff contraction coefficient

(26.9) Birkhoff's contraction lemma.

Wlth
q{u',v)q{u,v') '

where the minimum ranges over all non-negative entries of Q.

For a proof, see e.g. Seneta [297], Chap. 3, where only square matrices
are considered; the present case requires no changes. A sequence (cn) of
non-zero vectors in Cd is said to converge in direction, if Vcn converges to
a point in Sd-

(26.10) Proposition. For n = 1,2,..., let Qn be a non-negative, non-zero
d(n — 1) x d(n) matrix whose zeros are disposed in columns. If

T(QI" m Qn) ~* 0, and in particular, if
71=1

then there is a unique c £ ^d(o) sucn that for any choice of vectors an G
CV), the sequence Q\ • • • Qna.n converges in direction to c.

Proof. Set Rn = Qi"- Qn- Since r(Rn) < r(Qi) • • • T(Qn), it is clear
from Lemma 26.9 that divergence of J2n y/^iQn) implies r(Rn) —» 0.

We have VQnSdin) ^- ^d(n-i)- Thus, the sequence of sets Dn =
VQ\ - - • Qn^din) (n — 1,2,...) is decreasing. We prove that their intersec-
tion contains a single point c E $d(o) * ^ ^s sufficient to find a sub-sequence
whose intersection is {c}.

Write Rn = (rn(u,v))u(_UveV , that is, the rows of Q\ are indexed by
the set U and the columns of Qn and rows of Qn+i by the set Vn. We have
X(Rn) > A > 0 for all n, where A = A(Qi).

Now choose for each n a non-zero column rn(vn)
 ={rn(u,vn))u^u of

Rn. By compactness, there must be a sub-sequence (n(k)) and a vector
c = (c(u))ueU in Sd(o) such that Vrn^(vn^) —• c. We must have Xc(u) <
c{uf) < X~xc(u) for all u,u', whence c G ^rov
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If r(Rn) —> 0 then (f)(Rn) —• 1, which implies that

rn(u,vn) I rn(u,v'n)
rn(u',vn)/ rn(u',v'n)

1

uniformly in u, u' G U and v'n G Vn corresponding to non-zero columns of
Rn, as n —y oo. We infer that

uniformly in v'n,k^ G V ^ ) corresponding to non-zero columns of Rn{k). Now
Dn(fc) is the convex hull of the projections onto Sd(o) of the non-zero column
vectors of Rn(k)- Therefore f)k Dn^ = {c}, as proposed. •

Proof of Theorem 26.7 (concluded). We return to the identity
(26.8). By assumption, each matrix $(Vk, Vk+i) has its zeros disposed in

columns. Also, y/<l>($(Vk,Vk+1)) > \(S(Vk,Vk+1)).
Given x, irreducibility yields that there are x$ = o, x±,... ,xi = x such

that Xi ^ x for i < £ and p{xi,Xi+i) > 0. Analogously, there are yo =
#,2/i,---,2/m = o such that yj ^ o for j < m and p(yj,yj+i) > 0. For
U = {o, x}, we choose K = K(U) large enough that VK does not contain any
of the Xi and yj. Then also $(U, VK) has its zeros disposed in columns, since
for y eVK

,xi) FVK (x,y) and

Fv«(x,y) > p(yo,yi) • • 'P(ym-i,ym) FVK(O,V) •

If we set Qi = $(U,VK), Q2 = W^+i), • • •, then
Proposition 26.10 and (26.8) imply that there is a vector f ((7, £) G <S.% such
that

for every sequence (yn) in X that converges to the end £. We note that the
same argument works for arbitrary finite [ / c l , and that

(26.11) f(U,0=V3(U,Vk)f(Vk,£) for every k > K(U).

Returning to U = {o, x}, we see that K(x,yn) converges to the quotient of
the two entries of f(i7,£). This proves that cr-1(^) is a single point of the
Martin boundary, and we identify this point with the end £.

We are left with proving minimality of if (•,£), and proceed as for The-
orem 26.4. Suppose that K(-,£) = a • hi + (1 — a) • h^, where the hi are
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harmonic and hi(o) = 1. For A c X, we write hj(A) = (h(x))xeA and
= (K(x,O)xeA- The ^-process satisfies 2 v e A

 Fh, (*. v) < 1. and
^ y ) = FA(x,y)h(y)/h(x). Thus ^(x) > E ^ F ^ y ) / ^ ? / ) - With

[/ = {o, x} and ^ = K(U) as above, we get

(26.12) hi(U) > $(U, VK) 3(VK, K+i) • • • S(K-i , Vn)

elementwise for all n > n. On the other hand, (26.11) implies

= S(U, VK)S(VK, VK+1) • • • 3(Vn_!, Vn) k(Vn, 0

for all n > K. AS in the proof of Theorem 26.4, we infer that equality must
hold in (26.12). Letting n -> oo, we find Phi(17) = f(f/,O- Therefore
hi(x) = hi(x)/hi(o) = K(x,0- •

We now explain a few applications of Theorem 26.7. Usually, there are
obvious lower bounds on the numbers A(Sr(Vr

n, V^+i)). As above, when
cr~1(^) is a single element of the Martin boundary, we identify the end £
with the latter. Thin ends have been defined in Section 21.

(26.13) Corollary. Suppose that (X, P) is uniformly irreducible and has
bounded range. Ift> p(P), then every thin end is a point of M.m\n(P, t).

Proof. Again, we may suppose without loss of generality that the ran-
dom walk is nearest neighbour (if an end of X is thin then it is also thin as
an end of any A;-fuzz of X). If h is any function in 7^+(P, £), which exists
by Lemma 24.16, then the /i-process is transient and uniformly irreducible
because of the Harnack inequality (25.1). Also X(P,t) = X(Ph, 1). Thus,
we may also assume without loss of generality that t = 1 and (X, P) is
transient.

Let K and SQ be the constants of uniform irreducibility in (1.20). Take
a thin end £ of X. We can find a standard neighbourhood base {C(£, Vn) :
n € N} with diam(Fn) = m < oo and d(Vn, Vn+i) > K + ra/2 for all n. We
show that the corresponding numbers A($(Vn,Vn+i)) are bounded below
by a fixed constant, so that Theorem 26.7 applies.

Let x, x' e Vn. Then there is a path [x0 = x, xi,..., xr = x'\ in X with
length r <m. We have d(xi, Vn) < m/2 for each i. Given z, there is ki < K
such that p(ki\x{-i,Xi) > eo. Every element on a path of length < K
starting at X{-\ is at distance at most K from #i_i, and hence at distance
at most K + m/2 from Vn. None of its elements lies in Vn+\. Therefore,
as the function x K-» FVn+1(x,y) (where y € V^+i) is harmonic outside of
V^+i, it is also Pki-harmonic at Xi-\. This yields

Fv«+i(xi-Uv) > p{ki)(xi-i,Xi)FVn+1(xi,y) for all y e Vn+1,

K + i ) ) > ^ . •
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(26.14) Corollary, (a) Let T be a tree. Suppose that (T,P) is uniformly
irreducible and has bounded range. Then for every t > p(P), the Martin
compactification X(P,t) coincides with the end compactification, and all
ends are in Mmin(P,t).

(b) In particular, let T be a group with a non-cyclic free subgroup of
finite index, and /i a finitely supported irreducible probability on T. Then
for every t > p(fi), the Martin compactification X(fi,t) coincides with the
end compactification ofT.

For (b), recall that the random walk must be ^transient by Theorem
7.8. The same as (a) holds, more generally, for graphs having no thick ends,
although such graphs are not necessarily roughly isometric with a tree. The
following is one of our very few excursions into measure theoretic boundary
theory; it combines various results from previous sections with Corollary
26.13 and applies also in the presence of thick ends.

(26.15) Corollary. Let X be a graph with infinitely many ends, and sup-
pose that P has finite range and AUT(X, P) acts transitively on X. Let v
be the limit distribution on tfeX of the random walk starting at o. Then
the pair (i?eX, v) is a model for the Poisson boundary of (X, P).

Proof. For the existence of v, that is, convergence of Zn to a random end
Zoo, see Theorem 21.16; we know that p(P) < 1 from Theorem 10.10. By
"model" we mean of course that the measure space ($eX, v) is isomorphic
with the measure space {M,v), where v is distribution of the limit Z^ of
Zn in the Martin compactification, when ZQ = o.

The isomorphism is the natural surjection a. Indeed, by continuity,
&(Zoo) = ZQQ, SO that v is the image of v under a. Now consider the
decomposition $eX = T 0 UTiUT 2 of Theorem 21.10. If fi is the probability
on F = AUT(X, P) denned in (8.12), then v is /z-invariant, and Lemma
20.12 implies that ^(T^) = 0 for i = 1,2. On the other hand, each end £ in
To is thin, so that |cr~1(£)| = 1. Thus, a is one-to-one on a Borel subset of
M(P) whose complement has measure 0. •

B. Free products
We take up the material developed in §9.C, and consider a free product

(X, o) = * (Xi,Oi) of connected, locally finite graphs Xi. We exclude the

case |X| = |Xi| = IX2I = 2, as then X has precisely two ends, which are
thin. Think of the sets xXi as "leaves" of the free product, where i el and
x G Xj. Suppose that we have a compactification Xi with boundary fiXi of
each Xi. (If some Xi is finite, then Xi = Xi.) Then there is a canonical way
to construct a compactification X of X, which will be denoted by ^Xi.
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It corresponds to \X\ + 1 different ways in which a sequence can "move to
infinity" in X.

The first piece of the boundary in our compactification is the set of
infinite words. It was denoted Y' in (21.13) for the free product of two
groups; here we shall write

(26.16) Xoo = {yiy2y3 • • • : yn G |J; A , KVn+i) / i(yn) Vn > 1},

while X consists of the analogous finite words as in (9.16). The other pieces
of the boundary are the sets

(26.17) xtiXi = {x€:te$Xi}, where ie

also thought of as words whose last letter is a boundary point of X{. The
boundary ftX in the compactification X = ^ Xi is the union of all these
parts.

As with trees, if u, v G X are different, then we define their confluent
u A v to be the longest common initial word of v and w. (If u = v then
u A v = u.) We write \x\w for the word length of x G X (representation
as in (9.16)), and \£\w = oo if £ G fiX. We explain the topology of the
compactification in terms of convergence of sequences (vn) in X.

(1) If rj G XQO then vn —> rj if \vn A 77^ —• 00.

(2) If £ G fiXi and x G Xj then vn —• x£ if for all but finitely many n,
the representation (9.16), (26.16) or (26.17) of i;n, respectively, starts with
xwn, where wn G Xi and wn —> ( in the topology of X{.

Thus, if x G Xj then in our compactification of X, the closure of xXi
is a;Xj, which is homeomorphic with Xi via the correspondence xv <-• v.

Now let P = ]T\G j a^ P$ be a weighted "free sum" of transition operators
Pi on Xi, as defined in (9.16). We assume that each (Xi, Pi) has finite range
and is transitive, so that (X, P) is also transitive and, by Theorem 7.8, p-
transient. For t > p(P), we want to describe the Martin compactification
X(P,t), at least in the transitive case. With t, we associate the numbers
ti = l/Q(l/t). By Proposition 9.18 and Lemma 17.1, we have U > p(Pi).
In these circumstances, we have the following.

(26.18) Theorem. X(P,t) = TXi(Pi,U).

Proof. Transitivity implies that F(ux,uy\z) = Fi(x,y\Q(z)) for all u G
Xj and x, y G Xi (and not only when u = o as in the general case - see
Lemma 17.1(b)). Let x G X, and let (y(n)) be a sequence in X that
converges to a point in ^*~Xi(Pi,U).
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Case 1. Suppose that y(n) —> rj G XQO- Consider the confluent u = x Arj
with word representation u = u\ • • • uk. Then x = u\ • • • ukxk+\ • • • xt with
^ > 0 and rj = ui-" ukyk+iyk+2 • • • with yfc+i ^ ajfc+i. There is nu such
that the word representation of y(n) will start with uyk+i for all n > nu.
The random walk starting at x must pass through uyk+i before reaching
y(n), whence

F(x,y{n)\z) = F(x,uyk+1\z) F(uyk+i,y(n)\z) .

The same holds with o in place of x. Therefore, for all n> nu,

F(x,uyk+1\l/t)(26.19) K(x,y{n)\t) =
F(o,uyk+i\l/t) '

which is the limit of K(x,y(n)\t) and defines K(x,rj\l/t).

Case 2. Now suppose that y(n) —»> yC, where y G X^ and £ G
Given a; G X, the "cactus-like" structure implies that there is a point Vi =
vy,i{x) G X{ such that the first visit to yX{ of the random walk starting at x
must occur at yv{. Also, for all but finitely many n, the word representation
of y(n) is of the form y(n) = yyi(n)w(n), where w(n) G X^~ and yi{n) G Xi
converges to £ in the topology of Xi(Pi, U). There is nx such that yi(n) ̂  Vi
for all n > nx. But then the random walk starting at x must pass through
yv{ in order to reach y(n), whence

F(x,y(ri)\z) = F(x,yvi\z) F(yvi,yyi(n)\z) F(yyi(n),y(n)\z) .

The same relation holds when we replace x and v^ with o. Therefore, for all
n > nx,

, A F(x,yvj\l/t) F(yvi,yyi(n)\l/t)

F(x,yvj\l/t)
=

(26.20) ^

F(o,y\l/t)
F(x,yvj\l/t)

when n —> oo. The last line defines K(x, yC\t).

To make sure that we have determined the Martin compactification, we
have to show that the functions K(-,£\t) are different for different £ in the
boundary of our compactification. Recall Theorem 26.2, which implies that
sequences in X converging to different ends cannot converge to the same
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Martin kernel. The end compactification of X is ^ Xi, where each Xi
i£T

is the end compactification of Xi. Suppose that £,£' € ^Xi{P^U) and

K(-,Z\t) = K(.,?\t). If £ G Xoo, then it is a thin end' and f = £. If
£ = V( £ yM(Pi,ti) then we also must have £' = y(f G yM{Pi,U), as
otherwise £ and £' correspond to different ends of X. But then (26.20)
implies that i^(-, (\U) = Ki(-, C\U) on Xi, and ( = (' as required. D

Under the same assumptions, we can also determine the minimal Martin
boundary.

(26.21) Proposition.

Mmin(P, t) = XOOU \J{y( : y e Xj , C € ^ ^ ( P , , ^ ) } •

Proof. We know from Corollary 26.13 that every infinite word is in

Let C ^ A^minl^z, ̂ ) and y G X^, and suppose that if (•, ?/r/|t) = a • # +
(1 - a) • h, where p , / i€ W+(P,t) and g(p) = h(o) = 1.

Step 1. Let x G X be such that vy^(x) = o*. Then, as in Theorem 26.4,

K(x, y£\t) = a • g(x) + (1 - o) • h(x)

> (a • F(x, y|l / t) ^(y) + (1 - a) • F(

by (26.20), and equality must hold. This implies g{x) = F(x,y\l/t) g(y)
and h(x) = F(x,y\l/t) h(y). In particular, g(y) = h(y) = l/F(o,y\l/t).

Step 2. The reader is now invited to reconsider the proof of Proposition
9.18, in particular the stopping time s(l) = min{n > 0 : Zn G yXi and
i(Zn) = i}y where ZQ = yu with u G Xi. For arbitrary v G Xi, the expression
EyU(zs(1)l[Zs(1)=2/v]) coincides with w(v) = &{z)pi(u,v) = Pi{u,v)/U, when
z = 1/t. (Note that transitivity is used here when u ^ Oj.) We have

h(yu) >

because the right hand side divided by /i(yw) is the probability that the
/i-process ever satisfies Zn G yXi and i(Zn) = i. The same relation holds
with g in place of h.

Now, for u G ^ , define gi(u) = g(yu) F(o,y\l/t) and hi{u) =
h(yu) F(o,y\l/t). We have vy^{yu) = u, and (26.20) implies together with
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the above that

Ki(u,C\U) = F(o,y\l/t)K(yu,xC\t) = F(o,y\l/t)(a-g(yu) + (l-o)-ft(yu))

>F(o,y\l/t) £ ^ ( a

Therefore the inequality cannot be strict, gi and hi lie in 7i+{Pi, U), gi{oi) =
hi(oi) = 1 and Ki(-,£\U) = a - gi + (1 — a) • hi. Minimality of £ implies
9i = hi=Ki(;(\ti).

Step 3. We know from Step 2 that g(x) = h(x) = K(xyy£\i) also for
those x which are of the form x = yu with u £ X{. To conclude, we
must prove this relation for all x of the form x = yuw with u € X[ and
w e X±. But then vVti(x) = u, and we get from (26.20) that K(x,y£\t) =
F(x, yu\l/t) K(yu, yC\t). Furthermore

9(x) > F{x, yu\l/t) g(yu) = F{x, yu\l/t) K(yu, yQt) = K(x, yC\t),

and the same holds for h{x). Once again, the inequalities cannot be strict. •

(26.22) Exercise, (a) As a matter of fact, we have only proved that the
set on the right in Proposition 26.21 is contained in A^min(-P, t). Verify the
other inclusion.

(b) Check that the finite range assumption is not really needed for The-
orem 26.18 and Proposition 26.21.

(26.23) Examples. (1) Consider the simple random walk P on X = Zd *
Zd. If Po is the simple random walk on Zd, then M(POi t) = A4min(^o, *) =
§d_i for t > p(P0) = 1, while M(P0,1) = {oo} is a single point. If t > p(P)
then X(P, t) is obtained from the end topology by replacing each thick end,
which is the end of a subgraph yZd isomorphic with Zd, with the sphere
ySd-i' The latter is the boundary of yZd in the corresponding topology.
When d < 4, the same is also true for t = p(P).

However, when d > 5 and t — p{P), then we know from (9.25.3) that
t0 = l/£(l/p(P)) has value to = 1, and the corresponding boundary of
each subgraph yLd is its end yoo. In this case, the Martin compactification
coincides with the end compactification.

(2) On the other hand, we know from Corollary 17.10 that there is an-
other symmetric, nearest neighbour random walk P on X = 7Ld * Zd for
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which t0 = l/C(l/p(-P)) > 1 = p(Po)> In this case, the Martin boundary
M.(P, t) can be described as above, but it does not collapse to the space of
ends when t reaches the value p(P). The Martin compactification X{P,i)
is topologically the same for all t > p(P). •

27. The Mart in boundary of hyperbolic graphs

Hyperbolic graphs are in some sense generalizations of trees. For a tree,
the end compactification coincides with the hyperbolic compactification.
Therefore we may expect that under suitable conditions, the results con-
cerning Martin boundaries of random walks on trees (Theorem 26.4 and
Corollary 26.14(a)) have analogues in the hyperbolic context. We shall
prove the following result.

(27.1) Theorem. Let X be a hyperbolic graph, and suppose that P is
uniformly irreducible with bounded range. Then for every t > p(P) the
Martin compactification X(P,t) coincides with the hyperbolic compactifi-
cation, and Mmin{P,t) = M(P,t) = fiX, the hyperbolic boundary.

The proof needs careful preparation with a potential theoretic flavour.
We refine the definition of FA(x,y), setting / < A ^ (x,y) = Fx [sA = n, Zn =
y] and dually, l^n\x,y) = Fx[Zn = y, Zo e A, Z{ <£ A for 1 < i < n].
For 2GC, let

(x,y)zn and LA(x,y\z) = £ tA'n\x,y)zn .
71=0 71=0

Both power series converge for \z\ < r = l/p(P). If A = {x} then
we write LA(x,y\z) = L(x,y\z). Also, we omit z when it is equal
to 1. We have G(x,y\z) = G(x,x\z)L(x,y\z); compare with Lemma
1.13(b). If we take an invariant measure v (that is, vP = v\ its ex-
istence follows from finite range by reasoning analogous to Lemma 7.6),
then we can define the corresponding dual chain or is-process Pv by
Vv{x,y) = v{y)p{y,x)/v{x). Then Lfp](x,y\z) = v{y) FA

u](y,x\z)/v(x),
and G[p](x,y\z) = v{y)G[pv](y,x\z)/i/(x). We have the identity

(27.2) G(x,y\z) \

= GX\A(X, y\z) + Yl

where GX\A denotes the Green function of the random walk restricted to
X\A, as in (2.6). This is seen as follows. The first term corresponds to going
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from x to y without visiting A. In the remainder, we ca conditionn either on
the first or on the last visit to A, giving the two different decompositions. In
particular, when the random walk has to pass through A on the way from
x to y, we have

(27.3) G(x,y\z) = £ ) G(x,w\z) LA(w,y\z).

Obviously, FA(x, y\z) = 0 when y £ A and LA(x, y\z) = 0 when x £ A. For
nearest neighbour random walk, we shall use the following.

(27.4) If x G A and 1 < z < r then LA(x, y\z) > zd^y) LA(x, y),

since it needs at least d(x, y) steps to reach y. From the proof of the ap-
proximation theorem (24.6), recall the definition of the reduced function
RA[h](x) = m£{g(x) : g G <S+(P), g > h on A} of h G

(27.5) Lemma. RA[h](x) = ] T FA(x,y)h(y).

Proof. Set u(x) = T,yeAFA(x^y)h(y)- T t i e n u € S+(P) and u = h on
A. Therefore u > RA[h] on X.

Let g G <S+(P), # > /i on A. We can define the ^-process as in (24.17)
(with t = 1). The matrix P^ is not necessarily stochastic, but it is sub-
stochastic; at points where g is strictly super harmonic, there is a posi-
tive probability that the ^-process "vanishes". The sum Y2yeA F\p9](x^y)
is the probability that the ^-process starting at x ever hits A, and is
< 1. On the other hand, FSpg,(x,y) = FA(x,y)g(y)/g(x). Therefore

YlyeAFA(x>y)9(y) < 9{x)- A s g(y) > h(y) for every y G A, we obtain
g > u on X. Thus u < RA[h}. D

A measure v on X is called t-excessive, \ivP < t • v. The correspond-
ing positive cone is denoted by S^'(P1t). It is non-empty if and only if
t > p{P)j compare with §7.A. The Harnack inequality (25.1) is also valid
for ^-excessive measures, with the same constant C*. Finally, we need the
following tool.

(27.6) Resolvent equation. For \z\, \z'\ < r(P) and x,y G X,

z G(x, y\z) - z' G(x, y\z') = (z - zf) £ G(x, w\z)G(w, y\zf).
w£X

The proof is straightforward, using the relation (/ — zP)G(z) = I, where
z) = {G(x,y\z))XiyeX.
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We now return to our hyperbolic graph X. Recall the key lemma (1.23)
for trees: our main tool will be a weaker version of that. Since hyperbolicity
is preserved by rough isometries, we can assume that P is nearest neighbour
(replacing X with a suitable /c-fuzz). Also, it is enough to assume that t = 1
and p(P) < 1. The general result will follow, because X(P,t) = X(Ph, 1),
where h G H+(P,t) is arbitrary (its existence is guaranteed by Lemma 7.6)
and p(Ph) = p(P)/t. Without loss of generality, we may assume that the
parameter 8 of hyperbolicity (Definition 22.1) is a positive integer.

For x G X, we define Uo,x = {w G X : \w A x\ > \x\ - 78} and Vx,o =
X \ Uo,x- Obviously, Uo,x ^ X if and only if \x\ > 78. More generally, we
define Ua,x and VXja in the same way, replacing the reference point o with
a £ X. We start with a structure theoretic lemma.

(27.7) Lemma. Let x,y G X be such that \y\ = \x\+d(x, y) and d{x, y) >
216. Then Uo,y C Uo,x ,

(1) ifw € Uo,y and d(w,y) > r then B(w,r) C Uo,x, and

(2) ifv e Vx,o and d(v,x) >2r + d(x,y) + 1 then B(v,r) C VytO>

Proof. We have w G UOiV if and only if \y\ + d(y,w) < \w\ + 14^. As
|y| — \x\ = d(x, y), the triangle inequality implies \y\+d(y, w) > \x\+d(x, it;),
and w G UOjX . Now suppose d(x, y) > 218. If w G Uo,y then by Lemma 22.5

\w A x\ > min{|it; Ay\, \y A x|} - 3^ > min{|y| - 78, |x|} -38 = \x\ - 36.

Next, if v G dVXiO then, as \v A x\ is a multiple of 1/2,

\x\-78-±>\vAx\>mm{\vAw\, \wAx\}-36 > mm{\vAw\-38, \x\-66} .

Therefore \v A w\ < \x\ - 48 - | , that is, d(y, w) > \v\ + \w\ - 2\x\ + 86 + 1.
As v has a neighbour in UOiX , we find \v A x\ > \x\ — 78 — 1, that is, \v\ >
d(v, x) + |x| - 14<5 - 2. Recall that \w\ > d(w, y) + \y\ - 148. Consequently,
for all v G dVx,o, w G UOty,

d(v, w) > d(v, x) + d(w, y) + \y\ - \x\ - 208 - 1 > d(v, x) + d(w, y).

Suppose in addition that d(w, y) > r. If B(w, r) is not contained in Uo,x
then it contains some v G dVXjO- But then d(v,w) > 1 + r, a contradiction.
This proves (1). To see (2), let r be such that B(vyr) is not contained in
Vy^o, where v G Vx,o. Then there is some w G B(v,r) n Uo,y, and on some
geodesic segment from v to w, we find vf G B(v,r) fl dVXiO. This implies
r > d{v', w) > d(w, y) > d(v, x) — d(x, y) - d(v, w) > d(v, x) — d(x, y) - r.
This is impossible when d(v, x) > 2r + d(x, y) + 1. D

Obviously, the lemma holds with any vertex a in place of o. We now
choose and fix t in the interval (p(P), l) and set z = 1/t.
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(27.8) Proposition. There is a constant C = C'{z) such that

G{x, w) < C F{x, v) G{v, w\z) for all w G Ux,v U VViV

whenever x, y G X and v lies on a geodesic segment from x to y.

Proof. We shall only use properties that do not depend on the base
point. Therefore we may assume that x = o. Throughout this proof, we let
£ = 216. In our geodesic segment ?r(o, y), consider the initial piece TT(O, V).
Let m be the integer part of \v\/£, and consider the points vo,...,vm G
TT(O, V) where d(vk, v) = (m - k)L We then consider the sets Wk = Uo,Vk U
VVktV. By Lemma 27.7

(i) vk € Wk C Wk-i and d(vk,dWk) < i, and

(ii) if w e Wk with d(w,vk)>2r + £+l then B(w,r) C Wk-\.

We shall work with a fixed choice of r. Let C\ > 1 be the constant ap-
pearing in the Harnack inequality (25.1), valid for S+(P) and S*(P). Since
<S+(P,£) C <S+(P) (as t < 1), it is also valid for S+(P,t) and analogously
for <S+(P, i). Now r > £ is chosen such that £r C ^ < 1. The constant of our
proposition is going to be C = C^21.

We shall use induction on k to show that

(27.9) G(o, w) < C F(o, vk) G(vk, w\z) for all weWk.

Let k = 0. Then |i>o| < ^, and the function G{-,w) is superharmonic for
any w. By Harnack, G(o,w) < C{G(vo,w) < CiG(vo,w\z), since z > 1.
Also Gf(-,i'o) is superharmonic, whence G(^o,^o) ^ CfG(o,vo), that is,
Cf F(o, ^o) > 1. Putting things together, we find that (27.9) holds for
k = 0 and all w e X.

On replacing vk-\ with Vfc, the distance from o increases, and we shall
compensate this by proving the validity of the inequality on a smaller set,
namely Wk. So suppose that (27.9) holds for k — 1. We use the Har-
nack inequality once more to deduce that G(vk-i,w\z) < C[ G(vk, w\z) and
C{F(vk-i,vk) > 1. Therefore

(27.10) G(o,w) < CfCl'F{o,vk

< C" Cf F(o, vk) G(vk, w\z) for all w G Wk.x.

Let w eWk with d(w,vk) > 2r + i + 1. Set A = {a e X : d(a,w) = r}.
Then A C Wk-i by (ii), and (27.10) holds for all a G A in place of w.
The random walk is nearest neighbour and has to pass through A on the
way from o to w. (Indeed, note that o £ W\. If A; — 1 = 0 then \w\ >
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d(w,vi) - \vi\ >2r-£ + 2>r. In both cases, o £ B(w,r).) Therefore,
using (27.3), (27.4) and our choice of r,

< C F(o, vk) J2 G^ a\z) L^(a' w\z) = C' F (
a£A

and the inequality (27.9) holds for w.
On the other hand, let w G Wk with d(w,Vk) <2r + L The measures

G(o, •) and G(vk, -\z) are excessive, and the Harnack inequality implies

G(o,w) < Clr+tG{o,vk) < Clr+eF{o,vk)G{vk,vk\z)

<C*r+2eF(o,vk)G(vk,w\z).

Again, (27.9) is verified, and the proof is complete. •

(27.11) Corollary. There is a constant C" = C"{z) such that

G{w, y) < C" G(w, v\z) L(v, y) for all w e Vv,x U Uy,v

whenever x, y G X and v lies on a geodesic segment from x toy.

Proof. Consider a dual chain Pv, where vP = v. It is also nearest
neighbour and uniformly irreducible. Therefore we can apply Proposition
27.8 to Pv, with a suitable constant C" in place of C. Also, we exchange
the roles of x and y. When we rewrite the resulting inequality in terms of
the original chain, we obtain the proposed statement. •

We can now provide the main tool for determining the Martin boundary.

(27.12) Theorem. Suppose that X is a hyperbolic graph, and that P is
uniformly irreducible with bounded range and p{P) < 1. Then for each
r > 0 there is a constant C(r) > 1 such that

F(x,v)F{v,y) < F(x,y) < C(r)F(x,v)F(v,y)

whenever x, y G X and w is at distance at most r from a geodesic segment
bewtween x and y.

Proof. The lower bound is trivial. For the upper bound, we may sup-
pose once more that P is nearest neighbour, and use the same numbers t
and z = 1/t and Harnack constant C\ as in the proof of Proposition 27.8.
We first consider the case r = 0, that is, v lies on a geodesic segment from
x to y.
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If d(x,v) < 18 then Harnack applied to F(-,y) implies F(x,y) <
C\6 F{v,y), and applied to G(-,v) implies 1 < Cj6 F(x,v). Therefore
F(x,y)<Cl46F(x,v)F(v,y).

So now suppose that d(x,v) > 76. Then x £ UXjV, while y G UXiV. Being
nearest neighbour, the random walk has to pass through the set A = dUx,v
on the way from x to y. Combining this fact with Proposition 27.8, we get

(27.13) G(x, y) = ^2 G{x, a)LA(a, y) < C F(x, v) £ G(v, a\z)LA(a,y).

Every point a G A is at distance 1 from some point a' in VViX. The in-
equality of Corollary 27.11 is valid for a! in place of w. The usual rea-
soning with the Harnack inequality implies that it also holds for a, if we
replace the constant C" with C\C". Therefore the superharmonic function
C\C" G( -, v\z)L(v, y) dominates the superharmonic function G(- ,y) on the
set A. By Lemma 27.5, it dominates the reduced function RA[G(- ,y)] =
^2a€A FA('' a)G{ai y) — SaeA ^ ( ' ' °<)LA(a, y) on the whole of X we have
used (27.2) here), that is

(27.14) Y, G(w> °)LA{^ V) < ClC" G(w> v\z)L(y, y) for all w G X .
aeA

We now use the resolvent equation. With z' = 1 and z = 1/t (t < 1), it
becomes G(v, a\z) = ^2W v(w) G(w, a), where v = t • 8V + (1 — i) • G(v, • \z).
Combining (27.13) and (27.14), we now find

G(x, y) < Cf F(x, v) Y. ^HG(ti;, a)LA(a, y)
w€X,a€A

< CfC'C"F(x,v) I Y, v(w)G(w,v\z)] L(v,y).
\ )\w€X

Set z' = (z + r) /2. We compute, using (27.6),

J2 v(w)G(w,v\z) = \G{v,v\z) + (1 - i) Y^ G{v,w\z)G(w,v\z)
w£X weX

< \G(v,v\z) + (1 - \) Yl G(v,w\z)G(w,v\z')
w€X

< \G(v,v\z) + (1 - h^GiyM*?) <D,

where D = 2r(r + z)/(r - z)2. For the upper bound, note that Lemma
1.9 implies G(v,v\z) < r / ( r - z) for 0 < z < r. On the other hand,
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G(v,v) > 1. Therefore, setting C(0) = max{Cj45,C?C/Cr//D}, we get
G(x,y) < C(O)F(x,v)G(v,v)L(v,y) = C(0)F{x,v)G{v,y). The proof for
the case r = 0 is complete after dividing both sides by G(y,y).

If r > 0 is arbitrary, then we can find v' on a geodesic from x to y with
d(v,v') < r. Then F(z,y) < C(0) F{x,v')F(vf ,y), and the usual Harnack
machinery (compare with the beginning of the proof) implies F(x, y) <
C(O)C*rF(x,v)F(v,y). D

We have completed our preparations for the main result of this section.

Proof of Theorem 27.1. We assume again that p(P) < 1 and that 8
is a positive integer.

Step 1. We first show that the hyperbolic compactification projects nat-
urally onto the Martin compactification. This is based on the following.

Claim. If (yn) and (yf
n) are two sequences in X converging to the same

point f G dX then, setting ex = 1/C(26)2 (with C(-) as in Theorem 27.12),

(27.15) lim inf ^ ' ^ > e1 for all x G X .
»-oo K(x,yf

n) ~

Proof. Let ?r(o, £) and TT(:E,£) be geodesic rays from o to £ and a: to
£, respectively. By Proposition 22.12(a), there are v G TT(O,£) and v G
7r(x,£) with d(v,v) < 6. Now consider geodesies TT(O, ?/n) and 7r(x,yn). Let
#n be the point on TT(O,^) with |xn| = \yn\. Add a segment 7r(xn,yn) to
obtain a geodesic triangle with vertices o, xn,yn. Lemma 22.4 and (22.10)
imply that d(o, 7r(xn, yn)) —> oo. If n is sufficiently large then we will have
d[o,7r(xniyn)) > \v\ + 8. Given v, there must be a point wn on one of the
other two sides with d(v, wn) < 8. Our choice of n implies that it must lie
on7r(o,yn).

In the same way, replacing o with x, we find wn on ?r(x,yn) with
d(v,wn) < 8, and d(v,wn) < 28. Also, we repeat the same argument with
geodesic segments ?r(o, yf

n) and 7r(x,yf
n).

Therefore, if n is sufficiently large, then v is at distance at most 28 from
each of TT(O, yn), 7r(x,yn), TT(O, 2/̂ ) and TT(X, y^). We can now apply Theorem
27.12, and obtain

K(o,xn) F(o,xn)F(x,x'n)
F(x,v)F(v,xn)F(o,v)F(v,x'n)

~ C(26)F(o,v)F(v,xn)C(2S)F(x,v)F(v,x'n) '

Having proved (27.15), we now let L$ be the set of all limit points in the Mar-
tin boundary M(P) of sequences in X which converge to £ in the hyperbolic
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topology. Let Q be the closed convex hull in S~*~(P) of all functions K( •, a)
with a G Lf. Bounded range implies that Q C H+(P). Every h G C7 is of
the form h(:r) = JL K(x, •) dz/, where v is a probability measure on L$. By
(27.15), K(-,a) > ei'K(-,l3) for alia,/? G L^, and consequently hi > £i-h2

for all hi, h2 € Q.
Set cn = £i(l + ( l -£ i )H + ( l - £ i ) n ) . (We may assume that £i < 1.)

We show inductively that hi > cn • h2 for all n > 0. This is true for n = 0.
Suppose it holds for n — 1. Then the function j ^ — (hi — cn_i -Z^) is also an
element of Q and > £i-h2. This yields hi > (cn_i4-Si(l-cn_i))h2 = cn'h2.

Letting n —> oo, we find that hi > h2 for all hi, h2 G Q. Therefore Q,
and consequently also Z^, consist of a single element.

Step 2. In view of Step 1, we can define K(x,£) = limn K(x,yn), where
(yn) is an arbitrary sequence in X converging to £ G $X in the hyperbolic
topology. To conclude, we now prove that the natural projection obtained
via Step 1 is one-to-one: let £,77 be distinct points in $X; we have to show

By Lemma 22.15, there is a geodesic [... ,y_i,2/0,yi5 • • •] with yn —• £
and y_n -> rj. From Harnack we get C^F(y0, •) > F(o, •) > Cf |yo |F(j/0, •)•
Fix A: > 0. Then Theorem 27.12 implies for n > k

K{yk,yn) > F(yk,yn) F(yo,y_n)
K(yk,y-n) ~ c[yolC(0)F(yo,yk)F(yk,yn)C[yolC(0)F(ykiyo)F(yo,y_n)

1

~ ClMC(0)*F(yo,yk)F(ykjyo)'

Letting n —> ex), we find

) 1

, 2/0)

forallfc>0.

Via the resolvent equation, the hypothesis p{P) < 1 implies that
Y^w G(yo, w)G(w, 2/0) < 00; compare with the last computation in the proof
of Theorem 27.12. Therefore G(yo,yk)G(yk,yo) —> 0 as k —> 00, and there
must be /c such that K(yk,£) > K(yk,rj).

Step S. We still have to prove minimality of if(-,£) for every £ G fiX.
We consider the set H$ = {h e H+ : supxh(x)/K(x,£,) = 1}. If we can
show that Tit = {if (•,£)} then minimality of K(•,£) follows.

Write ?r(o,£) = [o = xo ,x i ,x 2 , . • . ] . Setting e = l/C(0), Theorem 27.12
yields K(xfc,xn) > e/F(o,Xk) whenever 0 < k < n. Therefore

F(x, xk)K(xk, £)>e K(x, xk) for all x G X.
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If h G H+ is arbitrary then for all x

(27.16) h(x) > F(x, xk) h(xk) > e K(x, xk)

Now let h G Hz, and apply (27.16) to ti = K(;£) - h. Then

h'(x) > eK(x,£) limsup

As mix{h'/K(-,£)) = 0, we must have l im^/ i^ ) / i f (££ ,£) ) = 1. We
use this fact, and this time apply (27.16) to h. Letting k —• oo, we infer
ft, > £ if (•,£). This holds for every h G W$, and consequently also for
/ii = jh^(h - eK(m,Q)- Repeating the argument from the end of Step 1,
we conclude that h> K(-,£) for all h G H$, and the latter set must consist
of #(. ,£) only. •

We return briefly to the solution of the Dirichlet problem given in Theo-
rem 22.20. If we replace the uniform first moment condition by the stronger
bounded range assumption, then we can weaken the other hypotheses:

(27.17) Exercise. Suppose that X is a hyperbolic graph with \$X\ > 2
and P is uniformly irreducible with bounded range and p{P) < 1. Then
a point £ G fiX is regular for the Dirichlet problem with respect to the
hyperbolic compactification if and only if the Green kernel vanishes at £.

[Hint: In view of Lemma 20.4, what one has to prove is the "if". This
is done by showing that vanishing of the Green kernel at £ implies that
2^(r]) — K(x,rj) —> 0 when x —• £, uniformly for 77 outside of any neigh-
bourhood U of £ in X. To see this, observe that there is k — k(U) such that
l imsup^^ \x A y\ < k whenever y G X \ U, and apply Theorem 27.12.]

Theorem 27.1 applies, in particular, to random walks on finitely gener-
ated Fuchsian groups, that is, discrete groups of Mobius transformations
of the open unit disk D onto itself, or equivalently, orientation-preserving
automorphisms with respect to the hyperbolic (Poincare) metric. If F is
such a group, then its limit set L(T) is defined (as in §20.B) as the set of
accumulation points in the unit circle of an orbit Fx, where x G V. If
|L(F)| = 2 then 7 is called elementary (it is infinite and cyclic in this case).
We suppose that V is non-elementary. Then it is non-amenable: this is the
case corresponding to Proposition 20.10(a), and there is a free subgroup
with two generators. In particular, p(n) < 1 for the law /i of any random
walk on F (Corollary 12.5(a)). Cayley graphs of Fuchsian groups are one
of the most typical classes of hyperbolic graphs; see e.g. Ghys and de la
Harpe [142]. Thus, the Martin compactification F(/x) coincides with the
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hyperbolic compactification. While the hyperbolic boundary $F depends
only on the abstract group, the limit set L(T) depends on its concrete real-
ization as a Mobius group. The relation between the two is as follows: there
is a natural continuous surjection of F onto F U L(T) which is one-to-one
except possibly at count ably many boundary points, where it is two-to-one.
(These exceptional points arise when the standard fundamental domain of
the group has cusps, i.e., it comes from a punctured surface. One can en-
large the punctures slightly to become small holes such that the fundamental
groups remain isomorphic. For the new fundamental group, the limit set is
homeomorphic with its hyperbolic boundary.) For more details on Fuchsian
groups, see Beardon [28] or Katok [196]. Regarding Exercise 27.17, on Fuch-
sian groups this is of course true without any range or moment condition
(Corollary 22.17).

28. Cartesian products

In this last section, we want to determine the Martin boundary of a
Cartesian product of two random walks in terms of the boundaries of the
factors. We first find a general description of the minimal ^-harmonic func-
tions. Then we shall consider a final example where we determine the whole
Martin compact ificat ion.

A. Minimal harmonic functions on Cartesian products
Given a Markov chain (X, P) and a reference point o G X, we shall

write £(P,t) for the set of minimal t-harmonic functions, where t > p(P)
(the letter S stands for extremal). We know that £(P,t) is non-empty for
every t > p(P), when X is infinite and P has finite range (Lemma 7.6).
When the range is not finite, this does not remain true, and when X is
finite, there are no t-harmonic functions for any t > 1 = p(P). Every
h G £(P, t) is of the form h = K(; £\t) with f G Mmin(-P, *).

We start with two irreducible Markov chains (Xi,Pi) and (X2,P2). For
simplicity, we also write Pi for the (non-irreducible) transition operator
Pi ® I2 on X = Xi x X2, and analogously P2 for / i ® P2. On X, we
consider a Cartesian product P = cP\ + (1 — c) P2. Note that Pi and P2

commute as transition operators on X. Also recall (Exercise 7.3) that

p(P)=cp(P1) + (l-c)p(P2).

For functions fi : Xi —» R (i — 1,2), we define / = f± <S> f2 by f(xix2) =
f(xi)f(x2). The following key lemma is straightforward.

(28.1) Lemma. If hi G H(Puti) and h2 G H(P2,t2) then hi ® h2 G
H(P,t), where t = ctx + (1 - c)t2.
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Given t > p(P), we consider the segment

I(t) = {{tiM) : U > p{Pi), ch + (1 - c) t2 = t} .

It consists of a single point, when t = p{P). In each Xi, we choose a
reference point o*, and our reference point in X is o = o\o2.

(28.2) Proposition. Ifh G £{P,i), t > p(P), then there are (*i,t2) G /(t),
fti € £(Pi,£i) and /12 G S{P2it2) such that /i = /ii 0 /12.

Proof. C/azra i. There is (ti,t2) G /(*) such that P1/1 = ti • fe and
p2h = t2 • h on X.

Proof. First, as P and Pi commute, PP1/1 = PiPh = t • P1/1, and
Pi ft € H+(P,i). Second, ft = | • Pft > f • Pi ft. As h is minimal, we must
have Pi ft = £1 • ft for some £1 > 0. In the same way, P2h = t2 • h for some
£2 > 0. It is clear that (£1,̂ 2) € •/"(*), and Claim 1 is proved.

Therefore ft( -x2) € W+(Pi,ti) for every x2 G X2. By Theorem 24.9, for
every x2 € X2 there is a unique Borel measure vX2 on Al(Pi,t i) with no
mass outside of .Mmin(Pi,£i), such that

(28.3) ft(ziz2) = / Kxfa, - \h) dvX2 for all xxx2 € X .
JM{Xuti)

(Obviously, Ki(-,'\U) denotes the Martin kernel of Pj on Xi(Pi,ti).) By
Claim 1,

/
JMiX

i) t2 dvX2 = t2 • h(xix2) = P2h{xxx2)

By the uniqueness of the representing measure,

(28.4)
2/2 ex2

In particular, all the vX2, x2 G X2, are mutually absolutely continuous and
have the same support S = suppi/*2 C M{Pi,ti). (Irreducibility of P2 is
used here.)

Claim 2. S has only one point.
Proof. Suppose the contrary. Then there are two closed disjoint subsets

A,B C S such that vX2(A) > 0 and vX2(B) > 0 for some and hence all
x2 G X2. Consider

hA(xlX2)= [ K^x^lt^d^2 and hB{Xlx2) = [
JA JB
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Then hA,hB G H+(P,t) by (28.4), and hA + hB < h. By minimality of h
there are constants cA,cB > 0 such that h = cA • hA = cB • hB. Again by
uniqueness of the representing measure, uX2 = cA • vX2 \A = cB • vX21B . This
contradicts disjointness of 4̂ and B, and Claim 2 is proved.

Thus, S = {£1} with £i E A4min(Pi,£i), and each z/̂ 2 is a multiple of the
point mass at £i, that is, vX2 = ^2(^2) • ^ u where ^2(^2) > 0. By (28.4),
ft2 € H+{P2,t2)' If we set fti = Ki(-,fi |ti), then (28.3) yields h = h1^h2.

In conclusion, it is immediate that /i2 must be minimal in W+(-P»,£j), as
otherwise /i also would not be minimal in 7Y+(P, t). •

The main result of this subsection is that tensor products of minimal
harmonic functions for Pi and P2 are minimal for P, and conversely.

(28.5) Theorem. S(P,t) = (J £(PiM) ® S(P2,t2).

Proof. Proposition 28.2 says that £(P,t) is contained in the set on the
right. Using this fact, we prove the converse inclusion. Let h = h\ ® h2,
where hi G £(PiiU) and (ti,t2) G I(t). Then

h{x\x2) = / K(xiX2i-\t)du
JM(P,t)

for a unique probability measure v which has no mass outside of .Mmin(P, t).
Consider the set £tltt2 = £(Pi,t\) ® £(P2,^2)- Note that we do not yet

know whether this is a Borel set in the topology of pointwise convergence
of functions in <5+(P, t). Recall that the Martin boundary M.(P, t) embeds
homeomorphically into <S+(P, t) via the map £ i—• if(-,£|t). Write MtxM
for the preimage of £tx,t2 under this embedding. By M^ljt2 we denote its
closure in the topology of the Martin boundary. This is a Borel set, and
its image in <S+(P, t) is contained in the closure of £tltt2 with respect to
pointwise convergence.

Claim. suppi/ c Ai^lt2.

Proof. Let e > 0. Consider the preimages Ae and B£ in A4(P, i) of the
sets

: P\u < (ti — e) • u} fl £(P, t) and

'P2u< (t2-e)-u}n£{P,t),

respectively. Then A£ and B£ are Borel sets and contained in Mmin(P,t).
Let

h'(xiyi)= /
JAe
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By Proposition 28.2, for ( G A£ one has

K(;(\t)e£(P1,s1)®e(P2,s2),

where (si,52) G I(t) and s± <t± — e, whence 52 = (t — cs\)/(l — c) > s£ =
(t - c(ti — e))/(l - c), and s£ > t2. Hence

t%-h = P?h > P£hr >s^-h' for all n G N.

This yields h! = 0. Thus v(A£) = 0, and in the same way v(B£) = 0.
The set £t~jt2 has empty intersection with £Sl,s2 whenever (^1,52) ^ I{t)

is different from ( t i , ^ ) , because pointwise convergence preserves superhar-
monicity with respect to P, Pi and P2. Therefore, again using Proposition
28.2,

00

<Mmin(P, *) \ Mtlft2 = U (A l /n U Bl/n) ,
n=l

which is a r/-null set. This proves the claim.

Next, set U = Atmin(P,i) DMtlM- T h e n v{M(P,t) \U)=0, and

= 1

Ju

Suppose that suppi/ has more than one element. Then we can find a Borel
set U' C U such that both Ur and U \Ur have positive z/-mass. We set
hf(xix2) = JUf K(xix2r \t)dv. Then hi(xi)h2(x2) = h(x\x2) > h'(xix2).
Once more by Proposition 28.2, K(;£\t) G £(Pi,t{) <S> S(P2,t2) for every
£ G U. This implies that P\hr = ti • h!. We deduce that h\ dominates
the function h'(- x2)/h(x2), which is in W+(Pi, t{). By minimality of hi we
must have

ht(xix2)/h2{x2) = c(x2)hi(xi) for all x\x2 G X ,

where c(x2) > 0. In the same way, minimality of h2 yields

h'(xix2)/hi{xi) = d(xi)h2(x2) for all X\X2 G X ,

where d{x\) > 0. Comparing these identities, we find that c(x2) = d(x\)
for all x\x2 G X, so that they coincide with their values at o\ and o2,
respectively, which are equal to v(U'). Therefore h! = v(JJ') • h. But this
contradicts the uniqueness of the representing measure (Theorem 24.9), and
v must be a point mass. D
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In several known examples of finite range random walks (X, P), the
Martin compactifications X(P,t) with respect to different eigenvalues t >
p(P) are naturally homeomorphic, so that M(P,t) = M.(P) is independent
of t. If in addition the Martin kernel K(x,£\t) is jointly continuous in
f G M(P) and t > p(P), and all kernels K(-,£\t) are minimal ^-harmonic
functions, then we say that (X, P) has strictly stable Martin boundary.

If (Xi,Pi) and (X2,P2) both have strictly stable boundaries and P is
a Cartesian product of the two, then it follows from Theorem 28.5 that
A4min(P,t) with the Martin topology is homeomorphic with M.(P\) x
M(P2) x I(i). This applies, for example, if the Pi are p-transient near-
est neighbour random walks on trees T*, i = 1,2. Note that l(p(P)) =
{(p(Pi), p(P2))} is a single point, so that Mmin (P, p(P)) ^ A4(Pi) xM(P2)
is considerably smaller than .Mmin(P,£) for t > p(P).

In various cases, the above requirements of stability are satisfied only
for eigenvalues t > p(P), while the Martin boundary at p(P) is smaller
in the sense that X(P, t) surjects naturally onto X(P, p(P)). In this case
we speak of a stable Martin boundary. A finite range random walk on Zd

is such an example. It is an instructive exercise to work out how for an
eigenvalue t > 1, the minimal Martin boundary of a Cartesian product of
two simple random walks on Z becomes homeomorphic with a circle, when
it is described in terms of Theorem 28.5.

In the examples that we have encountered so far, the full Martin bound-
ary has coincided with the minimal boundary. Typical examples where this
is not the case are provided by Cartesian products. One such example will
be considered next.

B. The Martin compactification of T x Z
Our final example is the computation of the full Martin compactification

of the simple random walk on T x Z, where T = TM with M > 3. For
computational convenience, we shall work with a Cartesian product P =
cP\ <g) I2 + (1 — c) 7i (8> P2, where Pi and P2 are the aperiodic simple random
walks on T and Z considered in §19.A (withpi(x, x) = 1/2). This is the same
as determining the Martin compactification for a "pure" simple random
walk. Indeed, setting c = 1/2, one can decompose P = | ( 7 + P), where P
is "pure"; by Lemma 9.2, Kp(; -\t) = KP(>, - | ^ ) and X(P,t) = X(P, ±±*).

It will be convenient to view T as a Cayley graph of the free product
Z2 * • • • * Z2 (M times), so that x~x will denote the inverse and xy the
product of x, y G T in this group. The respective roots (group identities)
are denoted by o\ and 02 (= 0).

We shall use two different methods, one of a more algebraic nature (when
t = p(P), the bottom of the spectrum), and the other much more analytic
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(when t > p(P)). We start with t = p, where p = p(P)- We have p\ =
p(Pi) = \ + jy"1 and P2 = p(^2) = 1- The Martin compactification
Z(P2,1) is the one-point compactification Z ^ = ZU{oo}; the Martin kernel
has constant value 1. Regarding T, recall the spherical function (j)(x) =
(l + ^=^ |z | )M-l x l / 2 on T. This is the unique function in H+{Pi,pi)
which is radial (i.e., it depends only on \x\ = d(x,o{) in T). We shall need
the normalized translate

(28.6) </>(x, y) = tix^y)/^), x, y G T.

Another prerequisite is the following characterisation of Ki(•,£), where £ G
#T. See (12.13) for the definition of horocycles.

(28.7) Lemma. Suppose that h € H~*~(Pi,pi) is constant on each horo-
cycle Hk = Hk(£) with respect to f G #T. Then /i = h(pi) Ki(;£\pi).

Proof. Write h(k) for the constant value of h on Hk- Then

i i M — 1 ~

/(fc 1} + fc(fc) + M* + 1)/.(fc 1 } + fc(fc) + - ^ ^ M * + 1) = Pi

Letp(fc) = (M-l)fc/2/i(A:). Then pis positive and p(fc-l)+^(fc+l) = 2g(k).
Hence p is constant and h{x) = h{o{) (M - i)-b(*.O/2 = ^(Ol) Ki(x,£\pi)i
compare with Example 26.6 and Lemma 1.24. •

Reconsider Theorem 28.5. For t = p, we have I(t) = {(pi,p2)} =
{(pi, 1)}. Since £(P2,1) = {1}, the minimal p-harmonic functions for P are
precisely the functions #1X2 •-» ^i(#i)£|pi) , where ^ G i?T. Therefore (Cor-
ollary 24.18) every function /i G W+(P,p) is of the form
where /ix G

(28.8) Theorem. The Martin compactification fxZ(P, p) is f x Z^ with
the product topology, where T is the end compactification of T and Z ^ is
the one-point compactification of Z. The directions of convergence of the
Martin kertiei are as follows.

(1) If yi(fi) -+ £ G #T and 2/2 (^) is aji arbitrary sequence ih Z then

M*i*2,yi(n)ife(n)) ""• tfi(*i,£|pi) for all Xlx2 G T x Z.
(2) If j/i G T and j / 2 W € Z, |j^(n)| -^ 00, then

K(xix2,yiy2(n)) -> 4>{xuyi) for all xxx2 G T x Z.

Proof. What we have to prove are statements (1) and (2). We start
with (1). By compactness, we may assume without loss of generality that

(^) is such that K{x\x2-I yi(n)y2(n)\p) converges pointwise to a limit
)' Then h(xix2) = /ii(#i), where hi G ?i+(Pi ,pi) . Suppose that
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Xi,x[ G T lie in the same horocycle with respect to £. Choose n large
enough that x\ X yi(n) lies on the geodesic ray from x\ X x[ to £, where
X is the confluent operation with respect to £; see (12.13). Then there is
an automorphism 7 of T that fixes this geodesic ray, and also yi(n), and
exchanges x\ with x[. The element (7, t) G AUT(T x Z) leaves P invariant.
Therefore we see that K(xiX2,yi(n)y2(n)\p) = K(x[x2,yi(n)y2(n)\p) for
all but finitely many n, and h(x\) = h(x[). Lemma 28.7 implies that
hi = ifi(-,f|p), as asserted.

(2) Again, we may assume that if (£1X2,2/12/2(̂ )1 p) —> hi(xi) for all
^ix2 € T x Z, where hi € H+{Pi,pi). We now use the fact that Pi is
invariant under the stabilizer of 2/1 in AUT(T). An argument completely
analogous to that for (1) (replacing £ with 2/1) shows that hi{xi) = hi(x[)
whenever <i(#i,2/i) = d(x'i,yi). Therefore hi is radial around 2/1, and as
hi(oi) = 1, we must have hi(xi) = 0(#i,2/i). •

For t > p, the computations are harder. We shall first derive a "renewal
theorem", that is, the spatial asymptotic behaviour of the Green kernel
£(0102,2/12/2!!A)> when \yi\ + I2/2I —* 00 (lengths in T and Z, respectively).
We use the method of Laplace; not all computations will be laid out in
detail. We have

k>\yi\
m>\y2\

(28.9) £(0102,2/12/211/*)= Y2 Sfc,m(2/i2/2), where

Set A = I2/11/|2/21> &k = I2/1IA a n d Pm = l2/i|/m- Suppose for the moment
that k,m —• 00, I2/1I < (1 — e)k and 0 < I2/2I < (1 — £)m, We may then use
Stirling's formula to approximate the binomial coefficients, and replace the
transition probabilities by the expressions of Theorems 19.4 and 19.8; we
write f?i, ipi for the functions of Theorem 19.4 (for T) and B2, ^2 for those
of Theorem 19.8 (for Z). Then

(28.10) S f c > m ( ^ 2 ) ^

x aj[/2/?m/2 y/ak+Kl exp(|yi|

where $\,t(a,l3) =

(log(l + | ) + log ̂  Ma)) + I (log(l + | ) + log
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with 0 < a < 1 and 0 < /3 < I/A. We recall that <pi(a) =
a\ogF1(l/ti(a)) + logti(a), where F1 is the function F of (19.1),
and ti(a) = l/z(a). The function ip2 is obtained as in (19.3), with
F2(z) = f ((1 - \z) - y/l-z) replacing the F(z) there, and (p2(f3) =
(3 logF2(l/t2(/?)) + Iogt2(/J) with t2(fi) = 1/(1 - P2)- In particular, *i(a)
and t2{f3) are determined by the equations

(28.11) a t i = ^ / ( < i - i ) 2 - ^ l and /?t2 =

Our strategy will be to show that the principal contribution to the sum
in (28.10) comes from the point where $\j is maximal. We compute and
study the gradient and find that the absolute maximum is attained at the
unique stationary point (ot,/3) = (a(A),/?(A)), which is given by

(28.12) h(a) ( l + | ) C- = 1 and

Via (28.11), this transforms into the system of equations

ct\ + (1 — c) t2 = t and
(28.13) M - l

M2 '

which has a unique solution (t\,t2) — (ti(a),t2(\(3)) in [p\, oo) x [1, oo).
Again via (28.11), we can now compute (a(A),/?(A)), which lies in the inte-
rior of the domain of 4>A,£ for every real A > 0. In particular, when A = 0,
we have t2 = 1 and t\ = (t — (1 — c))/c. Using (28.12) and the definition of
the (fi, we compute the value of the maximum of &\j ,

M(A) = logF^l/h) + AlogF2(l/t2),

where (ti,t2) is the solution of (28.13). The next step (whose details are
omitted) is to compute the Hessian matrix H\j of 3>A,t at (o;(A), /3(A)), and
to ensure that it is negative definite for each A G [0 , oo) and continuous in A.
We shall write H\^[ot^f3\ = (a,(3) H\j {a^p)1 for the associated quadratic
form. To conclude our preparations, we remark that (28.13) also makes
sense when A = +oo: we take I/A = 0 to the left hand side of the second
equation and find t\ = pi, t2 = (t — cpi)/(l — c).

(28.14) Theorem. Suppose that t > p, \yi\ + \y2\ —> oo and A =
12/21/12/i| —̂  77 ^ [0, oo]. Let (t\,t2) be the solution of (28.13), depending on
A. Then

G(olO2,yiy2\l/t) - Fi(l/ti)^lF2(l/t2) l w l (1 + ^ % i | ) C(yiy2),
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where C(yiy2) = \yi\-3/2D(\y2\/\yi\) = |ya|-3 / 2I>*( |yi | /M) with D(X)
and D*(A) continuous and strictly positive for A € [0, oo).

(The function D is used when I2/2I/I2/1I —• V < 0°), while D* is used
when I2/1I/I2/2I -+V* < °°)-)

Proof. We assume first that I2/2I/I2/1I ~> 1 < °°5
 m particular \yi\ —• 00.

We split the sum of (28.9) into two parts, G(oiO2, 2/12/211 /t) = #1(2/12/2) +
#2(2/12/2), where 5i is the sum over all k,m for which \otk — <*(A)| < 6 and
\Pm — PW\ < 5̂ an<i #2 is the rest. Here, 6 > 0 is chosen such that when A
is close to 77, (i) the points (ak,Pm) of Si are in the interior of the domain
of Qrij and at bounded distance from its boundary, and (ii) for some £0 > 0
depending on 77, we have $\ t(a, j3) — M(A) < exp(—eo{a2 + /?2)) whenever
\a-a(X)\<6, \b-p(X)\<6.

To see that this is possible when \yi\ is sufficiently large, note that (1) the
point (0(77)56(77)) lies in the interior of the domain, (2) the dependence
of (a(A),/3(A)) on A is continuous, and (3) when A —• 77 < 00 we have
$\j{ot,/3) —> $r)j{oi,(3) uniformly for a G (0,1] and /3 in any bounded
subinterval of (0, min{l/A, I/77}]. Uniform convergence obtains because

(28.15) *A,t(<*,/?) - **,t(<*,/?)

= (X-rj)F2(l/t2CXf3))

with A between 77 and A.
We first analyse Si. As k > \yx\/(a(\) + 6) and m > \yi\/(0(\) + 6), we

may use the approximation of (28.10). We gather the factor exp(|2/i|M(A))
outside of the sum, and observe that

and the o(-) for the argument tending to 0 is uniform in A, as A —> 77. Next,
we perform a "change of variables", substituting crfc = (afc - a(A))y/|^J

and Tm = (j3m ~ 0W) V\V}\- S e t Aak = °k- <Tk+i and Arm = rm - r m + i .
When 12/11 —> 00, we have in the range of summation of Si

* V\vi\

which tend to 0 uniformly. We obtain

sk,m,
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where

( ) ( 4-

\

The o(a2 + r2) tends to 0 as (<J2 + r2)/\yi\ —• 0, uniformly with respect
to A ~ 77. Due to our choice of <S, the non-exponential terms in Sk,m are
bounded by some constant, and as A ~ 77, the exponential term is bounded
by exp(—£o(cr| + r^ ) ) . Therefore we may use dominated convergence to
conclude that

]) dadr = JD(A) ,

as A —»• ry < 00, and D is continuous and positive. Note that
exp(|yi|Af(A)) = F^l/t^M F2(l/t2)M with tx = ti(a(A)) and *2 =
^2(A/?(A)). Therefore 5i (2/1̂ /2) has the asympotic behaviour asserted by
the theorem.

Next, we show that ^2(2/12/2)/^i (2/12/2) —• 0, that is,

(28.16) S2(yiy2) exp(-|yi|M(A)) = oQyiF1'2),

as I2/1I -^ 00, A = I2/2I/I2/1I -^ 77 < 00 and either I2/2I —̂  00 or 2/2 remains
fixed. Since ipi(-) < log pi, we have

where £1 = — log cpl^ > 0. This is seen by using the inequality
a\og(u/a) + (l — a)\og(v/(l — a)) < log(u+v), where u,v > 0 and 0 < a < 1.

Define ak{y\) = P i (oi,2/i)exp(-fc^i(|j/i|/fc)), and analogously 6^(2/2)-
For all fc,m > 1, Stirling's formula yields (fc+m) < ci(l + f )fe(l + ^ ) m ,
where C\ > 0. For arbitrary e > 0, Lemma 19.7 tells us that there are k£,
m£ such that ak(yi) < eek and ^(2/2) < eem for all A: > h£, m > m£. We
may assume that |yi| > k£. Let c£ = max{l,6m(2/2) : I2/2I < m < m£}.
Then bm(y2) < c£e

£m for all m > \y2\. Therefore

Sfc,m(2/1,2/2) <
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for all k > \yi\ —> oo, m > \y2\ > 0.
We choose e < £i/2, and subdivide S2 into four parts. The first one,

denoted by T\(2/12/2)? is over the range k,m > r\yi\, where r will be chosen
below, and we find

Ti(2/12/2) exp(-|2/i|M(A)) <Clc£

k,m>r\yi\

which tends to 0 faster than |t/i| 1/2, if r is such that r ^ + M(7/) > 1.
The second part, denoted by T2(2/12/2), is over the range fc > r\yi\, m <

r12/11- We use the same upper bound as for Ti, and

) exp(-|W|Af(A)) < ^ I f / i exp(-|yi|(r£l + 2M(A))/2) ,

which also tends to 0 exponentially fast with the above choice of r.
The third part, T3(2/12/2), over the range A; < r\yi\, m > r\yi\, is treated

precisely like T2.
The fourth part, T4(2/12/2)5 is over the range fc,ra < r\yi\, excluding

those (k,m) that appear in Si(2/12/2)- By (28.15) there is £2 > 0 such that
$A, t(a,/?)-M(A) < -e2 for all (a,/?) with | a - a ( A ) | > 6 or |/?-/3(A)| > «.
Therefore

^4(2/12/2) exp(-|2/i|M(A)) < ci ce ^ exp((A; + m)e - \yi\e2)
fc,m<r|2/i|

< r 2 | j / 1 | 2 exp ( - | y 1 | ( £ 2 -2 re ) ) ,

which tends to 0 faster than I2/11~1//2
5 if - with the r given above - we choose

e < e2/(2r).

This concludes the proof for 77 € [0, 00). For 7/ G (0, 00], one has to
exchange the roles of the first and second factors in the Cartesian product.
In particular, one works with A* = I2/1I/I2/2I —• if € [0, 00). The procedure
is precisely the same, and the reader will certainly appreciate not having to
read through similar details once more. •

We can now determine the Martin compactification of T x Z for t >
p(P). Recall that for t2 > 1, we have Z(P2,t2) = Z U {-00,+00}, with
K2(x2,±oo\t2) = l/F2(l/t2)

±X2. By an abuse of the notation used above,
we write (ti(A),^2(A)) for the solution of the equations (28.13), where A 6
[0,oo]. This depends continuously on A, (*i(0),t2(0)) = (*~^~c\l) and
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(28.17) Theorem. For each t > p, the Martin boundary is M{P,i) =
($Tx[-oo, +oo])U(Tx{-oo,+oo}). The topology of the Martin compact-
ification and directions of convergence of the Martin kernel are as follows:

(a) If yi -> £ G #T and 2/2/I2/1I —• 77 e [-00, 00] then 2/12/2 -> (£,77). ^
^2 e T x Z .

If 7̂ > 0 then K(x1x2,y1y2\t) -> #i(xi,f|ti(77)) #2(^2, +00^2(77)).

If 77 < 0 tien ^(xixa, J/U/2I*) - • tfi(*i,f |*i(M)) ^2(^2, -oo| t2(M)).

If r/ = 0 then K(x1x2,y1y2\t) -> lfi(a?i,f |*i(0)).

(b) If 2/1 is feed and 2/2 —• i oo tiien yiy2 -^ (2/1, ±00), and

Proof, (a) We assume 77 > 0, that is, y2 is fixed or tends to +00.
The case rj < 0 will follow by symmetry. Set A = I2/1I/I2/2I and A =
lx2~12/2|/|^r12/il- (Re c a^ that we write Z multiplicatively here.) Then both
A and A tend to 77. Theorem 28.14 yields

\F2(l/t2(X))

where i)(x;,2/i) = K " ^ ! - \Vi\- As 2/1 - • ^, the exponent \)(xi,yi) stabi-
lizes at f)(#!,£), and the first factor converges to Ki(xi,%\ti(rf)). When
77 = 0, the second factor converges to 1, because t2 (A) —> 1. Other-
wise, 2/2 —• +00, the exponent ty(x2,y2) stabilizes at -x2, and the sec-
ond factor converges to 1^2(^25+00^2(77)). What is left is to prove that

\yi\(A{\)-A{\)) - \yi\{\- X)\ogF2(l/t2{\)),

where A(X) = logFi(l/*i(A)) + A logF2(l/t2(A)). We have A'(\) =
logF2(l/t2(A)) by straightforward computations using (28.13) and the for-
mulae for the functions Fi(-). Thus A(X) - A(X) = (A - A) logF2(l/t2(A))
with A between A and A. Therefore we have to show that

|»i |(A-A)(logF2(l/t2(A)) - logF 2 ( l / t 2 (A))) - » 0 .

When 77 < 00, this is obvious, since the last factor tends to 0 (as A and A
tend to 77), while
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|yi|(A - A) = -M-h(X2,y2) + J ^ - f t ( a ? i , y i ) ~ b(s2,!fc) + ^ ( a ^ t f ,
Ni 2/11 F i 2/i I

which remains bounded. When rj = oo and both 12/11,2/2 —• 00, we have
to repeat the same computations after exchanging the roles of y\ and y2.
In particular, A is replaced with A* = I/A; both sides of the second equa-
tion in (28.13) have to be multiplied by A* to lead to the "new" solution
(tl(\*),t2(\*)). This is completely analogous to what we have just done.

(b) We assume without loss of generality that y2 —* +00. Using Theorem
28.14 in the form where C{y\y2) = \y2\~

3/2D*(\yi\/\y2\), we obtain

K(Xlx2,ym\t) ~1

/>!(!/*!(*))V"1' (F2(2/t2(X))\!

{iM))) \F2(l/t2(X)))

since \x1
 xyi\ and \yi\ remain bounded. The first line of the right hand side

has the proposed asymptotic behaviour. The "remainder" in the second line
is treated as in (a) (again replacing A with its inverse A*) and tends to 1. D

Thus, we may think of the Martin compactification T x Z(P, t) as a two-
way infinite cylinder with base T, side #T x [—00, +00] and the two caps
T x {+00} and T x {-00}; the graph T x Z sits inside the cylinder.

Notes and remarks
Here is an incomplete list of references regarding measure theoretic boundary theory:

Avez [9], [11], Furstenberg [126], [127], Kaimanovich and Vershik [190], Ledrappier [214],
Kaimanovich [183], [185], [187], [189]. One of the most outstanding experts in this branch
of the field is V. A. Kaimanovich. I hope that he will conclude writing his own book on
this subject soon.

Besides measure theoretic boundary theory (that is, the study of all bounded har-
monic functions), another topic that - alas — is missing here for lack of space is harmonic
functions with finite Dirichlet sum for reversible Markov chains. A lot of material is
contained in the book by Soardi [304], but since then, various important contributions
have appeared; see in particular Benjamini and Schramm [37], [38], and their joint paper
with Lyons and Peres [35]. The forthcoming book by Lyons and Peres can be expected
to become a valuable source.

20. A probabilistic approach to the Dirichlet problem, and a class of
compact iflcat ions

§A. In potential theory, the "only if" of Theorem 20.3 should be known to the experts.
In the context of denumerable Markov chains, part of the proof is implicit in Furstenberg
[126], but to my knowledge had not been written down in a "swept out" way before I
made this effort in [349].
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§B. This material is taken from Woess [347]. As presented here, it can be traced back
to indications hidden between the lines of Purstenberg [126] and [127], who defines the
notions of proximal and mean proximal spaces associated with group actions and random
walks: with a pair (F, /x), where F is a group and /x a probability on F, he associates a
locally compact F-space M together with a ^-invariant Borel probability v. Proximality
of (M, v) is then a measure theoretic predecessor of the convergence property. There is
a natural topology on F U M, and the right random walk on F with law \x starting at
the identity converges almost surely to an M-valued random variable with distribution
v. In general, F U M is not compact. Purstenberg's indications have been elaborated
by Cartwright and Soardi [65] to prove convergence to ends for random walks on non-
amenable groups of automorphisms of trees; see also Woess [345] for arbitrary vertex-
transitive graphs. A closer look shows that what one uses is precisely the two axioms
(20.5) and (20.6), and this is formalized in [347]. I am not sure to what extent I deserve
credit for having introduced "contractive F-compactifications". Several years earlier,
Gehring and Martin [129] had introduced the concept of convergence groups in the theory
of (quasi-)conformal mappings of the complex plane. Besides the restriction to actions on
C, the main difference is that in [129] they do not compactify, i.e., they do not distinguish
between the action of F on some set and on its boundary. In 1992 G. Mess pointed out
to me that the main results of [347] are basically contained in [129] (while the referee of
[347] seemed not to share this opinion).

It should be remarked that the "contractive" formalism only leads to the most ba-
sic structures where the Dirichlet problem can be solved, namely ends and Gromov-
hyperbolic spaces. In Ballmann [19] and [20], one finds a solution of the Dirichlet prob-
lem with respect to the visibility boundary for discrete groups acting quasi-transitively
on non-negatively curved spaces under certain additional assumptions (rank 1).

21. Ends of graphs and the Dirichlet problem
The definition and study of ends of topological spaces go back to Hopf [174] and to

Preudenthal [121], who was the first to construct the end compactification of a locally
finite graph, without using the term "graph". Later, and independently, Halin [162] re-
introduced the concept of ends in graph theory and studied their properties extensively
in a noteworthy series of papers [163], [164]. For ends of groups as well as graphs, basic
references are the books by Stallings [308] and Dicks and Dunwoody [96]. Lemma 21.4
was already proved by Preudenthal [121] in the case when <p is a metric equivalence.
§A. Thomassen's lemma (21.6) [317] is a clever simplification of previous methods. The
fundamental result here is Dunwoody's theorem (21.7). Theorem 21.10 and Corollary
21.12 are due to Woess [345]. Theorem 21.11 was proved by Moller [242]. In the case
when F fixes an end u, one also has a detailed understanding of the behaviour of the
random walk; see Cartwright, Kaimanovich and Woess [59]: let A be the group module,
and suppose that m = Jr log A(7) dfi^) is finite, where \i is as in (8.12).
Theorem, (a) If m > 0 and M\ (P) < oo then the random walk converges a.s. to a
random end, and the Dirichlet problem is solvable.

(b) If m > 0 then the Dirichlet problem with respect to the end compactification is
not solvable. If tn > 0 then the random walk converges to u a.s.

If m = 0 then a.s. convergence to LJ is known only under an exponential moment
condition.
§B. Theorem 21.15 was proved by Cartwright, Soardi and Woess [66] and (for trees)
Benjamini and Peres [36]. Among the predecessors, there is Derriennic's result for finite
range random walks on free groups [93]. The other results are due to Kaimanovich
and Woess [191]. The example of Figure 19 is due to Benjamini and Peres [36] and
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Kaimanovich and Woess [191]; recently, Amghibech [3] has given a general criterion of
Dirichlet-regularity of ends of a tree that applies here.

22. Hyperbolic graphs and groups
Hyperbolic metric spaces were introduced and described in a very influential essay of

Gromov [151]. Gromov attributes the "invention" of hyperbolic groups to I. Rips. The
task of explaining Gromov's thoughts to a wider audience and working out the details
has been performed simultaneously by several work groups [142], [78], [300], [46], and one
usually has to switch back and forth between these references for finding the facts that
one needs. I have provided the proofs of those basic features that are used here.

The first proof of Theorem 22.14 appeared in Woess [347]. Proposition 22.16 is also
from [347], as well as Corollary 22.17. Previously, Series [298] had considered the special
case of finite range random walks on Puchsian groups, later generalized by Ancona [5].
See also below (Section 27). The "geometric" results (22.19) and (22.20) are due to
Kaimanovich and Woess [191].

23. The Dirichlet problem for circle packing graphs
The results of this section are due to Benjamini and Schramm [37].
More recently [38], they have developed another, very interesting, method of con-

structing a boundary for simple random walks on planar graphs (not only triangulations).
This is done via square tilings of a cylinder, where each edge of the graph corresponds to
a square. The side length of each square (possibly = 0) is the value on the corresponding
edge of the minimum energy unit flow from a chosen root otooo. With the exception of
an atypical case, the limit set of the tiling is a circle, the limit distribution of the sim-
ple random walk starting at o is normalized Lebesgue measure, and the corresponding
Dirichlet problem is solvable.

A remote predecessor of these square tilings is Gerl's volume of a tree; see [135] (also
Woess [340]). Another predecessor, regarding circle boundaries, is Northshield [247].

24. The construction of the Martin boundary
In the classical continuous setting of potential theory, the Martin boundary was intro-

duced by Martin [227] in 1941. In a seminal paper (one of many), Doob [101] explained
how to contruct the Martin compactification for denumerable Markov chains. In princi-
ple, we follow here Doob's approach, via the approximation theorem and Helly's principle.
The uniqueness and convergence theorems are then deduced from the representation the-
orem (this is not explained too clearly in [101]). However, Doob does not require that X
be discrete in the compactification, that is, he just takes the closure of the embedding
y i-> K(-,y) of X in S+(P). Shortly after Doob, Hunt [178] presented a different, more
probabilistic, approach, where one first uses a martingale argument to prove the con-
vergence theorem and then deduces the representation theorem (including uniqueness)
from the latter. In the context of Markov chains, the standard sources are the books by
Kemeny, Snell and Knapp [197] and Revuz [276], but I prefer the presentation of Dynkin
[110] because of its clarity, simplicity and convenient notation; [110] follows Hunt's ap-
proach. Based on [110], I have made an effort to give a careful exposition in my lecture
notes [351]. A recent exposition that follows Doob's ideas more closely is due to Sawyer
[291]. Here, I do not consider recurrent Martin boundary theory. See the corresponding
notes in my survey [348].

25. Generalized lattices, Abelian and nilpotent groups, and graphs with
polynomial growth

§A. Blackwell [45] was the first to prove that all bounded harmonic functions for random
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walks on Zd are constant. Theorem 25.4 was proved by Choquet and Deny [74] (for
random walks on locally compact Abelian groups) and obviously independently by Doob,
Snell and Williamson [102] (for random walks on Zd). Both seem to have been unaware
of Blackwell's theorem. Steps 1 and 3 of the proof of Theorem 25.4 given here, as well
as Lemma 25.2, are adapted from [102]. Step 2 follows Sawyer [291]. The convex set Ct
appearing in Corollary 25.5 was studied carefully by Hennequin [171] (for random walks
on Zd), see also Babillot [14], [15] (for Md-invariant random walks).

Theorem 25.8 is adapted from Margulis [225], who proved it for discrete nilpotent
groups; see also the minor corrections in Kesten's review [202] of [225]. For Corollary
25.10, compare with Erickson [113].

§B. The results in the drift-free case are due to Spitzer [307], P. 26.1, who considers
only dimension d = 3. (The extension to d > 3 is obvious.) If one relaxes the moment
condition, then the Martin boundary may have more than one point, even though the
minimal Martin boundary is a singleton; see also Cartwright and Sawyer [61] (for d = 1).
Complete results regarding this general question are recent and due to Uchiyama [320].

The results when the mean vector is non-zero (Theorem 25.15 and Corollary 25.16)
are originally due to Ney and Spitzer [246] and constituted for me the hardest challenge
in writing this book. Ney and Spitzer used the local central limit theorem (13.10); the
disadvantage of Fourier analysis is here that it gives an additive error term instead of
asymptotic equivalence. The consequence is that when one recomposes the local estimates
to obtain a uniform equivalent of the Green function, one has to control numerous different
error terms, which was done by Ney and Spitzer in a heroic effort. The other, perhaps
more natural, approach is to work directly with the Fourier transform of the Green
function via Lemma 25.17. This was first done in the 80s by Babillot [14], [15], who
studied random walks on Rd; the tool is comparison with the Green kernel of the Gaussian
process with the same first and second moments. Via this approach, Babillot also treats
the continuous-space analogue of generalized lattices. However, its adaptation to Zd is
not as straightforward as one might think at first glance.

A particularly warm acknowledgment goes to Martine Babillot for having patiently
resisted the assault of my email questions, until at last she convinced me that the - much
more recent - method elaborated here does work. It follows the indications given in the
appendix of her "These d'Habilitation" [16].

Theorem 25.15 and Corollary 25.16 remain obviously valid when instead of finite
support, one starts with a suitable exponential moment condition which guarantees that
equation (25.13) has a solution for each x ^ 0, and that the Laplace transform (25.19)
is analytic in a neighbourhood of 0 for each u. On the other hand, I have no precise
estimate of the amount of work needed to carry this method over to the case of generalized
lattices.

In dimension 1, see the renewal theorem of Blackwell [44] (Spitzer [307], P. 24. 6)
for random walks with non-zero mean. In the case of finite range, we can use Corollary
26.14 to show that the Martin boundary is {—oo, +oo}.

26. Trees, ends, and free products
The comparison between Martin boundaries and the ends of general locally finite

graphs was studied systematically by Picardello and Woess [258], [259]. Theorem 26.2 is
from [259]. This was preceded by a result in the setting of abstract potential theory of
Taylor [311].

§A. Theorem 26.4 and Example 26.6 are from the influential paper of Cartier [53]. For
nearest neighbour random walks on free groups, the result had been proved previously by
Dynkin and Malyutov [111]. Theorem 26.7 is due to Picardello and Woess [258], [259],
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based on previous work of Derriennic [93], who introduced this method for determining
the Martin boundary of finite range random walks on free groups. Corollary 26.13 is from
[259], the special case of Corollary 26.14(a) from [258]. Regarding Corollary 26.14(b),
one might expect to obtain a more general result by requiring that F has only thin
ends. But it was proved by Woess [344] that such a group must be virtually free; this
applies, in particular, to groups whose Cay ley graphs are roughly isometric with a tree.
(The terminology "rough isometry" is not used in [344].) It is known as an important
Theorem of Gromov [151] that a group roughly isometric with a free group is virtually
free.

Corollary 26.15, which uses partial knowledge of the Martin boundary to obtain com-
plete knowledge of the Poisson boundary, is the main result in Woess [345]. Previously,
Kaimanovich [183] had considered free products of groups and stated that the Poisson
boundary coincides with the set of infinite words (as in (21.13) and (26.16); this corre-
sponds to the set To appearing in Theorem 21.9) whenever the law of the random walk
has finite first moment. However, his proof only worked for free products of finite groups,
which are virtually free. Methods that Kaimanovich has elaborated more recently [189]
can be used to show that Corollary 26.15 applies more generally when P is assumed to
have finite first moment, and also applies to other types of groups.

§B. This is from Woess [342].

27. The Martin boundary of hyperbolic graphs
The - very strong - results of this section are due to Ancona [5], [4]. For random

walks on Fuchsian groups, Theorem 27.1 and the result of Exercise 27.17 had been proved
previously by Series [298] via an extension of the methods of Derriennic [93]. Ancona's
method is completely different, and the main tool (Theorem 27.12) is formulated in a
more general way than presented here, for so-called ^-chains. In the context of random
walks, I do not know any further example where ^-chains arise, so that I restricted the
exposition to hyperbolic graphs. The conclusion of the proof of Theorem 27.1 given here
(before Exercise 27.17) is due to Kaimanovich [188], with the exception of minimality,
which is extrapolated from Ancona [4].

Theorem 27.1 has a non-empty intersection with the results on ends of §26.A, namely
Corollary 26.14 for t > p(P). As a matter of fact, in this context (trees) it is not hard to
prove the result of Theorem 27.12 more directly, and also for t = p(P).

28. Cartesian products

§A. This material is taken from Picardello and Woess [262]. Much earlier, Molchanov
[241] had considered the direct product Pi <8> P2 of two Markov chains and proved the
analogue of Proposition 28.2 under a condition of (strong) aperiodicity; [241] uses the
associated space-time chain, whose Green kernel splits into the product of the Green
kernels of the space-time chains of the factors (this method does not work for Cartesian
products). The paper [262] was preceded slightly by analogous results for products of
manifolds, where one takes the sum of the Laplacians. (This is the continuous analogue
of Cartesian products of Markov chains, or rather, the latter are the discrete analogue of
the former.) See Taylor [312] and Freire [120], also Ancona [6].

A more thorough discussion of stability of Martin boundaries can be found in Pi-
cardello and Woess [261]; this has direct applications to the Martin boundary of Cartesian
products [262].
§B. Theorem 28.8 is modelled after Guivarc'h and Taylor [160], who considered the
Martin boundary of the product of two or more hyperbolic disks at the bottom of the
spectrum. Theorem 28.14 is due to Crotti [87], whose computations follow the similar
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case of the Cartesian product of two homogeneous trees of degree > 3 (Picardello and
Woess [263]); recurrence of T2 = Z causes some changes here).

Further results
We have already mentioned various additional results regarding the Dirichlet problem.
Rough isometry has somehow disappeared from the considerations of Chapter IV, with

exception of the fact that ends and hyperbolic boundaries are rough-isometry-invariant.
The point is that the Liouville properties for bounded or positive harmonic functions
are not-rough-isometry invariant. T. Lyons [223] has given an example which shows
(when interpreted in this way) that there are two roughly isometric graphs such that for
the respective simple random walks, one of them has non-constant bounded harmonic
functions, while the other has all positive harmonic functions constant. Benjamini [33]
and Benjamini and Schramm [37] have provided further examples.

For studying Martin boundaries, homogeneous trees are the most rewarding struc-
tures. In Section 26, we have only seen results for bounded range random walks. Sawyer
[290] has shown that for radial random walks with finite second moment on T = Tg+i
(q > 2), the Martin compactification is the end compactification, and the Martin kernels
K(-,£), £ e OT, coincide with those of the simple random walk, given in Example 26.6
(with t = 1). Cartwright and Sawyer [61] have extended this beyond the finite second
moment assumption, and have also shown that for arbitrary an radial random walk, the
positive harmonic functions are precisely those of the simple random walk. Returning
to finite range, Picardello and Woess [260] have studied the following random walk P on
T: assign a positive integer radius r(x) to each x G T. Then Pf(x) is the arithmetic
average of the values of / on the ball with radius r(x) centred at x. If the radius function
r(-) satisfies a suitable logarithmic Lipschitz inequality, then the Martin boundary is the
space of ends, and the Martin kernels coincide with those of the simple random walk.

Ballmann and Ledrappier [21] have refined the discretization method of Brownian
motion on manifolds that was developed by Purstenberg [126], Lyons and Sullivan [224]
and Kaimanovich [184]. In particular, they provide an example of a random walk on the
free group whose Martin boundary is (homeomorphic with) the unit circle. It is based
on the realization of the free group as a lattice in 5L(2, R). The law of this random walk
does not have finite support, and is not known explicitly.

For nearest neighbour random walks on the free group, Lalley [211] has used his
uniform local limit theorem to describe the space-time Martin boundary. (The references
given here do not aim at completeness regarding boundaries of non-irreducible Markov
chains such as space-time chains.)

Recently, Denker and Sato [92] have constructed a non-irreducible random walk on
a suitable graph, whose Martin boundary is (homeomorphic with) the Sierpinski fractal.
Previously, Benakli [31] had constructed hyperbolic groups whose hyperbolic boundary
is the Sierpinski fractal. Therefore, one may use Ancona's theorem (27.1) to construct an
irreducible random walk whose Martin boundary is S2. More recently, V. A. Kaimanovich
has shown me a simple way to add edges to a tree in so that the resulting graph is
hyperbolic and its hyperbolic boundary is S<f, thus leading to another example where Sd
arises as a Martin boundary.

Guivarc'h [158], in connection with the work on his book with Ji and Taylor [159],
has developed a method for determining the Martin boundary on symmetric spaces that
can also be adapted to random walks on symmetric spaces of p-adic Lie groups, that is,
buildings like the ones studied in §12.C. I admit that I am not mature enough for a full
understanding of this profound work.
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Book writing requires extended periods of undisturbed concentration,
not like in everyday life at university, when students and colleagues knock at
your door every other moment, exams have to be prepared, supervised and
corrected, you have to attend numerous meetings, feed the bureaucrats with
forms and reports, and teaching is the least disturbance. As a consequence,
book writing is most efficient when you can flee from your own institute
and go as a guest to a distant university, where all this does not occur (to
you). I am therefore most grateful to the various institutions that I could
visit for longer periods during recent years, and where about two thirds
of this book were written: the Departments/Institutes of Mathematics at
Universitat Salzburg, Universite de Rennes, Technische Universitat Graz,
Universitat Linz, and in particular Universitat Wien (with special thanks
to Harald Rindler).

At the same time, I am also most grateful to the Department of Mathe-
matics at my university in Milan, Italy, who gave me the freedom to go
abroad several times, in particular for a whole semester in the final phase.

I thank Peter Gerl, who more than 20 years ago introduced me to the
beautiful subject of random walks.

Finally, a special acknowledgment goes to Bela Bollobas, who became
"guilty" of giving rise to this book in 1994, when he came to Milan for a
short visit before Easter and told me, "Wolfgang, I should have spoken with
you ages ago. You should write a book on random walks."
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amenable
graph,112
group, 123

aperiodic, 3
strongly, 93

asymptotic type, 145
automorphism, 12

bounded, 263
elliptic, 224
hyperbolic, 224
parabolic, 224

Birkhoff contraction coefficient, 280
boundary, 220

hyperbolic, 245
Martin, 257
Poisson, 260
of a tree, 62

bounded geometry, 7
bounded range, 8
building, 132

capacity, 18
logarithmic, 62

carrier (of a packing), 72
characteristic function, 139
charactersitic numbers (of tiles), 116, 137
circle packing, 72
comb lattices, 22
compactification, 220

contractive, 224
end, 230
hyperbolic, 245
Martin, 257
of a free product, 284

conductance, 14
total, 14

configuration, 169
confluent, 63, 129, 284
convergence property, 224
convolution operator, 124
cover, 120

universal, 120
covering map, 120
CP-parabolic, 72
CP-hyperbolic, 72
cut, 233

D-, 234

sides of a, 233
tight, 233

cycle (in a graph), 9

Darboux (method of), 186
degree (of a vertex), 7
Dirichlet

inequality, 111
sum/norm, 15

6-thin, 242

edge graph (of a tiling), 69
Einstein relation, 217
end

of a graph, 230
of a tree, 62
thick, 231
thin, 231

energy
logarithmic, 62
of a flow, 18

excessive measure, 7
t-, 83, 289

exponential, 83, 265
extended, 89

extremal length, 67

factor chain, 13
finite range, 8
flow, 18
free product, 101

generalized lattice, 56
geodesic

arc, 7, 9
ray, 62
triangle, 242

graph
Cay ley, 11
connected, 7
contacts, 72
disk triangulation, 72
distance regular, 219
factor, 13
hyperbolic, 245
regular, 7
Sierpinski, 171

Green function, 3
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group
Baumslag-Solitar, 168
Burnside, 124
convergence, 310
free, 101, 109
Fuchsian, 123
genus-two-surf ace, 138
Heisenberg, 33
hyperbolic, 123, 243
infinite dihedral, 188
lamplighter, 169
monothetic, 225
nilpotent, 32
polycyclic, 164
solvable, 33, 123

growth, 31
exponential, 31
intermediate, 34
polynomial, 31

Haar measure, 12
harmonic function, 5

minimal, 257
t-, 81, 261

harmonic measures, 221
Harnack inequality, 262
height, 129
horocycle, 129
/i-process, 82

inner products, 15, 16
invariant measure, 7

t-, 83
inversion formula, 214
irreducible, 3

uniformly, 8
weakly uniformly, 275

isoperimetric inequality, 39
S-, 39
d-dimensional, 40
strong, 40

fc-fuzz, 27

Laplacian, 15
limit set, 225
Liouville property

weak, 220, 260
strong, 265

local limit theorem, 139
locally constant, 278
locally finite, 7

Markov chain, 2
Martin

boundary, 257

compactification, 257
kernel, 257

metric (of a graph), 7
equivalent, 11, 28

modular function, 12
moment, 8

fcth, 8
exponential, 8
uniform first, 85

Nash inequality, 146
natural surjection, 275
network, 14

shorted, 21

path, 7
infinite, 230
non-reversing, 120

period, 3
strong, 96

periodicity classes, 3
Perron-Probenius theory, 210
Plancherel measure, 214
Poisson

boundary, 260
integral, 260

potential, 256
logarithmic, 62

product
Cartesian, 43, 44
direct, 43, 44
free, 101
wreath, 169

proper metric space, 224
geodesic, 242
hyperbolic, 243

proximal, 310
mean, 310

Puiseux series, 210

quasi-homogeneous, 46

random walk, 8
bounded range, 8
finite range, 8
induced, 38
law of, 10
left, 87
nearest neighbour, 8
on a group, 10, 87
radial, 130
right, 10, 87
simple, 8

rank (of an abelian group), 32
ray, 230

geodesic, 62
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recurrent, 5
positive, 7
null, 7
/o-, 82

reduced function, 258, 289
regular (for the Dirichlet problem), 223
resistance, 14
resolvent equation, 289
reversible, 14

strongly, 27
Riemann-Lebesgue lemma, 185
rough inverse, 28
rough isometry, 27

shorting, 21
Sobolev

inequality, 40
norm, 40

spectral radius, 3, 81
spherical function, 119, 214
spherical transform, 214
stable (Martin boundary), 301

strictly, 301
state space, 2
step length distributions, 8
strongly periodic, 93
structure map, 234
structure tree, 234
subnetwork, 20
superharmonic function, 5

t-, 81

tight, 85
tiling, 69

edge graph of, 69
locally finite, 69
quasi-normal, 70
quasi-regular, 70

trajectory space, 3
transient, 5

p-, 82
transition matrix/operator, 2

finite range, 8
transitive, 13

quasi, 13
vertex-, 13

tree, 9
homogeneous, 9

triangulation, 72

unimodular, 13

Weierstrass preparation theorem, 183, 273
Wirtinger inequality, 218
word, 101

infinite, 284

AUT(X), 12
AUT(X,P), 13
£(P,t), B+(P,t), 81
d(T) (for a nilpotent group), 32
d{P), 3
V{M) (network), 15

DLg,r (Diestel-Leader graph), 131
*T , 69
S(P,t), 297
F(x,y\z),4
F(x,y),S
¥M (free group), 101

( ,y ) ,
G(z) (=G(o,o\z)), 98
GA(x,y\z), GA(x,y), 17
gc (extended exponential), 89
H(P,t), H+(P,t), 81
f)(x) (horcyclic height), 129
IS, ISd, 40
/ % , 39
J % o , 49
Km (complete graph), 99
K(x,y) (Martin kernel), 257
K(x,y\t), 261
£ (Laplacian), 15
Lfj,, L<£ (convolution operators), 124, 125
M(P),M(X,P),M (Martin boundary),

257
M(P,t), M(t), 261
Mmin(P), Mmin, 259
A/* (network), 14
PA » PA (restriction) 82
Ph 5 Ph (/i-process) 82
pu , Pu (^-process) 83, 288
PGL{n,$), 132
r(P), 3
RA[h] (reduced function), 258
Rfx , R<f> (convolution operators), 124, 125
$(x) (in a circle packing), 74
SPV), SMf), 40
5(P,t), 5+(P,t), 81
St(P,t), 289
T, TM , 9
T (compactification of a tree), 62
U(x,x\z), 4
U(x,y)tS
iia (neighbourhood of [0, o)), 98
Vp(x,n),VP(n),Vp(n) (growth), 31
W(z), 98
x- (father), 129
|x| (= d(x, o) for a vertex), 86
X (compactification), 220
X(P) (Martin compactification), 257
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, 121 $X (boundary), 220
7J£ (cycle), 100 vx (harmonic measure), 221
3 (centre of a group), 263 <pp (on generalized lattice), 89
Yx (stabilizer), 13 p(/i), 81
TMte,l21 P(P), 3
A, Ap (modular function), 12 | | (Haar measure), 12
V (difference operator), 15 > , 277
1?T (boundary of a tree), 62 ^ , w , 145
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