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PREFACE

“Random walks” is a topic situated somewhere in between probability,
potential theory, harmonic analysis, geometry, graph theory, and algebra.
The beauty of the subject stems from this linkage, both in the way of
thinking and in the methods employed, of different fields.

Let me briefly declare what - in my viewpoint - random walks are. These
are time-homogeneous Markov chains whose transition probabilities are in
some way (to be specified more precisely in each case) adapted to a given
structure of the underlying state space. This structure may be geometric
or algebraic; here it will be discrete and infinite. Typically, we shall use lo-
cally finite graphs to view the structure. This also includes groups via their
Cayley graphs. From the probabilistic viewpoint, the question is what im-
pact the particular type of structure has on various aspects of the behaviour
of the random walk, such as transience/recurrence, decay and asymptotic
behaviour of transition probabilities, rate of escape, convergence to a bound-
ary at infinity and harmonic functions. Vice versa, random walks may also
be seen as a nice tool for classifying, or at least describing the structure of
graphs, groups and related objects.

Of course, random walks on finite graphs and groups are a fascinating
topic as well, and have had an enormous renaissance in the last decade:
a book written by two major experts, D. Aldous and J. Fill, is about to
appear.

Some might object that any countable Markov chain may be viewed on a
directed graph, so that our notion of random walks coincides with arbitrary
Markov chains. However, our point of view is reversed: what we have in
mind is to start with a graph, group, etc., and investigate the interplay
between the behaviour of random walks on these objects on one hand and
properties of the underlying structure itself on the other.

Historically, I believe that this spirit of approaching the theory of ran-
dom walks on infinite graphs has its roots in the 1921 paper by Pélya. [269),
whose nice title - translated into English - is “On an exercise in probabil-
ity concerning the random walk in the road network”. There, Pélya shows
that simple random walk in the two-dimensional Euclidean grid is recurrent,
while it is transient in higher dimensions. This change of behaviour between
plane and space provided inspiration for much further work. However, it
took 38 years until what I (personal opinion !) consider the next “mile-
stones”. In 1959, Nash-Williams published his paper “Random walks and
electric currents in networks” [245], the first to link recurrence and struc-
tural properties of networks (i.e., reversible Markov chains). This paper -

viii



Preface ix

not written in the style of the mainstream of mathematics at that time -
remained more or less forgotten until the 80s, when it was rediscovered by
T. Lyons, Doyle and Snell, Gerl, and others. The second 1959 milestone was
Kesten’s “Symmetric random walks on groups” [198], founding the theory of
random walks on (infinite) groups and also opening the door from random
walks to amenability and other topics of harmonic and spectral analysis.

Another direct line of extension of Pélya’s result is to consider sums of
i.i.d. random variables taking their values in Z? - this was done to perfection
in Spitzer’s beautiful “Principles of Random walk” [307] (first edition in
1964), which is still the most authoritative and elegant source available.
Spitzer’s book also contains a considerable amount of potential theory. Note
that Markov chains and discrete potential theory were born more or less
simultaneously (while classical potential theory had already been very well
developed before its connection with Brownian motion was revealed, and
one still encounters analysts who deeply mistrust the so-called probabilistic
proofs of results in potential theory - probably they believe that the proofs
themselves hold only almost surely). Although not being directly concerned
with the type of structural considerations that are inherent to random walks,
I consider the third 1959 milestone to be Doob’s “Discrete potential theory
and boundaries” [101]. In the sixties, potential and boundary theory of
denumerable Markov chains had a strong impetus promoted by Doob, Hunt,
Kemeny, Snell, Knapp and others, before being somewhat “buried” under
the burden of abstract potential theory. Doob’s article immediately led
to considerations in the same spirit that we have in mind here, the next
milestone being the note of 1961 by Dynkin and Malyutov [111]. This
contains the first structural description of the Martin boundary of a class
of random walks and is also - together with Kesten [198] - the first paper
where one finds the principal ingredients for computations regarding nearest
neighbour random walks on free groups and homogeneous trees. Indeed, it
is amusing to see how many people have been redoing these computations
for trees in the belief of being the first to do so.

It was in a paper on boundaries that Kesten [201] indicated a problem
which then became known as “Kesten’s conjecture”: classify those (finitely
generated) groups which carry a recurrent random walk, the conjecture (not
stated explicitly by Kesten) being that such a group must grow polynomially
with degree at most two. It is noteworthy that the analogous problem
was first settled in the 70s for connected Lie groups, see Baldi [17]. The
Lie case is not easier, but there were more analytical and structural tools
available at the time. The solution in the discrete case became possible by
Gromov’s celebrated classification of groups with polynomial growth [149]
and was carried out in a remarkable series of papers by Varopoulos, who
gave the final answer in [325]. In the 80s, random walks on graphs have been
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repopularized, owing much to the beautiful little book by Doyle and Snell
[103]. However, this discussion of selected “milestones” is bringing me too
close to the present, with many of the actors still on stage and the future to
judge. Other important work from the late 50s and the 60s should also be
mentioned here, such as that of Choquet and Deny [74] and - in particular
- Furstenberg [124].

Let me return from this “historical” excursion. This book grew out of a
long survey paper that I published in 1994 [348]. It is organized in a similar
way, although here, less material is covered in more detail.

Each of the four chapters is built around one specific type of question
concerning the behaviour of random walks, and answers to this question
are then presented for various different structures, such as integer lattices,
trees, free groups, plane tilings, Gromov-hyperbolic graphs, and so on. At
the beginning, I briefly considered using the “orthogonal” approach, namely
to order by types of structures, for example, saying first “everything” about
random walks on integer lattices, then nilpotent groups and graphs with
polynomial growth, trees, hyperbolic graphs, and so on. Some thought
convinced me that this was not feasible. Thus, the same classes of structures
will be encountered several times in this book. For example, the reader who
is interested in results concerning random walks and trees will find these in
paragraphs/sections 1.D, 5, 6.B, 10.C, 12.C, 19, 21.A and 26.A, tilings and
circle packings are considered in 6.C-D, 10.C and 23, and the integer grids
and their generalizations appear in 1.A, 6.A, 8.B, 13 and 25. Regarding
the latter, I obviously did not aim at an exposition as complete as that of
Spitzer had been in its time. Most likely, every reader will find a favorite
among the topics in random walk theory that are not covered here (such
as random walks on direct limits of finite groups, ratio limit theorems, or
random walks in random environment).

A short word on notation. Instead of using further exotic alphabets,
I decided not to reserve a different symbol for each different object. For
example, the symbol ® has different meanings in Sections 6, 9 and 12, and
this should be clear from the context.

I started writing this book at the beginning of 1995 (one chapter per
year). Thus, Chapter I is the oldest one among the material presented here,
and so on. I decided not to make a complete updating of this material to
the state of the art of today (1999) - otherwise I could never stop writing.
In particular, the 90s saw the emergence of a new, very strong group of
random walkers (and beyond) in Israel and the US (I. Benjamini, R. Lyons,
Y. Peres, O. Schramm, ...) whose work is somewhat underrepresented here
by this reason. On the other hand (serving as an excuse for me), two of them
(Lyons and Peres) are currently writing their own book on “Probability on
Trees and Networks” that can be expected to be quite exciting.
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Many mathematical monographs of today start with two claims. One
is to be self-contained. This book is not self-contained by the nature of
its topic. The other claim is to be usable for graduate students. It has
been my experience that usually, this must be taken with caution and is
mostly true only in the presence of a guiding hand that is acquainted with
the topic. I think that this is true here as well. Proofs are sometimes a
bit condensed, and it may be that even readers above the student level will
need pen and paper when they want to work through them seriously - in
particular because of the variety of different methods and techniques that I
have tried to unite in this text. This does not mean that parts of this book
could not be used for graduate or even undergraduate courses. Indeed, I
have taught parts of this material on several occasions, and at various levels.

Anyone who has written a book will have experienced the mysterious fact
that a text of finite length may contain an infinity of misprints and mistakes,
which apparently were not there during your careful proof-reading. In this
sense, I beg excuse for all those flaws whose mysterious future appearance
is certain.

In conclusion, let me say that I have learned a lot in working on this
book, and also had fun, and I hope that this fun will “infect” some of the
readers too.

Milano, July 1999 W.W.






CHAPTER 1

THE TYPE PROBLEM

1. Basic facts

Before embarking on a review of the basic material concerning Markov
chains, graphs, groups, etc., let us warm up by considering the classical
example.

A. Pélya’s walk

The d-dimensional grid, denoted briefly by Z¢, is the graph whose vertices
are integer points in d dimensions, and where two points are linked by an
edge if they are at distance 1. A walker wanders randomly from point to
point; at each “crossroad” (point) he chooses with equal probability the one
among the 2d neighbouring points where his next step will take him, see
Figure 1. Starting from the origin, what is the probability p(2™)(0,0) that
the walker will be back at the 2nth step? This is the number of closed paths
of length 2n starting at the origin, divided by (2d)?". (The walker cannot
be back after an odd number of steps.) For small dimensions, the solutions
of this combinatorial exercise are as follows.

Figure 1: the grids Z and Z?

foo
Joa

d = 1. Among the 2n steps, the walker has to make n to the left and n
to the right. Hence

1 /2n -
(L1) p™(0,0) = ﬁ(n) ~ G

d = 2. Let two walkers perform the one-dimensional random walk simul-
taneously and independently. Their joint trajectory, viewed in Z2, visits
only the set of points (¢,j) with 7 + j even. However, the graph with this
set of vertices, and with two points neighbours if they differ by 1 in each

1



2 I. The type problem

component, is isomorphic with the grid Z? and probabilities are preserved
under this isomorphism. Hence

(1.2) p®™(0,0) = <2—21,77 (2"»2 ~Cynt.

n

d = 3. It is no longer possible to represent the random walk in terms of
three independent random walks on Z. In a path of length 2n starting and
ending at the origin, n steps have to go north, east, or up. There are (*7)
possibilities to assign the n steps of these three types; the other n go south,
west, or down. For each of these choices, i steps go north and ¢ go south, j

steps go east and j go west, n — i — 7 steps go up and n — ¢ — j go down.

Hence 2
(2n) - Al — 7 — 1

i+j<n
Consider the function (z,y, z) — zly!z! for z,y,z > 0. Under the condition

z +y+ z = n, it assumes its minimum for £ = y = z = n/3, when n is
sufficiently large. Hence

_ 1 2n n' n _3/2
= o (n) B "G

Indeed, for arbitrary dimension d, there are various ways to show that
(1.4) p3(0,0) ~ Can~%2.

Now for the random walk starting at the origin, ). p(7)(0,0) is the
expected number of visits of the walker back to the origin: this is infinite
for d = 1,2 and finite for d > 3. This drastic change of behaviour from two
to three dimensions stands at the origin of our investigations.

B. Irreducible Markov chains

A Markov chain is (in principle) given by a finite or countable state
space X and a stochastic transition matriz (or transition operator) P =
(p(z, y))zyy cx- In addition, one has to specify the starting point (or a
starting distribution on X). The matrix element p(z,y) is the probability
of moving from x to y in one step. Thus, we have a sequence of X-valued
random variables Z,, n > 0, with Z,, representing the random position in
X at time n. To model Z,, the usual choice of probability space is the
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trajectory space = XNo, equipped with the product o-algebra arising
from the discrete one on X. Then Z, is the nth projection 2 — X. This
describes the Markov chain starting at z, when Q is equipped with the
probability measure given via the Kolmogorov extension theorem by

P;(Zo = 20,21 = 21, - .., Zn = Tn] = 85(T0)p(0, 1) - - P(Tr—-1, Tn) -
The associated expectation is denoted by E;. Alternatively, we shall call

a Markov chain (random walk) the pair (X, P) or the sequence of random
variables (Zp)n>0. We write

™ (z,y) =Pz[Z, = 9.
This is the (z,y)-entry of the matrix power P", with P? = I, the identity
matrix over X. Throughout this book, we shall always require that all states
communicate:

(1.5) Basic assumption. (X, P) is irreducible, that is, for every z,y € X
there is some n € N such that p(™ (z,y) > 0.

Next, we define the Green function as the power series
o]

(1.6) G(z,ylz) = > p™(z,y)z", z,yeX,z€C.

n=0

(1.7) Lemma. For real z > 0, the series G(z,y|z) either diverge or con-
verge simultaneously for all z,y € X.

Proof. Given x1,y;1,x32,ys € X, by irreducibility there are k, £ € N such
that p® (21, 22) > 0 and p®(y2,41) > 0. We have

p(k+n+e) (z1,31) 2 P(k) (z1, x2)p(") (x2,92 )P(l) (y2,91)
and hence, for z > 0,

G(z1,11)2) = p®) (21, 22)p® (32, 1) 25 HG (22, 12| 2) - d

As a consequence, all the G(z,y|z) (where z,y € X) have the same
radius of convergence r(P) = 1/p(P), given by

(1.8) p(P) = limsupp™ (z,y)/™ € (0, 1].

This number is often called the spectral radius of P.

The period of P is the number d = d(P) = ged {n > 1 : p(™(z,z) > 0}.
1t is well known and easy to check that it is independent of z by irreducibil-
ity. If 4(P) = 1 then the chain is called aperiodic. Choose 0 € X and
define Y; = {zx € X : p™+7)(0,2) > 0 for some n > 0}, j =0,...,d — 1.
This defines a partition of X, and x,y are in the same class if and only
if p®®(z,y) > 0 for some n. These are the periodicity classes of (X, P),
visited by the chain (Z,)n>0 in cyclical order. The restriction of P¢ to each
class is irreducible and aperiodic. See e.g. Chung [75] for these facts.



4 I. The type problem
(1.9) Lemma. p™(x,z) <p(P)*, and lLm p™¥(z,z)}/™ = p(P).
n—oo

Proof. Write a, = p{"¥(z,z). Then 0 < a, < 1 and ged N(z) = 1,
where N(z) = {n : ¢, > 0}. The crucial property i8 aman < tmin-

We first show that there is ng¢ such that a, > 0 for all n > ng. If
m,n € N(x) then m + n € N(z). Recall that the greatest common divisor
of a set of integers can always be written as a finite linear combination
with integer coefficients of elements of that set. Therefore we can write
1 = ged N(z) = n1 — ny, where ny,ng € N(z) U {0}. If no = 0 we are done
(no = 1). Otherwise, set ng = n3 and decompose n > ng asn=qna+7 =
(g — m)ng + rny, where 0 < r < ng. It must be that ¢ > na > r, so that
n € N(z). Next, fix m € N(x), let n > ng+m, and decompose n = ¢g,m+ry,
where ng < r, < ng +m. Write b = b(m) = min{a, : no < r < ng + m}.
Then b > 0 and a, > aZra,,, so that al/mpl/n < o™ If n — oo then
gn/n — m. Hence,

a,ln/m < linrr_1>i°rc1)f ai/" < p(P)? for every m € N(z).

This proves the first statement. If we now let m — oo, then limsup,,, a,l,{ m<

. 1 1
liminf,, a%/™, and al/" converges. O

(1.10) Exercise. Prove the following. If P is irreducible and aperiodic
then P* is irreducible and aperiodic for every k > 1, and p(P¥) = p(P)*.

Next, define the stopping time s¥ = min{n > 0: Z, =y} (where the
minimum is oo when the set is empty) and the hitting probabilities plus
associated generating functions

o0

(L1D)  f™(zy) =P =n] and Flz,yla) =Y fM(z,y)",

n=0

where z € C. Note that F(z,z|z) = 1. Finally, let

o0
(1.12) t*=min{n>1:2Z, =2} and U(z,z|z)= ZIP;,[t’: =n]2".

n=0
The following will be useful on several occasions.
1
(1.13) Lemma. (a) G(.’L‘,.'l?lZ) = W y
(b) G(z,yl2) = F(z,y|2)G(y, yl2)
(c) U(z,zl2) = > _p(x,y)z F(y,z|2) and,

(d) ify#z, F(z,yl2) =Y ple,w)zF(wyl2).
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Proof. Part (a) follows from the identity
p(") (z,z) = Z]P’ [t* = k] p"®)N(z,z), ifn>1,

while p{®(z,z) = 1 and P,[t* = 0] = 0.

Analogously, (b) is obtained by conditioning with respect to the first
visit to y. Parts (c) and (d) are obtained by factoring though the first step
(that is, the values of Z;). a

We shall write G(z, y) for G(z,y|1). This is the expected number of visits

of (Zp)n>0 to y when Zy = z. Analogously, F(x, y) stands for F(z,y|1), the
probability of ever reaching y when starting at x, and U(z, z) = U(z,z|1) =
P,[t* < oo] is the probability of ever returning after starting at x.
(1.14) Definition. The Markov chain (X, P) is called recurrent if
G(z,y) = oo for some (<= every) z,y € X, or equivalently, if U(zx,z) = 1
for some (<= every) z € X. Otherwise, the Markov chain is called tran-
sient.

If p(P) < 1 then (X, P) is transient. The converse is not true. The spec-
tral radius will be studied in Chapter II, with sufficient transience criteria
as by-products. There is a useful characterization of recurrence is terms of
superharmonic functions. P acts on functions f: X — R by

Pf(z) =) p(z,y) f)

(We assume that P|f| is finite.) We say that f is superharmonic if Pf < f
pointwise, and harmonic if Pf = f.

(1.15) Minimum principle. If f is superharmonic and there is x € X
such that f(x) = minx f then f is constant.

Proof. For every n, we have f(zr) > Zy p™(z,)f(y) . Hence, it cannot
be that f(y) > f(z) for any y such that p(™)(z,y) > 0. Now irreducibility
vields f = f(z). O

For harmonic functions there is an analogous mazimum principle (the
minimum principle applied to —f).

(1.16) Theorem. (X, P) is recurrent if and only if all non-negative super-
harmonic functions are constant.

Proof. If (X, P) is transient then for y € X, the function z — G(z,y)
is superharmonic, non-harmonic and hence non-constant.
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Conversely, assume that (X, P) is recurrent. Let f > 0 be any superhar-
monic function. Set g = f — Pf. We claim that ¢ = 0. Suppose g(y) > 0
for some y. Choose € X. For each n,

> pM(,y)ey) <Y Py(z) = fz) -~ PP f(z) < f(a).
k=0 k=0

Consequently, G(z,y) < f(z)/g(y) in contradiction with recurrence. We
have shown that every non-negative superharmonic function is harmonic.
Now, for superharmonic f > 0, choose z € X and set M = f(z). Then
h = fAM (pointwise minimum) is superharmonic and hence also harmonic.
It assumes its maximum M, and by the maximum principle, h is constant.
Thus f is constant. 0

Here are further characterizations of recurrence and transience.

(1.17) Proposition. (a) If (X, P) is recurrent then F(z,y) = 1 and
P,[Z, = y for infinitely many n] =1 forallz,y € X.
(b) If (X, P) is transient then for every finite A C X,

P,|Z, € A for infinitely many n] =0 forallz € X .

Proof. First, observe that for y € X, the function z — F(x,y) is su-
perharmonic (Lemma 1.13). Thus, in the recurrent case, F'(-,y) is constant
by Theorem 1.16, and equal to F(y,y) = 1.

Next, write V(z,y) = P,[Z, = y for infinitely many n]. Conditioning
with respect to s¥, one sees that V(z,y) = F(z,y)V(y,y) < V(y,y). Fac-
toring through the first step, one sees that z — V(z, y) is harmonic. By the
maximum principle, V(z,y) = V(y,y) for all z,y.

Set Vin(z,2) = Pg[(Zn)n>o visits z at least m times]. Then Vi(z,x)
1, and conditioning with respect to t®, one sees that V,(z,z)
Uz, z)Vm—-1(z,z). Hence

Viz,z) = nlgrolo Vin(z, ) = nh_}n;o U(z,z)™*

is equal to 1 in the recurrent case and 0 in the transient case. This proves
(a). Furthermore, as A is finite,

P.[Z,. € A for infinitely many n] < Z Viz,y),
yEA
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which is 0 in the transient case. a

In particular, an irreducible Markov chain on a finite state space is always
recurrent. We shall be interested in the case when X is infinite.

A recurrent Markov chain (X, P) is called positive recurrent if E,[t*] <
oo, and null recurrent if E;[t*] = co. Noting that E,[t*] = U'(z, z|1-)
(derivative with respect to z), it is easy to prove (similarly to Lemma 1.7)
that this does not depend on the choice of x € X. Before stating a criterion,
we need another definition. P acts on non-negative measures on X by

vP(y) =) v(z)p(x,y).

T

(We assume that v P is finite.) We say that v is ezcessive if vP < v point-
wise, and invariant if vP = v. (Irreducibility implies v(z) > 0 for all z if
this holds for some x.) We omit the proof of the following criterion.

(1.18) Theorem. (a) (X, P) is recurrent if and only if there is an invariant
measure v such that every positive excessive measure is a multiple of v.
(b) (X, P) is positive recurrent if and only if v has finite mass.

The recurrent Markov chains that we shall encounter in this book will
usually be null recurrent.

C. Random walks on graphs

We think of a graph as a finite or countable set of vertices (points) X,
equipped with a symmetric neighbourhood or adjacency relation ~ (a subset
of X x X). To view X, we draw a segment (edge), sometimes denoted by
[z,y], between every pair of neighbours z,y (so that [z,y] = [y,z]). Note
that we do not exclude loops. We shall also write E or E(X) for the edge set.
A (finite) path from z to y in X is a sequence 7 = [z = zo,21,...,Zk = ¥
such that z;_; ~ z; ; the number k > 0 is its length. (Alternatively, we shall
think of 7 as a sequence of edges.) We shall always assume that our graphs
are connected, that is, every pair of vertices is joined by a path. Thus, X
carries an integer-valued metric: d(z,y) is the minimum among the lengths
of all paths from z to y. A path from z to y is called simple if it has no
repeated vertex, and geodesic if its length is d(x,y). We denote by II(z,y)
the set of all geodesics from z to y.

The degree deg(zx) of a vertex « is its number of neighbours. With a few
exceptions, we shall usually consider only graphs which are locally finite,
that is, every vertex has finite degree. We say that X has bounded geometry,
if it is connected with bounded vertex degrees, and that X is (M-)regular,
if deg(-) = M is constant.
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The simple random walk on a locally finite graph X is the Markov chain
with state space X and transition probabilities

1/deg(x) , fy~z,

(1.19) P@y) = { 0, otherwise.
The graph X is said to be recurrent (transient) if the simple random walk
has this property. The simple random walk is the basic example of a random
walk (Markov chain) adapted to the underlying structure. In the sequel, we
shall consider various more general types of adaptedness properties of the
transition matrix P of a Markov chain to the structure of the underlying
graph X, and it is in the presence of such adaptedness properties that we
speak of a random walk (instead of a Markov chain). Here is a list of some
of these properties, which will be frequently used.

We say that P is of nearest neighbour type, if p(x,y) > 0 occurs only
when d(z,y) < 1.

The random walk is called uniformly irreducible if there are ¢ > 0 and
K < oo such that

(1.20) x~y implies p®(z,y) >eo forsomek < K.
Note that this implies that deg(z) < (K + 1)/eo for every z € X. Indeed,
K
K+1= Z Zp(k)(m,y) > deg(z) € -
YEX k=0

When {y : p(z,y) > 0} is finite for every z, we say that P has finite
range. In itself, finite range is not an adaptedness property. However, this
is the case for bounded range, that is, when

(1.21) sup{d(z,y) : z,y € X, p(z,y) > 0} < 0.

This can be generalized by imposing conditions like tightness, uniform in-
tegrability, etc., on the family of step length distributions on Ny. The latter
are given for each z € X by

(1.22) 0o(n) =Peld(Z1,Z0) =n]= > p(z,y).
y:d(y,x)=n

Consider the kth moment My(o;) = 3, nFos(n) = Ex(d(Z1, Zo)*). We
say that P has finite kth moment, if Mi(P) = supy My{o,) is finite, and
that P has ezponential moment of order ¢ > 0, if supy ), e0,(n) < 0o.
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Further adaptedness conditions of geometric type will be introduced later
on.

D. Trees

The nearest neighbour random walk on trees, and in particular the sim-
ple random walk on homogenous trees, is the other basic example besides
Pélya’s walk. A tree is a connected graph T without loops or cycles, where
by a cycle in a graph we mean a sequence of vertices xg ~ x1 ~ -+ ~ Xy,
n > 3, with no repetitions besides x,, = zo. One characteristic feature of
a tree is that for every pair of vertices z,y there is a unique path (geodesic
arc) m(z,y) of length d(z,y) connecting the two.

Let P be the transition matrix of an irreducible nearest neighbour ran-
dom walk on T'. The following is a fundamental property linking tree struc-
ture and random walk.

(1.23) Lemma. Ifw € n(z,y) then F(x,y|z) = F(z,w|2)F(w,ylz).

Proof. By the tree structure, the random walk must pass through w on
the way from z to y. Conditioning with respect to the first visit in w, this
yields

1 @) = 32 18w o ) 0

k=0

As another “warm up” exercise, let us now consider a particularly typical
example. The homogeneous tree Ty is the tree where all vertices have degree
M. (T, is isomorphic with Z. See Figure 2 for Ts.)

Figure 2: the homogeneous tree T3

(1.24) Lemma. For the simple random walk on Tz, one has

d(z,y)
Claul) = 2AM - 1) (M —-/MZ = 4(M—1)z2> ‘

M=2+/M? —4(M-1)z2 2(M -1)z

In particular, p(P) = % .
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Proof. Obviously F(z,y|z) = F(z) is the same for every pair of neigh-
bours x, y, so that Lemma 1.23 yields F(v, w|z) = F(2)%*®), Now consider
two neighbours z,y. Applying Lemma 1.13(d) we get

1 1 M-1
F(z) = Fla,yl2) = ) 372 F(2)*") = o+ —

w~E

2 F(2)%.

This second order equation has two solutions. As F(0) = 0, the right one
is (by continuity)

1
2(M - 1)z

F(z) = (M — /MZ—4(M - 1)z2) .

Using Lemma 1.13(c), (a) and (b), one now computes U(z,z|z) = 2F(z),
G(z,z|z) and the formula for G(z, y|2).

The way in which p(P) is read from this formula is typical: G(z,z|z) is
a power series with non-negative coefficients. By Pringsheim’s theorem (see
Hille [173], p. 133), the radius of convergence r(P) = 1/p(P) must be its
smallest positive singularity. Thus, we have to compute the value of z > 0
where the term under the square root is equal to 0. O

As a consequence, the simple random walk on Ty, is transient for every
M > 3.

(1.25) Exercise. Compute G(z,y|z) for the simple random walk on the
bi-regular tree, that is, the tree where the vertex degrees are constant on
each of the two bipartite classes. (These are the points at even or odd
distance, respectively, from a given reference vertex.)

E. Random walks on finitely generated groups

Pélya’s walk, besides being the simple random walk on a graph (the d-
dimensional grid), can also be interpreted in terms of groups. The same is
true for the simple random walk on Tj,.

Let T be a discrete group with unit element o (the symbol e will be used
for edges), and let p be a probability measure on I'. The (right) random
walk on I with law p is the Markov chain with state space I' and transition
probabilities

pz,y) = p(z'y).

{Unless I is abelian, the group operation will be written multiplicatively.)
Besides the trajectory space, in this case we may also use the product space
(T, w)N to obtain an equivalent model of (Z,): the nth projections X,, of
I'N onto T (n > 1) constitute a sequence of independent I'-valued random
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variables with common distribution g, and the right random walk starting
atx el is
Zn=2X1--Xn, n>0.

This generalizes the ordinary scheme of sums of i.i.d. random variables on
the integers or reals. The n-step transition probabilities are obtained by

P™(z,y) = p™(z7y),

where p(™ is the n-fold convolution of y with itself, with u(® = §,, the
point mass at the group identity.

Let us relate groups with graphs. Suppose that I' is finitely generated,
and let S be a symmetric set of generators of I'. The Cayley graph X (T, S)
of I' with respect to S has vertex set I', and two elements z,y € I" are
neighbours if 7!y € S. This graph is connected, locally finite and regular
(all points have the same degree |S|). If o € S then it has a loop at each
vertex. I' acts as a group of self-isometries on the Cayley graph; the action
is left multiplication.

For example, in the abelian group Z¢, we may choose S as the set of
all elements with euclidean length 1. The resulting Cayley graph is the
usual grid. The homogeneous tree Tjs is the Cayley graph of the group
I = (ai1,...,apm | a? = o) with respect to S = {a1,...,an}. This group is
the free product of M copies of the two-element group Z; (see Chapter II
for more on free products).

Write dg for the graph metric on X(T, S), and let S’ be another finite,
symmetric set of generators. Then the metrics dg and dg/ are equivalent in
the sense that there are constants C,C’ such that

(1.26) ds <C'dg and dg <Cds.

Indeed, choosing C = max{dg/(z,0) : x € S} we get ds/(z,y) < C whenever
dS (.’l), y) =L

The simple random walk on X (T, S) is nothing but the right random
walk on I" whose law p is the equidistribution on S.

For arbitrary u, we write supp pt = {x € I : u(z) > 0} . Then supp u{® =
(supp 1)™, and g (that is, the random walk with law ) is irreducible if and
only if

o0
(suppp)” =T.
n=1
In particular, irreducibility is uniform with respect to the Cayley graph
structure: for every z € S, choose n, such that u(™)(z) > 0. Then we may
set K = max{n, : € S} and g9 = min{u("*)(z) : z € §}.
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Also, for random walks on groups, finite range coincides with bounded
range (supp y is finite), and the step length distributions o, are the same
for every x. Indeed, the geometric adaptedness conditions listed above for
random walks on graphs can be viewed as attempts to transport typical ho-
mogeneity properties of random walks on groups to a non-algebraic setting.

As we shall see, recurrence of random walks on a group I' is independent
of the particular choice of the law u (as long as it is irreducible and symmet-
ric, and the step length distribution has finite second moment). Thus, one
speaks of recurrent (or transient) groups. The classification of the recurrent
ones among all finitely generated groups will be one of the main themes of
this chapter.

F. Locally finite graphs and topological groups

Let X be a locally finite, connected graph with discrete metric d. An
automorphism of X is a self-isometry of X with respect to d. The group
AUT(X) of all automorphisms of X can be equipped with the topology of
pointwise convergence: for a sequence (¥, )n>1 in AUT(X), we have

Y — ¥ < foreveryrz € X, ypx =9z foralln>n,.
For an arbitrary subgroup I" of AUT(X), we write
I,={yel:yz =z}

for the stabilizer of vertex z in I'. For the topology on AUT(X), a sub-
base of the neighbourhood filter at the identity ¢ is given by the family
of all AUT(X),, ¢ € X. The stabilizers are both open and closed, and
even compact. Indeed, we have the following simple lemma, whose proof is
omitted. (Local finiteness is crucial here.)

(1.27) Lemma. A subset B of AUT(X) is relatively compact if and only
if for some (<> every) xr € X, the orbit Bx = {~x : v € B} is finite.

Thus, the automorphism group of a locally finite, connected graph is a
locally compact, totally disconnected Hausdorff group with countable base
of the topology.

Let T be a closed subgroup of AUT(X). Then I' carries a left Haar
measure dy. For a Borel subset B of T, we write |B| for its measure.
Recall the basic properties of dy: every open set has positive measure,
every compact set has finite measure, |yA| = |4| for every v € T, and as
a Radon measure with these properties, dv is unique up to multiplication
by constants. When I is discrete, the Haar measure is (a multiple of) the
counting measure. We shall also need the modular function A = Ar of
I". Again, recall that this is a homomorphism from I' to the multiplicative
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group of positive reals satisfying |By] = A(7)|B| for every Borel set in T and
Jr9(ry HA(Y) dy = [; g(7) dv for integrable functions g on . The group
I is called unémodular when A = 1. If x € X, then the stabilizer I, is open
and compact, so that 0 < |';| < co. For v € T, we have '}, = 7Ty}
whence

2

(1-28) |F’7m| = A(’Y_l)lracl .
ITe| _ [Tyl

1.29) Lemma. —_— = .

(1-20) T

Proof. (Of course, {I';y| and |T'yz| denote the cardinalities of the re-
spective orbits.) The open and compact subgroup I'; N Ty is the stabilizer
of y in T',. Writing the left coset partition, one sees that it has finite index
in T, which is equal to |T';y| on the one hand and to |T;|/|T; NT,| on the
other. Exchanging the roles of z and y, we also get |Tyz| = [T|/|T> N T,).
In dividing, [Ty NT| cancels. a

In Chapter IT we shall see examples of graphs with non-unimodular au-
tomorphism group. The following formula will be useful:

ao  [sema= [  swa=l Y s,

yelz

whenever f : X — R is a function for which the sum (integral) converges
absolutely. Analogously, if e = [z, y] is a (non-oriented) edge of X, then T,
is the set of all v € T satisfying {vz,vy} = {z,y}. Again, I, is open and
compact (I'; NT'y is a subgroup with index 1 or 2), formula (1.28) remains
valid, and there is a formula analogous to (1.30) for functions defined on
the edge set of X.

Let X, i € Z, be the orbits of I' on X. The vertex set of the factor graph
I\X isZ, and i ~ j in I\ X if v ~ v for some u € X;, v € X;. We obtain
a connected, locally finite graph. The graph X is called vertez-transitive
(or just transitive) if AUT(X) acts transitively on X, and it is called quasi-
transitive if AUT(X) acts with finitely many orbits. Now let P be the
transition matrix of a random walk on X. We define AUT(X, P) to be
the group of all ¥ € AUT(X) which leave P invariant, that is, p(yz,vy) =
p(z,y) for all z,y € X. For a subgroup I' of AUT(X, P), we can define the
transition matrix P of the factor chain on T = X by

(1.31) 86,5 = Y plz,w),
weX;

where x € X is arbitrary. It inherits irreducibility from P. We say that
(X, P) is (quasi-)transitive, if AUT(X, P) acts transitively (with finitely
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many orbits) on X. Note that this in itself is a strong adaptedness prop-
erty. Once more, irreducibility is automatically uniform, and there are only
finitely many different step length distributions (one in the transitive case).
Needless to say, not every random walk with transitive automorphism group
arises as a random walk on a finitely generated discrete group. Examples
will be considered in §12.C.

More generally than for finitely generated groups, in this chapter we shall
give a structural classification of the recurrent ones among all locally finite,
connected quasi-transitive graphs.

2. Recurrence and transience of infinite networks

In this section we shall exhibit a variety of recurrence criteria for Markov
chains with a symmetry property (reversibility) and a comparison theorem
for reversible and non-reversible chains. Recall that we always require ir-
reducibility (1.5).

A. Reversible Markov chains

For the moment, let X be an infinite, countable set, not necessarily
equipped with the structure of a locally finite graph. The Markov chain
(X, P) is called reversible if there is a function (measure) m : X — (0, oo)
such that

(2.1) m(z)p(z,y) = m(y)p(y,z) forallz,ye X.

In this case, a(z,y) = m(z)p(z,y) = aly,x) is called the conductance
between z and y, and m(z) is the total conductance at z. Conversely, if
a:X xX — [0, 00) is a symmetric function such that m(z) = 3_, a(z,y)
is positive and finite for every z, then p(z,y) = a(z,y)/m(z) defines a
reversible Markov chain (random walk). Note that m(-) is an invariant
measure for P.

It will be convenient to equip X with an edge set £ = E(P) such that for
the resulting graph, P is of nearest neighbour type: [z,y] € E(P) if and only
if a(z,y) > 0. Note that (X, F) is connected, but not necessarily locally
finite. In addition, for each — a priori non-oriented — edge e € E(P), out of
its two endpoints, we specify one as its initial vertex e~ and the other as
its terminal vertex e*. Nothing of what we are going to do depends on the
particular choice. (We shall think of functions on E as flows. A positive or
negative sign then stands for the low moving from e~ to et or conversely.)
The resistance of e € E is r(e) = 1/a(e™,et). The triple N = (X, E,r)
is called a network. We may think of A as an infinite electrical network,
where each edge e is a wire with resistance r(e), and several wires are linked
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at each node (vertex). Or we may think of a system of tubes e with cross-
section 1 and length r(e), connected at the vertices. We shall say that N is
recurrent (transient) if (X, P) has the respective property.

Later on, X will carry the structure of a locally finite graph. In this case,
the simple random walk arises from the network where a(z,y) =1ifz ~y
(and = 0, otherwise). However, we stress that in general E(P) does not
have to be the edge set E(X). The point is that we shall consider “adapted”
reversible random walks on the graph X which are not necessarily nearest
neighbour and may even have infinite range. For example, on groups, we
shall be interested in symmetric random walks without too many restrictions
on the law u. For the moment, this is irrelevant, and we only consider the
graph (X, E) of the network, locally finite or not, with E = E(P).

It will be convenient to introduce a potential theoretic setup, as follows.
Consider the real Hilbert spaces £2(X, m) and ¢2(E,r) with inner products

(f,9)= Y f@)g@m(@) and (u,9) =3 ule)(e)r(e),

zeX ecF
respectively. We introduce the difference operator

e+ — Fle™
Vﬁwm~ﬁ@w,W@=ﬁ%E&l'

It is easily seen to have norm < /2. Its adjoint is given by

V*u(z) = @( Z u(e) — Z u(e)) .

eiet=zg e~ =

If we think of  as a flow in the network, then Y ... __ u(e) is the amount
flowing into node z, and )., __, u(e) is the amount flowing out, so that
m(z)V*u(x) is the “loss” at x. Below, we shall give a more precise definition
of flows. The Laplacian is

(2.2) £=-V'V=P-—1,

where I is the identity matrix over X and P is the transition matrix of our
random walk, both viewed as operators on functions X — R.

Consider the space D(N) of all functions f on X (not necessarily in
£2(X,m)) such that Vf € £2(E,r). If f is such a function, then its Dirichlet
sum (or Dirichlet norm) is

2
(2.3) D(f) = (Vf,Vf) = Z (flet) = fle7))

ecE 7‘(6)

1S (10~ 1) m@lpten).

z,yeX
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This is a quasi-norm, its kernel consisting of the constants. We shall
also denote the Dirichlet sum by Das(-) or Dp(-). The space D(N) can be
equipped with an inner product by choosing a reference point o € X :

(f,9)p = (f,9)p,0 = (V£,Vg) + f(0)g(0) .

Let us gather a few standard facts.

(2.4) Lemma. (a) D(N) is a Hilbert space.
(b) Changing the reference point o gives rise to an equivalent Hilbert
space norm.

(c) Convergence in D(N) implies pointwise convergence.
(d) If f e D(N) then V*(Vf) = —Lf.

Proof. For (a)—(c), we need one simple inequality. Let £ € X, = # o.
By connectedness of the graph (X, E), there are 0 = zg,21,..., 2, =2 € X

such that e; = [z;_1,z;] € E. Let Cy(z) = Ef=1 r(e;). Then for f € D(N),
using the Cauchy—-Schwarz inequality,

2
(f(z) ~ f(o) (Z 1 wz\/Te;;z_ 1) r(ei)) < Ci(z) D(f).

Setting Ca(z) = 2max{l, Ci(z)}, we get

f(2)? < Ca() (f, f)pso -

Consequently, (f, f)px < C3(z) (f, f)D,0, where C3(z) = Ca(z) + 1. Ex-
changing the roles of & and o, there is an analogous inequality: this proves
(b).

Now let (f,) be a Cauchy sequence in D(N). By the above, for every
¢ € X, (fa(z)) is Cauchy in R and converges to some limit f(z). On
the other hand, (Vf,) is a Cauchy sequence in ¢?(E,r). Hence, there is
u € £2(E,r) such that V£, — u in the latter Hilbert space. It must be that
u =V f, so that D(f) < co. This proves (a).

Part (c) is now obvious.

Part (d) is a technical remark. For every z € X, even when (X, P) is not
locally finite, the sum 1 37, 1cp 1f(2) — f(y)la(z,y) is finite (bounded
by D(f)). Hence, the terms in

V' (V5)(@) = (x)(Zf nofel), 5, e fe) w)

e~ =x
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may be reordered to give (I — P)f(z). d

By #5(X) we denote the linear space of finitely supported functions on
X, and by Do(N) its closure in D(N). Note that £2(X,m) C Do(N) (as V
is bounded), while the converse is in general not true (see Chapter II).

Note that for every & > 1, P is reversible with the same invariant
measure m(-)} (but may be non-irreducible). By Dp:(-}) we denote the
associated Dirichlet norm according to (2.3).

(2.5) Lemma. Dpx(f) < k? Dp(f) for every f € £o(X).

Proof. We have, using Cauchy—Schwarz and reversibility,

Dpe(f) =13 Z (f(zx) — f(l'O))zm(ﬂUo)P(xo,wl) < p(Zk—1, Tk)

L0y, L EX

k
<1 3 kY (f@) - fl@imy) mizo)p(zo, 21) - - p(@hc1, 21)

Loy €X =1

'“Z Z F(ic1)) mi@ic1)p(@io1,3:) O

=1 z;_1,%; EX

Before introducing and proving a first set of transience criteria, we need
some preliminary material. If A is a subset of X, then we denote by P4 the
restriction of P to X :

(2.6) palz,y)=p(z,y), Hz,y€ A and p(z,y) =0, otherwise.

Usually, we consider P4 as a matrix over the whole of X, but we shall use
the same notation for the truncated matrix over A alone. In the same way,
we define the restriction I4 of the identity matrix. The (z,y)-element of

the matrix power P% is pff)( Y)=P,lZn=y, Ze A(0B<k<n). In
particular, P = I4. For the associated Green function we write

Galw,yle) = Y 7 (@,9) 2", Galz,y) = Galz,yl1).

n=0

(N.B.: this is not the restriction of G(-,-|z) to A.) When A is finite, then it
is well known and easy to prove that G4 is finite. In matrix (or operator)
notation, we have

2.7) (In — PA)Ga = 1I4.
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(2.8) Lemma. Let A C X be finite, x € A and f € £3{X) be such that
supp f C A. Then

(V£,VGa(, 7)) = m(z)f(z).
Proof. By (2.2) and (2.7), and as the functions involved are 0 outside A,

(V£,VGal(2)) = (f,(I — P)Ga(,2))
= (f,(Ia — PA)Ga(-,7)) = (£,6,) . 0

(2.9) Lemma. If(X, P) is transient, then G(-,z) € Do(N') for every z€ X.

Proof. Let A C B be finite subsets of X containing z. Applying Lemma
2.8to A, B, f =Gg(-,z) and f = Ga(-,z), respectively, we get

D(GB(’:E) - GA("T)) =<VGB(’z)a VGB(a$)) - 2<VGA(7‘T)7VGB(ax)>
4+ (VGa(,2), VG (-, x))
=m(z)(Gp(z,z) — Ga(z,z)).

Now let (A,) be an exhaustion of X (that is, an increasing sequence with
union X) by finite sets containing z. By monotone convergence, G 4, (z, )
tends to G(z,). Hence, by the above, (G4,(,,%)), ., is a Cauchy se-
quence in D(N). By Lemma 2.4, it converges to its pointwise limit, that is,
G(-,z). Thus, G(-,z) can be approximated in D(N) by finitely supported
functions. O

B. Flows, capacity, and Nash-Williams’ criterion

Given a vertex o € X and a real number iy, a finite energy flow from x
to 0o with input ip on N is a function u € £2(E,r) such that

V*u(y) = b:(y) foralye X.

io
m(x)

Its energy is (u, u). Thus, we may think of the network as a system of tubes
filled with (incompressible) liquid, and at the source zo, liquid is pumped
in at a constant rate of iy litres per second. Requiring that this be possible
with finite energy (u,u) is of course absurd if the network is finite (unless
iop = 0), and we shall see that the existence of such flows characterizes
transient networks. In this sense, recurrent networks correspond more to
our intuition of the “real world”.

The capacity of a set A C X is

(2.10) cap(A) =inf{D(f): f € £(X), f=1o0n A}.
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Note that
(2.11) cap(A) = min{D(f) : f € Dp(N), f =1on A}.

Indeed, the convex set {f € Do(N) : fla = 1} is the closure in D(N) of
{f € 6o(X) : fla = 1}. By a standard theorem in Hilbert space theory
(Rudin [282], Th. 4.10), there is a unique element in the set where the
norm is minimized. We write cap(z) for cap({z}).

With these ingredients, we can formulate the following useful collection
of necessary and sufficient transience criteria.

(2.12) Theorem. For a reversible Markov chain (X, P) and the associated
network N, the following statements are equivalent.

(a) The network is transient.

(b) For some (<= every) z € X, there is a finite energy flow from x
to oo with non—zero input.

(c¢) For some (<= every) z € X, cap(z) > 0.

(d) The constant function 1 does not belong to Do(N).

Proof. (a) = (b). If the network is transient, then G(-,z) € Do(N).
Define u = -—;&—)VG(-,z). Then u € ¢2(E(P),r) and

Viu= —2 _8G(,z) = ——2_§

m( ) m(z)
We have used Lemma 2.4(d) in the last identity.
{(b) == (c). Suppose there is a finite energy flow u from z to co with
input 4p # 0. We may assume that ip = —1. Now let f € £p(X) with
f(z) = 1. Then

(Vf,u) = (f, V*u) = (f, ;}ﬁ) = f(z)=1.

Hence, 1 = [(Vf,u)|? < D(f) (u,u). We obtain cap(z) > 1/(u,u) > 0.

(c) <= (d). This is immediate from (2.11). We have cap(z) = 0 if and
only if there is f € Do(N) with f(z) =1 and D(f) =0, that is, f = 1.

{(¢) = (a). Let A C X be finite and such that z € A. Set f =

Ga(+,z)/Galz, 7). Then f € Do(N) and f(z) = 1. Therefore, applying
Lemma 2.8,

1 _m(z)
cap(z) £ D VGa(, ), VGl
p( ) = (f) ( )2( A( ) A( )) GA(-’I?,:E)
We obtain G4(z,z) < m(z)/cap(z) for every finite A C X containing z.
Now take an exhaustion of X by sets of this type. Passing to the limit,
monotone convergence yields G(z, z) < m(z)/cap(z) < co. O
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(2.13) Exercise. Prove the following in the transient case.

The unit flow from z to oo with minimal energy is given by
u(z) = —AG(-,z)/m(x), its energy (the resistance between z and oo) is
G(z,z)/m(x), and cap(z) = m(z)/G(z, z),

One of the useful consequences of Theorem 2.12 is that recurrence / tran-
sience depends only on the Dirichlet norm D(-) associated with P according
to (2.3).

(2.14) Corollary. Let P, and P, be the transition matrices of two re-
versible Markov chains on X with associated Dirichlet norms Dy and D,
respectively. Suppose that there is €1 > 0 such that

Da(f) 2 e1 Di(f) for all f € £o(X).

Then transience of (X, P) implies transience of (X, Ps).
This holds, in particular, when the associated conductances satisfy
asx(z,y) > e1a1(z,y) for all z,y € X, where &1 > 0.

By a subnetwork N’ of N' we mean a connected subgraph of (X, E),
together with the restriction of the resistance function to the remaining
edges. A finite energy flow in A is also a finite energy flow in A"

(2.15) Corollary. Transience of a subnetwork implies transience of N.

For example, take a locally finite graph X and a connected subgraph X’
of X. Then recurrence of the simple random walk on X implies recurrence
of the simple random walk on X’. More applications of Theorem 2.12 will
be discussed later on, one right now as a preparation for Nash-Williams’
recurrence criterion.

(2.16) Nearest neighbour random walk on Ny. Speaking of Ny as a
graph, we think of a one-way infinite path where neighbourhood is given
by the edges e, = [k — 1,k], k > 1. For an (irreducible) nearest neighbour
random walk, we must specify the transition probabilities p(k — 1,k) > 0,
p(k,k—1) > 0for k > 1 and p(k, k) > 0 for k > 0. We see that the random
walk is reversible with

. p(07 1)p(1,2) o p(k -1, k) _ p(k — 17k —_ 2) o -p(l,O)
()= p(k,k—1)---p(2,1)p(1,0) and r(ex) = p(0,1) - p(k — 1,k)

The only flow from 0 to oo with input i = 1 is the unit flow, and its energy
is > r(ex). Thus, the random walk is

o o0
transient <= Zr(ek) < 00, recurrent < Zr(ek) =00,
k=1 k=1
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and in the latter case, it is positive recurrent if and only if >, 5, m(k) < co.

Note that if in an arbitrary network we can find a one-way infinite path
along which the resistances have finite sum, then the network is transient.
Indeed, the unit flow along that path (with input 1 at its initial point) has
finite energy. a

Next, we describe the method of shorting. Let (X, P) be reversible with
associated network N. Suppose that we have a partition of X:

(2.17) X =|JX;, suchthat 1x, eDo(N) VieZI.

i€
(The last condition is crucial. It holds in particular if 37 . m(z) < 00.)
Then we can define the shorted network N’ with vertex set 7 and conduc-

tance function

Y. alzy), ifj#i,
(2.18) d'(i,7) = { =zeXiyex;

0, ifj=4.

Note that m’(i) = 3_; a/(i, /) = D(1x,) < oo for every 4. Thus, the shorted
network arises from a reversible Markov chain (I, P’), with transition prob-
abilities p'(i, 5) = a'(3, 7) /m’ (3).
(2.19) Theorem. Suppose that (X, P) is reversible and that (I, P’) is
obtained from (X, P) by shorting. If (I, P’) is recurrent then so is (X, P).

Proof. If f € D(N") then we set f(x) = f(i) for z € X;. Then
Du(fy=3 ¥ (F@) - @) alzy)

z,y€X
=2 3 3 (6 - £6) a@)
1,j€EX z€X;
yeX;
=3 Z (3) — £))"a' (5, 5) = Dar(f) -
,JGX

Next, we use the assumption 1x, € Do(N): if f € £o(I) then
F=3"f0)1x, e D).
€T
Now, if N is recurrent, then by Theorem 2.12(d), 1 € Do(N”), and there
is a sequence (f,) in £o(I) such that Dy (f, — 1) — 0. Consequently, (f,)
is a sequence in Dy(N) satisfying Dar(fr — 1) — 0. We obtain 1 € Do(N),
and N is recurrent. a

Combining the theorem with (2.16), we get Nash-Williams’ recurrence
criterion as a particular instance:



22 1. The type problem

(2.20) Corollary. Under the conditions of (2.17) and (2.18), suppose that
T =Np and that a’(,5) =0 if |i — j| > 2. If
=}
1

FGET R

i=

then (X, P) is recurrent.

Using this criterion, there is another, instructive, way to see that the
simple random walk on the square grid Z? is recurrent. Let d be the graph
metric of Z2, and set

X, ={z€Z?:d(z,0) =i} = {(k,]) € Z®: |k| + |l| = i}, i > 0.
Recall that all edges have conductance 1. For the shorted network, we get
a' (i —1,7) = 8 — 4, and Corollary 2.20 applies.

We conclude this subsection with another simple example, which uses
the flow criterion and shows that very natural subgraphs of transient graphs
may well be recurrent.

(2.21) Comb lattices in Z¢. We write Cy4 (comb lattice) for the following
spanning tree! of Z¢: the vertex set is Z¢, and neighbourhood is described
by

(kl,...,kj._l,kj,o,...,()) ~ (kl,...,kj_l,kj +1,0,...,0),
where j = 1,...,dand k; € Z (1 < ¢ < j). Thus, C; = Z, and C4
is obtained from Cg4_; by attaching at each point a two-way infinite path
(copy of Z).

Figure 3: the comb lattice Cq

We prove inductively that the simple random walk on Cj is recurrent. This
is true for C;. Assume that C,_; is recurrent. Suppose that Cg is transient.
Then there is a finite energy flow u in Cy from the origin to infinity. But
this flow must be 0 along all edges of each of the two-way infinite paths
which we have attached to C4_; for obtaining Cg4: otherwise, the energy
would be infinite. Consequently, u is a finite energy flow in C4_; from the
origin to co. This contradicts recurrence of Cy_;. O

1A spanning tree of a graph is a subgraph which is a tree and contains all vertices.
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(2.22) Exercise. Fattenings of the comb lattice C3 in Z3.

(a) Take copies of the square grid Z* x {k}, k € Z, and connect each
point (0,0, k) with (0,0, k& + 1) by an edge.

(b) Take C3 and add all those missing edges of the grid Z* which lie in
the (x, z)-plane, that is, the edges between (k,0,m) and (k+1,0,m), where
k,m € Z. The resulting graph is the square grid together with two-way
infinite paths, one going through each point of the grid.

(c) Consider the Cartesian product Cz X Z. This is the graph with vertex
set Z3 where (k1,£€1,m;) ~ (kg,€2,m2) if the two points are at distance 1
and either ez =0or kl = kz.

Find the type of the simple random walk on each of these graphs. (A
solution of (c¢) will be given in §18.)

C. Comparison with non-reversible Markov chains

Let P be an arbitrary (irreducible) transition matrix over X with exces-
sive measure v. Observe that P acts as a contraction on £2(X,v). Indeed,
denoting by (-,-), the inner product in this Hilbert space,

2.23) (Pf,f) = ZZ ) f(z)p(z,y) f(y)

< S vlantey (f‘”) fwr ) <.

Also, the adjoint P* of P on £2(X,v), given by p*(z,y) = v(y)p(y, z)/v(z),
is substochastic, and v P*P < v.

We want to give compatibility conditions under which the Green function
of P can be compared with the Green function of a reversible Markov chain
on X. The following Hilbert space lemma has become quite popular in
random walk theory.

(2.24) Lemma. Let ‘H be a real Hilbert space with inner product (-,-),
and let Ty, T> be two invertible linear operators on H such that

(i) Ty is self-adjoint, and

(ii) (Tof,f) = (T1f,f) >0 forall f e H. Then

(I F) > (T f, f) forallfeH.

Proof. Applying the Cauchy-Schwarz inequality to the positive semi-
definite quadratic form defined by T3, we get

(T, )2 = (@ I ) < (T f, T f) (I, T L)
<G TTN I ST ) =@ )@ F). O
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(2.25) Theorem. Let P be an irreducible transition matrix with excessive
measure v, and let Q) be reversible with total conductance m. Suppose that

(1) supm(z)/v(z) < 0o, and
X
(2) there is g9 > 0 such that P > £q Q elementwise.

Then recurrence of (X, P) implies recurrence of (X, Q).

Proof. Set u(zx) = m(x)/v(z). Then u(z) < C for some constant C>0.
We define two new transition operators P = 1 (I+P) and Q = (1— gu) I+
2 Q, that is,

a(z,9) = (1- ())& + Fu@,y).

One immediately verifies that v is an excessive measure for P and that
Q is reversible with total conductance v. Also, P > €, Q, where ; =
min{eo,1/2}. We get that 2—(P — £1Q) is also a stochastic transition
operator with excessive measure v, and by (2.23),

(P-e1Q)f, f), <A —e)(f,f)y forall fef’(X,v).
Consequently, if 0 < z < 1, then
(I -2P)f,f), 2e1 (I -2Q)f,f), =0
on £2(X,v). On this space, the operators P and Q are contractions. Thus,

for 0 <2< 1, Ty =&;(I —2Q) and T = I — 2P satisfy the assumptions of
Lemma 2.24. We have

(I-2P)f(@) =) Gpla,yl2)f(y)
Yy

(analogously for Q), and setting f = §,, we get
1

(1-2)Gp(z,z|5%) = Gp(z, z|2) < S—-GQ(x,w|z) for every z € (0, 1).
1

Letting z — 1 from below, we get Gp(z,z) < Gg(z,x)/e; for every X.

Thus, recurrence of (X, P) implies recurrence of (X, Q).
Now let f € £o(X). Then

Da(f) = 3 (@) - F0) v(@a(z,)

z,y

-1 Z(f — 1) 2r(@) D g(z,9) = = Do)
2C 20
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By Corollary 2.14, recurrence of (X, Q) implies recurrence of (X,Q). O

Together with other comparison criteria for reversible chains (which will
be deduced from Theorem 2.12 and its corollaries), the last theorem will
be used to show that on a graph with bounded geometry (or on a group),
recurrence of any “reasonable” random walk implies recurrence of the simple
random walk.

3. Applications to random walks

We shall now give various applications of the results of the last section
to random walks on locally finite graphs and groups. In particular, we shall
determine those finitely generated groups which carry a recurrent random
walk.

A. Comparison theorems for random walks on graphs

In this subsection, X will be a graph with bounded geometry. On X,
we shall compare different reversible random walks (not necessarily nearest
neighbour). We shall refer to the Dirichlet norm associated with the simple
random walk as D(-) (without subscript) or Dx(-). In the same way, we
shall write V or Vx for the difference operator associated with the simple
random walk. Thus, Vf(e) = f(e*) — f(e™) for every edge of X.

(3.1) Theorem. Let P be the transition matrix of a uniformly irreducible
random walk on X with excessive measure v satisfying inf x v(z) > 0. Then
recurrence of (X, P) implies recurrence of the simple random walk on X .

If, in addition, P is reversible with total conductance m = v, then there
is 1 > 0 such that Dp(f) > e1.D(f) for all f € £o(X).

Proof. Let K and g¢ be as in the definition of uniform irreducibility
(1.20). Let P=1(I+ P) and P=PX. Thenfor0< 2 <1,
GP("D (EIZ) 2— sz(x x|2 z)

so that P is recurrent if and only if P is. Next, if P is recurrent, then for
z € X, at least one of the series 377, pE+)(z,2) (1 < r < K) must
diverge. As P > 11, we get

ZP(") (@,2) > (1) Y g+ (2,) .
n=0 n=0

Consequently, P is recurrent if and only P is. The measure v is also P-
excessive. We now show that P dominates a multiple of the simple random
walk. If £ ~ y, then

1
p > = 2> —
b(z,9) 2 2K = 2K deg(z)
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Hence, Theorem 2.25 applies with P in place of P and the simple random
walk in place of Q. (Recall that for the simple random walk, we have
m(z) = deg(z), which is bounded above.)

‘We now prove the proposed inequality for the Dirichlet norms in the case
when P is reversible with total conductance m = v. Then P and P are also
reversible with respect to v. By Lemma 2.5, for every f € £y(X),

D(f) < K2Dp(f) = D).

If & ~ y, then as above

v(z)p(z,y) = 2—K infr(z)=>0.
Recall that for the simple random walk, each edge has conductance 1. Set-
ting €1 = 2/ K2, we obtain the proposed inequality. O

Next, we look for conditions under which the second statement of the last
theorem can be reversed. Recall that in this subsection we are considering
graphs with bounded vertex degrees.

(3.2) Theorem. Let P be the transition matrix of a reversible bounded
range random walk on X whose total conductances satisfy sup x m(z) < oo.
Then there is e > 0 such that D(f) > eaDp(f) for all f € £5(X).

In particular, recurrence of the simple random walk on X implies recur-
rence of (X, P).

Proof. Let E be the set of edges of the graph X. Recall that II(z, y) is
the set of geodesics from z to y, and write II.(z, y) for all paths in II(x,y)
containing edge e. Using the Cauchy—Schwarz inequality, we have

(f@ - )" < |n(z o1 2 (V@) day).

w€ll(z,y) eEn

Hence, for f € !fo(X ),

Drf<; T e o (VHE) de)

3 WEX well(z,y) ee™
= > (V@) *é(e),
ecE
where
1 . (z,
(33) 0 =3 3 mE@p(e e R

z,yeX
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We get Dp(f) < supg ¢(e) D(f). Using our assumptions, we now show that
¢ is bounded above. Let M > 2 be an upper bound for the vertex degrees
in X, and let R be a bound for the range of P. Let e € E. If z,y are such
that d(z,y) < R and II¢(z,y) # 0 then both z and y must be at distance at
most M — 1 from the closer endpoint of e. There are at most 2R?™ pairs
(x,y) of this type. Therefore

ple) < E(Sllp m(w)) Z M (=, y)] < R®M*! supm(z) < 0.
2 X a:,yGX:d(m,y)SR |H(x7 y)l X
a

The last two theorems lead us to calling a reversible Markov chain (X, P)
strongly reversible if there is a constant C € (0, 0o) such that

(34) Cl<m(z)<C forallze X.

The simple random walk on a locally finite graph X is strongly reversible if
and only if X has bounded geometry.

(3.5) Corollary. Ifsome strongly reversible, uniformly irreducible random
walk with bounded range on X is recurrent, then this is true for every
random walk on X with these three properties.

For an integer k > 1 the k-fuzz of X is the graph X (%) with the same ver-
tex set as X, where two vertices are neighbours if and only if 1 < d(z,y) < k.
With respect to the graph structure of X, the simple random walk on X (%)
satisfies all requirements of Theorem 3.2.

(3.6) Corollary. There is g5 > 0 such that

Dx(f) > Dx(f) > ea Dxy(f) for all f € £(X).

In particular, X is recurrent if and only if X®) is recurrent.

Next, we want to compare different graphs. We shall use the following
notion of similarity, regarding graphs as metric spaces with their natural
discrete metrics.

(3.7) Definition. Let (X,d) and (X’,d’) be two metric spaces. A rough
isometry is a mapping ¢ : X — X’ such that

A7ld(z,y) - A7'B < d'(pz,0y) < Ad(z,y) + B

for all z,y € X, and
d'(',¢X)< B
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for every =’ € X', where A > 1 and B > 0. (We shall also refer to ¢ as an
(A, B)-rough isometry.) In this case we say that the two spaces are roughly
isometric, and if B = 0 then we say that they are metrically equivalent.

‘We can construct a rough inverse @ of p: for ' € X’, choose z € X such
that d'(2', pz) < B, and set @z’ = z. Then one easily works out that @ is
an (A’, B’)-rough isometry with A’ = A and B’ = (24 + 1)B. Furthermore,
d(@ypz,z) < (A+1)B for every z € X, and d'(p@z’,2') < B for every
z’ € X'. It is obvious that the composition of two rough isometries is again
a rough isometry. Hence, to be roughly isometric is an equivalence relation
between metric spaces.

In order to get a feeling for rough isometry between graphs, we now
present an example and a proposition.

(3.8) Example. Let X be a loopless graph with bounded geometry and
deg(zx) > 3 for every vertex z. Then we can construct a graph X’ which is
3-regular and roughly isometric with X.

We describe how to modify X locally at each vertex in order to obtain
X'. Let z € X, deg(z) = k, and let E(z) = {eo(z),...,exk—1(z)} be an
enumeration of the edges incident with z. If £ = 3 then nothing has to be
changed; we write x(1) for the vertex of X’ corresponding to z. If k > 4
then we replace z with new vertices z(1, ..., 2(*~2) and introduce new edges
e® = [¢® g+ ¢ = 1,...,k — 3. In the modified graph, (copies of)
eo(z) and e, () are incident with z(}), (copies of) ex_o(x) and ex_;(z) are
incident with z(*=2), and if k£ > 4 then (a copy of) e;(z) is incident with
z® i=2,...,k—3; see Figure 4.

€5
e eq4 [} €s
Figure 4 . >.e.<31 £ _e_<f>_.<
ey e3 e T T €4
€2 ez €3

This modification is carried out at each vertex of X. Thus, we have replaced
each vertex = of X with deg(z) > 3 by a path of length deg(x) — 3. We
define px = (). Tt is clear that distances do not decrease under ¢:

d(z,y) < d'(pz,0y).

Conversely, let d(z,y) = n, let 7 = [z = z¢,21,...,Z, = y] be a path in X
from z to y, and let e; = [z;_1,%;] be its edges. Thinking of e; as an edge
of X', this does not necessarily connect pzx;_; = xfl_)l with pz; = xgl), but
(4

it does connect x;’; with xgk) for some j, k. Now

d(c®, 200y <M -3
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for each z(9) € X', where M is an upper bound on the vertex degrees in X.
Hence, d'(pxi-1,03;) <2(M —3)+ 1, and

d'(pz, py) < (2M - 5) d(z,y) -

Consequently, ¢ is a (2M — 5, M — 3)-rough isometry. We remark that the
natural choice for the rough inverse is given by @z = z. We also remark
that this construction has the following property: when X is a tree then so
is X',

In other words, every tree with bounded geometry and minimum degree
at least 3 is roughly isometric with the homogeneous tree of degree 3. 0

(3.9) Proposition. Every quasi-transitive graph is roughly isometric with
a vertex-transitive graph.

If a group T' < AUT(X) acts quasi-transitively and with finite vertex
stabilizers then I' is finitely generated and X is roughly isometric with a
Cayley graph of T

Proof. Let ' < AUT(X) act quasi-transitively. Consider the orbits X;,
i € T ={1,...,N}, and the factor graph over Z. The latter is connected
on N vertices and has diameter bounded by N — 1. Lifting back to X, we
see that for every z € X there is £ € X; such that d(z,Z) < N — 1 (we
choose Z = z when z € X;). Now consider the (2N — 1)-fuzz X?¥N=1)_ Let
X 1(2N_1) denote the subgraph induced by X;. We claim that it is connected.
Let z,y € X3, and consider a path 7 = [z = zo,21,...,Zk~1, 2k = Y] from
z to y in X. Define # = [z = Zo,Z1,...,Tk-1,Zk = y]. In X, we have
d(il—h‘_l,ii) S d(i‘i_l,mi_l) + 1 —+ d((l,‘i,.’i'i) S 2N - 1. Hence, T iS a path in
X 12N_1), except that possibly Z;_; = Z; for some %, in which case we simply
delete Z;.

It is now obvious that ¢z = Z is a rough isometry from X to X
and the latter graph is vertex-transitive.

For the second statement, suppose that I' has finite vertex stabilizers.
By the above, we may assume that it acts transitively on X and choose a
reference vertex o. We have that I" is discrete, Haar measure is the counting
measure, and all ', have the same cardinality and are conjugates of each
other. The (finite, symmetric) set S of all v € I' with o ~ o generates I'.
Now consider the graph X over X x T, where (z,a) ~ (y,8) <= z~yin
X. Tt is obvious that X and X are roughly isometric via ¢(z,a) = z. For
each x € X, choose and fix v, € I" such that v,0 = z. We define an action
ofTon X : '

(2N-1)
1 9

if yz=y then (z,0)= (3,7, 7).

As the mapping (, @) — 7, is one-to-one from X onto T, one easily checks
that T becomes a subgroup of AUT(X) which acts vertex-transitively. If
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y¥(z,a) = (z,a) for a vertex of X then it must be that lyya = a,
whence v = «. That is, the action of I' is fixed point-free, and X must be a
Cayley graph of I'; indeed, X = X (T, S) with S as above. O

The following is the main link between rough isometries and random
walks.

(3.10) Theorem. Let X, X' be graphs with bounded geometry, and let
¢ : X — X' be a rough isometry. Then there is a constant €’ > 0 such that

Dx/(f) 2 €' Dx(foy) forall felo(X').

In particular, X is recurrent if and only if X' is recurrent.

Proof. Let ¢ be an (A, B)-rough isometry. First of all, note that fop €
£o(X) for every f € £o(X"). Indeed, the preimage of ' € X’ in X under ¢
has diameter bounded by B. Thus, [¢~}{z'}| < MB*! < 0o, where M is
an upper bound on the vertex degrees in X.

Now consider the graph structure on X induced by ¢: two points
',y € pX are neighbours in ¢X if there are neighbours z,y in X such
that oz = 2’ and py = y'. Let a/(z’,y’) be the number of all such edges
[z,y] in X. In this situation, d'(«/,y’) < k = A+ B, so that ¢X is a
subgraph of X’ (k) Applying Corollary 3.6, we get that

Dyx(f) < Do (f) < %Dx' (f) for every f € &o(X),

where 5 > 0.

Now note that ¢ X together with the conductance function a'(-,-) is the
network obtained by shorting the network of the simple random walk on X
with respect to the partition induced by ¢. By the above, a’(z',y') < MB+2,
Hence (compare with the proof of Theorem 2.19)

Dx(f o 9) < MP¥Dyx(f) for every f € fo(X').

This completes the proof of the inequality.

Applying the same argument to a rough inverse of ¢, we get an analogous
inequality in the opposite direction. Using Theorem 2.12(c) or (d), we see
that recurrence of X and recurrence of X' are equivalent. 0

B. Growth and the classification of recurrent groups

In this subsection we shall present the quickest possible access to the
classification of those finitely generated groups which carry a recurrent (ir-
reducible) random walk. Before this, we need some general considerations
on growth of graphs.
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Let X be a locally finite, connected graph. On X, we consider a reversible
Markov chain (X, P) which is of nearest neighbour type and such that the
invariant measure satisfies inf x m(z) > 0. For z € X and n > 0, the n-ball
centred at z is B(z,n) = {y € X : d(y,z) < n}. The growth function of
(X, P) at z is Vp(z,n) = m(B(z,n)). We set

(3.11) Vp(n) = inf Ve(z,n) and Vp(n)=supVp(z,n).
X

In the case of the simple random walk, where m(z) is proportional to deg(z),
we omit P or write Vx(-). We say that the graph X has exponential growth,
if V(n) > Cr™ for some C > 0 and r > 1, and that X has polynomial
growth, if V(n) < C (n + 1)¢ for some C,d > 0.

We shall usually use m(z) = deg(z) for the simple random walk. When
X is regular, we shall often prefer the counting measure (m(z) = 1). In
any case, polynomial and exponential growth do not depend on the chosen
normalization. If X is vertex-transitive, then V(z,n) = V(n) = V(n) is
independent of x.

Let us immediately exhibit a relation between growth and recurrence.

(3.12) Lemma. If liminfn(Vp(x,n)/n2) < oo for some (<= every)
z € X then (X, P) is recurrent.

Proof. We apply Nash-Williams’ criterion (Corollary 2.20) to the dis-
tance partition, that is, we short each of the sets S(z,n) = {y : d(y,z) = n},
n > 0, to a single point. In the notation of (2.18), a’(n,n + 1) is the sum of
the conductances of the edges between S(x,n) and S(z,n+1). In particular,
d(n,n+1) <Vp(z,n+1) — Vp(z,n). By Jensen’s inequality,

2n 1 2 )
Z 2 n > n > 0.
k=n+1 al(k -1 k) - Eiln+1 G/(k -Lk) Vp(z,2n)
Therefore the series 3 a’(n — 1,n)~! must diverge. 0

This sheds more light on recurrence of the simple random walk on Z2.
Note that here we did not require X to have bounded vertex degrees. The
condition of the lemma cannot be replaced with liminf,(Vp(n)/n?) < co
(unless X is quasi-transitive), as there are transient trees with V(n) = 4n+2,
while V(z,n) > C, r™ with r > 1 (attach a half-line at the root of the binary
tree). On the other hand, it is also easy to construct recurrent trees with
V(z,n) > 2™. An example will be given in §6.B below. However, we shall
see that polynomial growth with degree at most 2 is not only sufficient,
but also necessary for recurrence of the simple and other random walks on
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Cayley graphs, and more generally on quasi-transitive graphs. Before that,
we need to relate growth with the structure of groups.

We start with an observation concerning rough isometries. The follow-
ing is easily obtained along the lines of Theorem 3.10 (compare also with
Theorem 4.7 below); we leave the proof as an exercise.

(3.13) Lemma. Let X and X' be two roughly isometric graphs with
bounded geometry. Then X and X' have equivalent growth functions in
the sense that there are constants ¢y, ko such that

Vx(n) < coVx/(kon) and Vx/(n) < coVx(kgn) foralln.

In particular, X has polynomial (exponential) growth if and only if X’
has the respective property.

If [ is a finitely generated group and S1, S; are two finite, symmetric sets
of generators, then the Cayley graphs X (I, S1) and X (T, S;) have equiva-
lent metrics. Indeed, let d;, ¢ = 1,2, be the respective Cayley graph metrics.
If A; = max{d;(0,9) : g € S2}, then d1(,-) < A; da(,-). Consequently, the
growth functions are equivalent, and when we speak of growth of finitely
generated groups (polynomial, exponential, etc.), it is not necessary to spec-
ify the generating set.

From Lemma 3.13 one deduces the following.

(3.14) Lemma. Let I be finitely generated and I'y a subgroup with finite
index. ThenI' and T'y have equivalent growth functions.

Proof. Given any Cayley graph X of I', we have that Iy acts on X
with finitely many orbits and trivial vertex stabilizers. By the second part
of Proposition 3.9, X is roughly isometric with a Cayley graph of I';. Now
Lemma 3.13 yields the result. O

The structural classification of all groups with polynomial growth is a
deep topic; proofs go beyond the scope of this book. We describe the main
results. If T is a finitely generated abelian group then there is d such that
I" contains a finite-index subgroup isomorphic with the free abelian group
Z¢; we write k(") = d, the rank of I. Next, let T be a finitely generated
nilpotent group with lower central series

F=To>I - BT, ={}.

Each factor group I';_; /T'; is finitely generated and abelian. Set
T
(3.15) d(T) =) irk(T;_1/Ty).
i=1

The following was proved by Bass [27] and Guivarc’h [154].
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(3.16) Theorem. If T is nilpotent and V(n) is its growth function with
respect to some finite, symmetric set of generators, then there are constants
Co, Cy > 0 such that for alln > 1

Con®D) < V(n) < Cy D)

Thus (Lemma. 3.14), finitely generated groups which have a finite-index
nilpotent subgroup have polynomial growth. The main theorem of the the-
ory is the following famous result of Gromov [149].

(3.17) Theorem. Let I’ be finitely generated with growth function V(n)
with respect to some generating set. If there are C,d such that V(n) < C n¢
for infinitely many n, then I' has a nilpotent subgroup with finite index.

(3.18) Corollary. IfT is finitely generated then either V(n) > Cn? for
all n or V(n) < Cn? for all n. In the second case, I' contains a finite-index
subgroup isomorphic with Z or Z2.

Proof. The first part follows from Theorem 3.17. Assume that V(n) <
Cn? for all n. Theorem 3.17 implies that T’ has a nilpotent subgroup
with finite index. It is well known that every finitely generated nilpotent
group has a torsion-free subgroup with finite index. Hence we may assume
that N itself is torsion-free. From Lemma 3.14 we get d(N) € {1,2}.

We now look at the lower central series R=My > ... = N, = {o}. We
see from formula (3.15) that rk(9M;—1/9;) = 0 for all ¢ > 2. In particular,
N, is finite, whence trivial, and r < 2.

If d(M) = 1 then it must also be that rk(9M;/My) = 0, so that Ny is
trivial and r = 1. Thus, 2 is abelian and rk(MN) = 1. Being torsion-free,
M=7Z.

If d(M) = 2 then it cannot be that rk(9p/M1) = 0 and k(M) = 1,
as otherwise 91 would have a finite-index cyclic subgroup. Now the only
possibility is rk(DM/M1) = 2 and k(M3 /N2) = 0, so that N, is trivial, N is
abelian and rk(91) = 2, whence (being torsion-free) 91 = Z2. O

The simplest example of an infinite nilpotent group which is not abelian
is the Heisenberg group over the integers. It consists of all 3 x 3 upper di-
agonal matrices with ones in the diagonal and integer entries. It is “three-
dimensional” in the sense that its elements are parametrized by three inte-
gers, but it has polynomial growth with degree 4.

(3.19) Exercise. Draw the Cayley graph of the Heisenberg group with
respect to a suitable set of generators.

To complete the picture concerning growth of finitely generated groups,
we mention that all non-amenable groups have exponential growth (see
Chapter II), and that a solvable group has exponential growth unless it
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contains a nilpotent subgroup with finite index. Finally, there also are ex-
amples of groups with intermediate growth: faster than any polynomial in
n, but slower than exponential; see Grigorchuk [147].

We now return to random walks. Again, let I" be a finitely generated
group, and let X = X(I', S) be its Cayley graph with respect to some finite,
symmetric set of generators S. The simple random walk on X is symmetric,
and hence reversible with respect to the counting measure (m(z) = 1).
Indeed, if p is any (irreducible) probability measure on T', then m is an
invariant measure for the associated random walk. From this and Theorem
3.1 we get that recurrence of the random walk with law u implies recurrence
of the simple random walk on X.

We can generalize Theorem 3.2. Recall the definition of moments (§1.C).
We write My (u) for the kth moment of the random walk with law p, where
the distance d = dg is that of our Cayley graph X. It is easy to see that
finiteness of My (1) does not depend on the particular choice of S and the
resulting Cayley graph.

(3.20) Proposition. The group I' carries a recurrent random walk if and
only if some (< every) symmetric irreducible probability p on T' with
Ms(p) < oo induces a recurrent random walk.

Proof. In view of what we have just said, what is left is to show that
recurrence of the simple random walk on X implies recurrence of the random
walk with law u. As p is symmetric, it is reversible with respect to the
counting measure just like the simple random walk. Thus, we prove that
the conclusion of Theorem 3.2 still holds under our moment condition. We
show that the function ¢ of (3.3) is bounded. Let eg € E(X). Then

dleo) =5 3 uaw)dloe~ty) e ol
z, Y€

(setting w = x"ly)
|H:B 160(0 'LU)l
=3 =Y ww)d(o,w) 3 Hetalo )] o w)

wel el
<3 T uwdow) ¥ U (‘”“’)' = My(u).
2 & o, Me,w)l

The last identity holds because

> l&(&«f))l‘ - Tom o HeeEX)ieen)=dow).

e€E(X) w€ll(o,w)
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We know (Lemma 3.12) that the conclusion of the last proposition holds
when the group has at most quadratic growth. In order to show that other-
wise the group is transient, we shall construct a symmetric probability with
finite second moment which induces a transient random walk. We need the
following preparatory lemma.

(3.21) Lemma. Let pu be a probability measure on I', and decompose
W = p1+ po, where the u; are non-negative measures. Then for every x € T’
andneN

p™(z) < p(T)" +n |p2lloo
where ||p2]|co = supyer p2(y) -

Proof. The statement is true for n = 1. Suppose it is true for n. Then

pH () =S " (1Y) + we @)™ (y'2)
yel’

< @) ()" + 1 lpzllo) + llu2llo w(T),

which is smaller than the proposed bound for n + 1. )

Now let B(k) = B(n, k) be the k-balls in our Cayley graph (k > 1), and
define a symmetric probability on I'" by

0 )\k
(3.22) (@) = ZE1puy (@),
T Evw e

where A = 1/k®log”k for k> 2 and Ay = 1— Y55 M

(3.23) Proposition. Mz(p) < oo, and if the growth function satisfies
V(n) > Cn® then p induces a transient random walk.

Proof. We have

o0

My(p) = Z Zd(o, )2 1pgy(a) < Z A k? < 0.

k=1 zel"

Now let m > 2 be arbitrary, and decompose u = g1 + p2, where p;(z) =
Wk_z !k 1p(xk)(2). Putting sm = > 45, Ak, We get pa(I) =1~ sp,
and ||p2ll = Xgom (Ak/V(K)) < 8m/V(m). Lemma 3.21 gives

M(n)(o) < (1 _ sm)n +n Sm

V(m)~
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As m — oo, we have s,, m?log® m — 1/2. Using in addition that V(m) >
Cm?3, we find ¢y, c2 > 0 such that

u(")(O)Sexp(— A% ) =22

m?logZm m5log®m

for all n and sufficiently large m. Setting m = m(n) = n?/, we see that
>, 10 (0) converges. O

Hence we conclude:

(3.24) Theorem. Let I' be a finitely generated, infinite group. Then T
carries a recurrent random walk if and only if it contains a finite-index
subgroup isomorphic with Z or Z>. In this case, every symmetric random
walk with finite second moment is recurrent.

In §6.A we shall also give conditions for recurrence of non-symmetric
random walks on groups with linear or square growth. Also, we shall extend
Theorem 3.24 to quasi-transitive random walks, and we shall show in Section
5 that every transient quasi-transitive graph has a transient subtree. We
next need some preparatory results.

C. Random walks on quasi-transitive graphs

Again, X will be an infinite graph with bounded geometry and P will be
the transition matrix of an irreducible random walk on X. We shall study
the case when (X, P) is (quasi-)transitive, including in particular the case
of random walks on finitely generated groups. All subgroups I' of AUT(X)
considered in the sequel are assumed to be closed with respect to pointwise
convergence. This is not a restriction, but a natural assumption, as those
properties that we shall study pass from an arbitrary subgroup to its closure.

(3.25) Lemma. Let I' be a subgroup of AUT(X, P). Suppose that the
factor chain (I, P), as defined by (1.31), has an excessive distribution .
Then

v(z) = (00|, z€Xi,
defines an excessive measure for P on X. If  is invariant then so is v.
In particular, when T’ is unimodular then v is constant on each orbit.

If, besides being unimodular, T' also acts transitively, then P is doubly
stochastic, that is, Y, p(z,y) =1 for all y.

Proof. Choose a reference point o; in each orbit X;. Let y € X;. Using
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(1.28) and (1.30), we compute

> v@ples) = 3o 3 [Pelpio ) = S50) [ Lol 6,49 d

zeX i€l r€EX; ieT |F05|
=" o(i) / A(Yploi, v y) dy =Y (i) / p(0i,vy) dy
€T r ieT r

=S 06) S ITdpoiw) = [T S #(a)ii, 5)

€T wEX; i€l
< IFyIf/(j) =v(y).

If 7 is invariant, then the last inequality is an equality. Furthermore, if
T is unimodular, then |[T';| = [T,,| for every = € X;. a

Note that when P is reversible with total conductance m then it is not
necessarily true that v = m for the measure of Lemma 3.25. For example,
the random walk on Z with p(k,k +1) = p, plk,k—1) = q(p+q =
1) has m(k) = (p/q)*, while v(k) = 1. (See also Lemma 3.30 below.)
The next theorem shows that we can eliminate non-unimodularity from all
considerations concerning recurrence.

(3.26) Theorem. Suppose that AUT(X, P) contains a closed subgroup T
which is non-unimodular. Then (X, P) is transient.

Proof. Step 1. We suppose that I acts transitively. In the following, it
will not be used that I" arises as a group of automorphisms of a locally finite
graph. The relevant facts are that I' is a transitive group of permutations
of X, acting continuously with respect to pointwise convergence, locally
compact with compact point stabilizers, and leaving P invariant.

First observe that for every positive z < p(P) (in particular for z < 1)
and every € X, the measure v(y) = G(z, y|z)/G(x, z|z) satisfies vP < 1v.
Now, by transitivity, G(z, z|z) = G(y,y|?) for all z,y. Using Lemma 1.13
we get, in the recurrent as well as in the transient case,

i CG@le) _ L Gll?)
F(z,y) = zl_lf}l_ Gly,ylz) zl_lgl— G(z,zlz)

From the above and Fatou’s lemma we infer that for every x, the measure
F(z,-) is excessive. On the other hand, by Lemma 3.25, y — |I‘y| defines
an invariant measure.

Now suppose that (X, P) is recurrent. Then, by Proposition 1.17,
F(z,y) = 1 for all z,y. Also, by Theorem 1.18, up to multiplication
by a constant there is a unique excessive measure, which has to be in-
variant. Consequently [Ty = cF(z,y) = ¢ > 0 for all y. This yields
A7) =|Ty)/IT4yl =1 for all y € T.
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Step 2. Coming to the general case, suppose that (X, P) is recurrent.
As T is non-unimodular, all its orbits must be infinite: otherwise, I" would
be compact by Lemma 1.27, whence also unimodular. Let Y € X be one
of the orbits. Define the stopping time

(3.27) tY =min{n>1:2Z,e€Y}.

By recurrence, it is P -almost surely finite for every x. The induced random
walk (Y, PY) has transition probabilities

(3.28) oY (2,9) =P.[Zy =], z,y€Y.

Recurrence of (X, P) implies recurrence of the induced walk. Indeed, if
z,y €Y, then F(z,y) and U(z, z) are the same for the original and for the
induced random walk. Now, I' acts transitively on Y, and we are in the
situation of the first step. Therefore I' cannot be recurrent. O

If T in Lemma 3.25 acts quasi-transitively, then the factor chain is an
irreducible Markov chain on a finite state space. As such, it is recurrent,
and by Theorem 1.18 it must be positive recurrent and admit an invariant
probability measure 7. We obtain an invariant measure » for P which in the
unimodular case is constant on each orbit, whence inf x v(z) > 0. Recalling
that in the quasi-transitive case irreducibility is automatically uniform, we
obtain the following from Theorem 3.1.

(3.29) Corollary. Suppose that AUT(X, P) acts quasi-transitively. Then
recurrence of (X, P) implies recurrence of the simple random walk on X.

Now suppose that P is reversible with respect to m. Let z,y € X, and
choose n such that p™(z,y) > 0. If y € AUT(X, P) then

m(z)p™ (2,9) = m(y)p™ (y,2) and m(r2)p™ (z,y) = m(yy)p™ (v, ).
Dividing, we get m(yz)/m(z) = m(yy)/m(y), that is, the function g(y) =
m(yzx)/m(z) does not depend on z € X. Consequently, g is an exponential
on I': it satisfies g(8v) = g(B8)g(y). We have two possibilities: either
g = 1, in which case m is constant on each orbit of AUT(X, P), or g and
m are unbounded. In particular, when (X, P) is transitive, then strong
reversibility coincides with symmetry: p(z,y) = p(y, z).

(3.30) Lemma. Let (X, P) be reversible and quasi-transitive. If P is not
strongly reversible, then it is transient.

Proof. IfI" = AUT(X, P) is non-unimodular then P is transient in any
case. Otherwise, by Lemma 3.25, P admits an invariant measure v which is
constant on each orbit and hence bounded. If P is recurrent, then m must
be a multiple of v by Theorem 1.18 and cannot be unbounded. a

Next, recall the definition (1.22) of the step length distributions o, on
N and associated moments.
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(3.31) Theorem. Let P be the transition matrix of a strongly reversible
random walk on X with finite second moment. Suppose that there is a quasi-
transitive subgroup T' of AUT(X, P) which is unimodular. Then there are
€1,€2 > 0 such that e7*Dp(f) > D(f) > e2Dp(f) for all f € £y(X).

In particular, (X, P) is recurrent if and only if the simple random walk
on X is recurrent.

The first inequality is immediate from Theorem 3.1. Also, for P hav-
ing bounded range, the second inequality follows from Theorem 3.2. None
of this requires unimodularity of I'; which is only needed when extending
to finite second moment. We omit the proof, which generalizes that of
Proposition 3.20. (In §6.A we shall give a criterion which does not require
reversibility.)

Let us recapitulate what we now know about recurrence in the case of
vertex-transitive graphs. Let (X, P) be transitive.

e If P is recurrent then the simple random walk on X is recurrent.

o If the simple random walk on X is recurrent and P is symmetric
with finite second moment, then P is recurrent.

e If P is reversible but not symmetric, then P is transient.

Furthermore, if (X, P) is quasi-transitive and recurrent then there is a
vertex-transitive graph which is roughly isometric with X (Proposition 3.9)
and such that the simple random walk is recurrent.

4. Isoperimetric inequalities

This section will consist only of structure theoretical considerations with
an analytical flavour. Their significance for recurrence will become clear in
the main theorems of the next section. We shall also need this material in
Chapters II and III.

A. Isoperimetric and Sobolev inequalities

Let (X, P) be reversible with associated total conductance m, edge con-
ductance a(-, ) and network N’ = (X, E(P), r). Thinking of m as a measure
on X, m(A) = Y .am(z), if A C X. Similarly, if D C E(P), we write
a(D) = Y epale”,et). For A C X, we define A as the set of all edges
in E(P) having one endpoint in A and the other in X \ A. Then a(d4) is
a discrete analogue for the surface area.

Let § : RT — R* be a non-decreasing function.

(4.1) Definition. We say that A (or (X, P)) satisfies an §-isoperimetric
inequality ISz, if there is a constant x > 0 such that

S(m(A)) < ka(0A)
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for every finite A C X.
If this holds for the simple random walk then we say that the graph X
itself satisfies an §-isoperimetric inequality.

If, in particular, §(t) = t'~1/¢ (with 1 < d < o) then we speak of a
d-dimensional isoperimetric inequality, for short IS;. Note that if A has
bounded resistances on E(P) and infx m(z) > 0 (which holds, in particu-
lar, for the simple random walk on a graph with bounded geometry), then
IS; is equivalent to X being infinite. When d = oo, we intend 1/d = 0
and d/(d — 1) = 1 and speak of a strong isoperimetric inequality, usually
denoted by IS (without subscript). The latter will become important in
the next chapter. We shall see that isoperimetric inequalities serve as an
important tool for linking geometrical properties with transience and other
probabilistic features of (X, P).

The isoperimetric inequality IS, is equivalent to a d-dimensional Sobolev
inequality. For a function f: X — R, define its Sobolev norm

(4.2) Se()= IVf(e)|=% > (@) - f®)la(z,y)

e€cE(P) z,yeX

and its norm in (X, m)

1/p
I£llp = (Z !f(m)l”m(w)> ,

zeX

whenever these sums converge. (If p = co then we mean the sup-norm.)
Here, V = V. We shall also write Sx/(f) instead of Sp(f), while we shall
reserve the notation S(f) or Sx(f) for the Sobolev norm associated with
the simple random walk.

(4.3) Proposition. (X, P) satisfies IS; (1 < d < 00) if and only if
IFll 2, < & Sp(f) for every f € £o(X).

(The constant  is the same as in 1S;.)
Proof. The isoperimetric inequality is obtained from the Sobolev in-
equality by setting f = 14.

We now show that IS; implies the Sobolev inequality. As Sp(f) >
Sp(|f]), it is enough to prove this for f > 0. For ¢t > 0, we write [f > ¢] for
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the (finite) set {z : f(z) > t}. First, we have

SP(H=Y. Y. (f-Ff@)a(zy)

z y:f(y)>f(x)

00
=> Y oy /0 L@, s (B) dt

z y:f(y)>f(=)

=/0( 3 a(x,y))dt=/0 a(Alf > ) dt.

z,y:f(2) St<fy)

Ifd=1then 8{f > t] #0 <= 0 <t < ||f|lc , and the last term becomes

Iflleo 1
=/ a(Bf > ) dt > = || lloo -
o K

Otherwise, we set p = ﬁ and get that the above is

o)
zl/ m[f > t]}/?dt.
K Jo

Next, the function F(t) = m[f > t]'/? is non-negative and decreasing for
t > 0. Therefore

p(tF())’ ' F(t) <p < /0 t F(z) dz)p_l F(t) = % < /O t F(2) d2>p .

Integrating and letting ¢ — oo, we obtain

/Ooo ptP  F()P dt < (/Ooo F(t) dt)p

(Hardy-Littlewood-Pdlya inequality). Thus
1/p

kSp(f) > (/Ooopt”_lm[f > 4] dt)

But the last term is well known to be equal to || f||,. Indeed, let 0 = ¢g <
t; < --- < t, be the values assumed by f. Then

n n—1
I£15 ="t (mlf > tica] —mlf > t]) =D (¢, — ) m[f > t;].
i=1 =0

Observing that m[f > t] is constant in [t;, t;+1), this becomes

n—-1 tit1 0o
=Z/ ptp-lm[f>t]dt=/ ptPIm{f > f] dt,
t; 0

i=0
and the proof is completed. O
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We have a series of comparison results which are completely analogous
with those proved for the Dirichlet norm in the preceding sections. We
suppose that X is a graph with bounded geometry (although several of the
results hold without this assumption). The following is the analogue to
Lemma 2.5.

(4.4) Lemma. Spi(f) < kSp(f).

(4.5) Proposition. Let P be reversible with total conductance m(-).

(a) Suppose that P is uniformly irreducible and infx m(z) > 0. Then
there is c; > 0 such that Sp(f) > 1 S(f) for all f € £,(X).

(b) In general, Sp(f) < (supE(X) ¥(e))S(f) for all f € £o(X), where

v =1 3 m@p(y )

m’yex ln(z? y)l

(c) The following conditions are sufficient for ¢ being bounded above:
supy m(z) < oo and (1) P has bounded range, or (2) P has finite first
moment and there is a unimodular, quasi-transitive subgroup of AUT(X, P).

For (a), compare with the second part of Theorem 3.1. For (b) and (c),
see Theorem 3.2, Proposition 3.20 and also Theorem 3.31.

(4.6) Corollary. Let (X, P) be strongly reversible and uniformly irre-
ducible. Suppose that P has bounded range, or that P has finite first mo-
ment and there is a unimodular, quasi-transitive subgroup of AUT(X, P).
Then (X, P) satisfies ISy (1 < d < oo) if and only if the graph X satisfies
IS,.

Finally, different graphs can be compared as follows.

(4.7) Theorem. Let X, X' be graphs with bounded geometry, and let
@ : X — X’ be a rough isometry. Then there is a constant ¢, > 0 such that

Sx/(f) = cySx(fop) forall fely(X').

In particular, X satisfies IS; (1 < d < co) if and only if X' satisfies IS,.

Proof. The inequality between Sobolev norms is proved like Theorem
3.10. Using a rough inverse ¢ of ¢, we get an analogous inequality in the
other direction.

Next, note that with respect to the simple random walk, m(4) =
Y wecadeg(x). In particular, if M is a bound for the vertex degrees in
our two graphs, we have [A] < m(A4) < M |A|.

Now suppose that X satisfies IS;. For finite A’ C X', consider the
enlarged set A” = {z' € X' : d'(2', A’) < B}. If [z/,y'] € A" with 2’ € A”
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then there is v' € A’ with d'(v',z') = B (it cannot be that d'(v/,z') < B as
then y’ € A’), and if v’ is the neighbour of v’ on some shortest path from
v’ to y', then [v',w'] € 8A’. Therefore

MB a’(aA’) > a'(aA”) = SXI(IAH) > 06 Sx(lA// ] QD) = c()a(&p_lA”)
> c{,nm(go_lA")l_l/d > c{)ﬁlwp—lA//ll—l/d_

Every point in A’ is at distance at most B from some point in @~ 1A”,
whence |pptA”| > M~B-1|A| > M~B-2m/(A"). ]

B. Cartesian products

If X; and X> are two graphs then their direct product X; ® X5 is the
graph with vertex set consisting of all pairs x1z2 where z; € X;, and neigh-
bourhood given by

TiT2 ~ Y2 = T1~y1and T2 ~ Yo,
The Cartesian product X; x X3 has the same vertices, while
T1T2 ~Y1Y2 < 1~ Y and z2 = Y2 Or 1 =% and zgp ~ Y2 .

Note that if both factors are bipartite graphs (that is, they have no closed
paths with odd length), then the direct product is disconnected. Also, if
I'; and T2 are finitely generated groups with Cayley graphs X(T';, S;), then
the direct product is not necessarily a Cayley graph of the group I'y x T's,
while this is the case for the Cartesian product.

Analogously, we define the direct and Cartesian products of two networks
Ni, Na: if a5, i = 1,2, are the conductance functions of the two, then
N1 ® N3 has conductances a(z172, 1y2) = a1(Z1,¥1)a2(x2, y2) (again, this
is not necessarily connected), while for the Cartesian product N1 x N2 we
define

(4.8) a(x122, y192) = 011, Y1)z, (y2) + 62, (Y1)02(x2,¥2) -

Finally, for two transition matrices P;, P over X; and Xa, respec-
tively, their direct or tensor product Py ® P, over X; X X5 is given by
p(z122, Y1y2) = p1(x1, ¥1)p2(T2, y2). This definition is “natural” in the sense
that in the reversible case, P; @ P, is the reversible chain associated with
the direct product of the corresponding networks. On the other hand, the
tensor product does not in general preserve irreducibility. Also, it is only
for dimension 2 that the direct product of d simple random walks on Z is
isomorphic with the simple random walk on Z?.
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A Cartesian product of P; and P» is a transition operator of the form
(49) P=cP ®I2+(1—C)Il ® Py,

where 0 < ¢ < 1. The simple random walk on the Cartesian product
of two regular graphs is a Cartesian product of the simple random walks
on the factors. In general, the reversible Markov chain associated with
the Cartesian product of two networks is not a Cartesian product of the
reversible Markov chains on the factors. Still, under our usual adaptedness
conditions the two are comparable. Throughout this book, we shall prefer
Cartesian products to direct products.

(4.10) Theorem. Let N;, i = 1,2, be two networks with associated in-
variant measures m; such that supy, m;(x) < oo. If N} satisfies ISy, and
N, satisfies ISy,, then N = N x N3 satisfies ISy, 14,

Proof. Recall the definition of mixed norms: let 1 < p,q < oo and f be
areal function on Xy x Xo. Define g(z2) = || f(-, z2)|p, taken in £,(X;, m1).
Then || f|lp,g = llgllq , the latter taken in £,(X2, mg).

Now set p; = —;‘i_i—l (so that 1 < p; < o0). Let f € £(X; x X32), and

write
Fl@e) = > |f(@1,22)|ma(21).

T1€X1

Then we have

£ lc1p2) = [1fllpa < 2 Saz ()
Z Z |f (@1, 72) — f(21,y2)| m1(21) az(z2,y2)

T2,y2€X2 T1€XH
< kg (suleml(xl)) Sy (f).

On the other hand,

Il = Y- NFCz2)llpy ma(e2)

r2€X2

> % D (@ ®) — fy1,22)] ar (@1, 1) ma(es)

z2€ X2 r1,y1€X1
< K (supx2 ma ($2)) Sn(f).

By the interpolation theorem for mixed norms, there is k > 0 such that for
every choice of s,t > 0, s+t = 1, setting (3,1) = s(1, ) +t(;-,1) we
have

I fllp,g) < £ Sn(f) forall f € £o(X1 x X2).
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Choosing s = dl_ilﬂ’ wegetp=gq= fﬂt—_ji_v which proves that A satisfies

IS4, +ds- O
(4.11) Remarks. (1) Similarly, one proves the following. Suppose that for
i = 1,2, the N; are networks satisfying IS;, and that for the corresponding
transition matrices, one has P; > ¢; I; elementwise (where ¢; > 0 and I;
is the identity matrix over X;). Then the direct product N ® N, satisfies
ISd1+d2'

(2) Usually, the interpolation theorem for mixed norms is formulated
for a linear operator, say T, taking values in a product space, such that
IT(f)lltpg) < Fpll £l for differenst pairs (p,q).

To see that the above proof is correct in these terms, let N = (X, E,r)
be an arbitrary infinite network associated with a reversible Markov chain.
Let ¢(E) be the space of all w : E — R such that |ju|| = Y glu(e)} is
finite. For a reference vertex o, consider the subspace £2(N) = {Vaf: f €
£o(X), f(o) = 0}~. For each u € £}(N) there is precisely one f : X — R
such that f(o) = 0 and u = Vf. Define T'(u) = f. Then IS; implies
IT(w)lp < & ||ull for all u € €5(N), where p = 5%;. Conversely, if this holds
for any choice of the base point, then we get ISy : indeed, every f € £o(X) is
0 in some o € X. Transporting this to the context of products of networks,
we see that the above proof works in the correct setting.

(4.12) Corollary. Let Xy and X, be two infinite graphs with bounded
geometry. If X; satisfies ISq, and X, satisfies ISy, then X, x X, satisfies
IS4, +4,. In every case, X1 x X, satisfies IS,.

In this corollary, the simple random walk on X; X X3 may be replaced
by any Cartesian product of the simple random walks on the factors (by
virtue of Proposition 4.5).

C. Isoperimetric inequalities and growth

From Corollary 4.12, we obtain the well-known fact that the grid Z¢
satisfies 1Sy. However, in general it is not a very simple task to prove an
isoperimetric inequality for a general graph. The goal of this subsection is
to relate isoperimetric inequalities and growth.

Recall the definition (§3.B) of the growth function of a reversible near-
est neighbour random walk (X, P) on a locally finite, connected graph X.
Also recall our requirement that the invariant measure (total conductance)
satisfies inf x m(z) > 0.

(4.13) Lemma. If (X, P) satisfies IS; then Vp(n) > C n? for some C > 0.

Proof. We use induction on n. If n = 1, then the statement is true
for any C < 2minx Vp(z,1). (As X is infinite and connected, Vp(z,1) >
2infx m(-) > 0 for every z.)
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Suppose it holds for n — 1 > 1. Observe that
nt—(n-1)*<dn® ! <d(2(n- 1))d‘1 .
Let z € X. Then (using that P is nearest neighbour)
Vp(z,n) > Vp(z,n — 1) + a(8B(z,n — 1))
> Vp(z,n— 1)+ %Vp(w,n —1)t-/d
>Cn—1)4+ %Cl‘l/d(n _1yd-1
>Cnd+ (%C’l‘l/d —241Cd) (n— 1)*1.

Hence, the statement holds for n if C' is chosen such that C1~1/4/x >
29-1Cd, that is, C < 1/(2¢1kd)4. O

Under an additional condition, there is a converse to the last lemma. For
f: X — R, define

1
=m z fy)m(y).

yEBp(z,n)

Pof(z)

This is the transition operator of a nearest neighbour random walk on the
n-fuzz X (™. We say that (X, P) (or, in the case of the simple random walk,
X itself) is quasi-homogeneous if there is a constant 77 < oo such that

(4.14) If = Puflla SnnSp(f) for all f € £o(X).
With the growth function, we associate the right semicontinuous functions

f(t) = min{n : Vp(n) >t} and F()=3Fp()=t/f(2t), t> %igl{f m(x).

(4.15) Proposition. If (X, P) is quasi-homogeneous (with constant 1)
then it satisfies ISz, with constant x = 27.

Proof. Let A C X be finite. Then, for arbitrary =,
m(A) =mllg > 1] <m[1a - Palya| > 1/2] + m[Pa14 > 1/2].

By Markov’s inequality, m[|14 — P14} > 1/2] < 2||14 — P,14|1, which by
quasi-homogeneity is < 2n7a(0A).

Now choose n = f(2m(A)). Then Vp(x,n) > 2m(A) and consequently
Po1a(x) <m(A)/Vp(z,n) < 1/2 for every z € X. We get

m(A) < 2nf(2m(A)) a(dA). 0O
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(4.16) Corollary. If (X, P) is quasi-homogeneous and Vp(n) > Cn? (C >
0) then (X, P) satisfies IS,.

In Proposition 4.15 we did not use the assumption that P is of nearest
neighbour type. However, that will be used in the next steps, where we
study quasi-homogeneity.

(4.17) Lemma. If f € £o(X) then
1 = Pafli < (supmie,n)) Se (),
E

where

n(e,n) =r(e) Y _m@) ) m(y)|Me(z, y)|

zeX VP(.’I},’I’L) yE€B(z,n) |H($’ y)l

Proof. Let V be the difference operator associated with our network.
Observe that for z,y € X and n € II(z,y) we have |f(y) — f(z)] <
Y eer |Vf(e)|7(e). We compute

I1f = Paflh = 3 |omes

zeX

Y (- f(y))m(y)‘ m(z)

yEB(z n)

<Y s ¥ ol ¥ Y vere

z€X P yE€B(z,n) n€ll(z,y) eET

m I (=,
=Y Vi)l (r(e)Z% ) m(zlfr)ll(w ;)ly)l) -

P

eck T€EX y€B(z,n)

For Cayley graphs and, more generally, for quasi-transitive random
walks, the situation is as follows.

(4.18) Theorem. Let P be the transition matrix of a strongly rever-
sible nearest neighbour random walk on X. Suppose that (X, P) is quasi-
transitive. Then (X, P) is quasi-homogeneous and satisfies ISz .

Proof. We first consider the (easier) case when (X, P) satisfies a strong
isoperimetric inequality. Actually, then we do not really need quasi-
homogeneity which serves here only as a tool for obtaining isoperimetric
inequalities. However, it is easy to see that (X, P) is quasi-homogeneous.
First, use quasi-transitivity and the fact that m is constant on each or-
bit of AUT(X, P) to work out that there is a constant C > 0 such that
V(y,n) < Cm(y)Vpe(z,n) for all z,y € X and n € N. This yields
IPafl < Cflly, and by IS,

If = Pufll <@+ O)Ifll £ A+ C)sSp(f).
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So now suppose that (X, P) does not satisfy IS. Then there must be a
sequence of finite subsets Ay of X such that a(0Ax) < m{Ax)/k. In view
of Lemma 4.17, we show that n(e,n) < nn for some finite .

Let X; (i € Z) and E; (j € J) be the finitely many orbits of I' =
AUT(X,P) on X and E, respectively. For e € E and z € X, we let
d(z,e) = d(e,z) = min{d(e~,z),d{e*,z)} and define B(e,n) = {z € X :
d(z,e) < n} and Vp(e,n) accordingly. We introduce

s =max{d(z,E;):z€ X, je€J} and 7n=max{r(e)Vp(e,s):e€ E};
s and 7 are finite by quasi-transitivity and I'-invariance of m(-) and r(-).

Now set Ejr = {e € E; : d(e,Ax) < s}. For each z € A, we choose
e = e(z) € Ej such that d(e,z) < s. Then

m(Ag) = Z m({x € Ak : e(z) = €}) < Z m(B(e,s)) < na(Ejx)-

e€E; k e€E;

Observe that n(e,n) = n;(n) is constant on each E;. Therefore

1 1
ni(n) < aEByr) ee;j’k @n(e, n)

__1 m@)m(y) s~ [Le(z,)
SAED A Ve 2 M@l

z,y€X:d(z,y)<n

In order that Il(z,y) be non-empty for some e € E;, it must be that
z € A;c"ﬂ) = {w € X : d(w,Ax) < n+ s}. Also, we have the identity
ZeGE IHe(m, y)l = d(:l}, y) |H(£L',y)| Hence)

m(A*)
m(Ak)

nj(n)Sa(Tlﬁ > m(z) > mde,y) <np——Fk =

Ve(z,n
z€ AT Pl )yeB(mm)

This holds for every n,k € N and j € J. Now

m(ATI\ Ay) < |0Ax| Vp(n + ) < a(8Ax) sup r(e) Vp(n +s).

By the choice of the Ay, we get limk(m(Ag""s))/m(Ak)) = 1. Hence
n;(n) < nn. O
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5. Transient subtrees, and the classification
of the recurrent quasi-transitive graphs

We shall now present a purely graph theoretical theorem which, com-
bined with the results of the preceding sections, can be used to give a struc-
tural classification of those graphs which carry a recurrent quasi-transitive
random walk, thereby extending the corresponding result on groups (The-
orem 3.24).

A. Transient subtrees

In the sequel, m(-) and a(-) will be the measures associated with the
simple random walk on the graph X. (In particular, m(-) is integer-valued,
and a(-) is the counting measure on E(X).) Let § : N — R* be a non-
decreasing function such that F(n) — oo. Consider the following weaker
version of the F-isoperimetric inequality.

(5.1) Definition. Given a “root” o € X, we say that X satisfies ISz, , if
there is a constant k > 0 such that

3(m(A) < ra(dA)

for every finite A C X which is connected and contains o.

(5.2) Theorem. Let X be a graph with bounded geometry satisfying ISz o
with respect to some root o € X. If ¥, F(n)~2 < oo then X contains a
transient tree with maximum degree 3.

Besides its application to the above classification problem, this theorem
is of interest by itself: trees are a well-understood class of graphs with a
particularly simple structure, and so it is of considerable interest to know
which graphs have transient subtrees. The proof of Theorem 5.2 is going
to be “elementary”, but long. As a basic graph theoretical ingredient, we
need Menger’s theorem, which can be derived from the max flow—min cut
theorem (Ford and Fulkerson [119]) and is proved in most books on graph
theory.

(5.3) Theorem. Let X be a graph and U,V C X such that |U| = |V| = k.
Suppose that for every A C X with |A| < k, there is a path in X from U
to V which does not meet A.

Then there are k pairwise digjoint paths in X from U to V.

We now set up some notation for the proof of Theorem 5.2. First of all,
as usual, we write M for an upper bound on the vertex degrees in X.

Components. Let X be a connected, locally finite graph with edge set
E = E(X). Let AC X UE (usually finite), and let Y be a subgraph of X.
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Then Y \ A is defined as the graph obtained from Y by deleting A and all
edges incident with vertices in A. If U C X \ A is connected, then we write
C(U, A) for the connected component of X \ A which contains U. The finite
(infinite) part of X \ A is the union of all its finite (infinite) components; if
A is finite then the finite part is a finite graph by local finiteness.

We shall need that the root o has the property that C(o,y) is infinite for

every y € X, y # o.

(5.4) Lemma. If X has bounded geometry and satisfies ISz ,, where
F(k) — oo, then there is + € X such that ISz, holds and C(z,y) is in-
finite for all y # x.

Proof. Define
(5.5) g(t) = max{k: F(k) <t}, where t>F(0).

If C(o,y) is infinite for all y # o, then we set £ = 0. So suppose that there
is z such that C' = C(o, z) is finite. Then F(m(C)) < ka(8C) < k(M —1),
so that d(o,z) < m(C) < g(k(M — 1)) . Hence we may choose z such that
d(o, x) is maximal. We claim that z has the desired properties.

Let y # z. If y € C(o, x) then C(z,y) contains the infinite set X \ C(o, ).
If y ¢ C(o,x) then d(y,0) > d(z,0) and C(z,y) = C(o,y), which is infinite
by the choice of . Now let A C X be finite, connected and containing x.
Then, by monotonicity of §,

F(m(4)) < F(m(AUC)) < ka(d(AUC)) < ka(d4). O

By virtue of this lemma, we may assume for the rest of this subsection
that o itself has the desired property.

Rooted trees. We shall only consider finite or infinite rooted trees T" with
maximum degree 3. Unless T' = {0}, the root o will have degree degr(0) = 2.
We define the levels S, = Sk(T) as follows. So(T') = {0}, and for k > 1, a
vertex = € T lies in S if degr(z) = 3 and on 7(o, x) there are precisely k
vertices with degree 3. We write S(T) = g0 Sk(T)-

The infinite subtree of X that we shall construct will be a subdivision of
the binary tree with root o, that is, the minimum degree is 2, and |Sy| = 2%
for all £k > 0. This tree will be constructed as the limit of an increasing
sequence of finite rooted trees.

If T is finite, then the leaves of T are the elements of L = L(T) = {z €
T : degr(x) = 1}. The level height of a leaf x € L(T) is

I(z) = max{k : Sx(T) N (o, x) # 0},
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and the level height of T is I(T)) = miny(7)l(xz). We shall only consider
finite trees with the above features such that

(5.6) (T) <l(z) UT)y+1 forallz e L(T),

and we write L'(T") = {z € L(T) : l{(z) = I(T")} .

Now suppose that T is a finite subtree of our graph X, with root o, and
satisfying the above requirements, in particular (5.6). We write D(T) for
the set of all edges in E(X) \ E(T) which are incident with some vertex in
S(T), unless T = {0}, in which case we set D(T) = 0. (D(T) is also defined
when T is an infinite subtree of X.) We say that T is expandable if either
T = {0} or the following technical conditions hold.

(a) The component C(T'\ L(T), D(T) U L(T)) in X is finite, and
(b) if A C X is such that ANT C L(T) and |A| < |L(T)| then there
is z € L(T) \ A such that C(z, D(T) U A) is infinite.

(5.7) Lemma. IfT is an expandable subtree of X and I(T') = k then the
boundary of C = C(T \ L(T), D(T) U L(T)) in X satisfies

a(0C) < (M —1)2F+2,

In particular, every x € L(T) satisfies d(z,0) < Ry, where Ry =
o(k (M —1)2F+2)

Proof. AC consists of D(T') and the edges in T incident with vertices
in L(T). This proves the first part. For the second part, observe that
§(d(z,0)) < F(m(0)) < ra(dC). 0

Starting with Tp = {0}, we shall now construct an increasing sequence
of finite, expandable trees T,, in X, n > 0, such that each T, is a proper
subtree of T;,;. We describe the expansion algorithm.

Suppose that we have T = T,,. Let Y be the infinite part of X \ (DU L),
where D = D(T') and L = L(T).

Case 1. T # {0}, and there is B C Y U L such that (i) |B| = |L|, (i)
B # L, and (iii) C(T\ B, DU B) is finite.

We consider the subgraph W of X induced by all paths in X \ D from
B to L which meet B U L only in the endpoints. Then W is finite and
intersects neither T'\ L nor the infinite part of X \ (DU B). Also,if ACW
with |A| < k = |B| = |L|, then by property (2) of T, it must be that
|C(z, DUA)| = oo for some = € L\ A. Now either z € B or |C(z, DUB)| < o0
by (iii), and in both cases there is a path in W from = to B. Theorem 5.3
applies, and there are k disjoint paths in W from L to B. We now construct
Tn+1 by attaching these paths to L.
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We get a larger subtree of X with L(T, 1) = B, 8(Tn+1) = S(T,,) and
the same level heights as T,,. Property (a) holds for T,,1; by (iii), and
property (b) is inherited from T,. Thus, T, is again expandable.

Case 2. T = {0}, or there is no set B as in Case 1.

Let x € L’ = L'(T), and choose a neighbour v of z in the infinite part of
X\ (DUL). If £ = o, then the existence of such a v is clear. Otherwise,
existence follows from property (b), setting A = L\ {z}.

Case 2.1 There is a set B C {LUY) \ {z} such that (i) |B’| = |L|,
and (ii) {v}UL\ (B’ U{z}) is non-empty and belongs to the finite part of
X\(DuB uU{z}).

Then either L\ B’ contains an element different from x, or B'U{z} > L;
in both cases, T\ (B’'U{z}) also belongs to the finite part of X\ (DUB'U{z}).
By Lemma 5.7, we may choose B’ such that the measure of C(T \ L,(D U
B’ U{z})) is maximal.

Now consider the subgraph W’ of X induced by all paths in X\ (DU{z})
from B’ to {v} UL\ {z} which meet these two sets only in the endpoints.
Then W’ is finite and intersects neither T'\ (L \ {z}) nor the infinite part of
X\ (DUB' U{z}). Now let A C W’ with |A| < k= |B'| = |{v}UL\{z}]
Suppose there is no path in W’ from B’ to {v} U L\ {z}. Then it cannot
be that A = L\ {z} by the choice of v. But otherwise, B = AU {z} is as
in Case 1, a contradiction. (When T = {0}, we have z = o, |B’| = 1 and
A=0=L\{o}.)

Again, we may apply Menger’s theorem to obtain & disjoint paths in W’
from {v} UL\ {z} to B’. Together with the edge [z,v], we attach these
paths to T'.

Next,  must have a neighbour w in the infinite part of X \ (DUB'U{z}).
Otherwise, B’ would have the properties of B in Case 1. (If T = {o} = {z},
then B’ = {v'} is such that C(v, {0, v'}) is finite. On the other hand, C(0,v’)
is infinite by assumption. In this situation there must also be a neighbour
w of z in the infinite part of X \ {0,v'}.) We also attach w and the edge
[z, w] to T.

This completes the construction of T),,; in Case 2.1. We have that
D(T,41) is the union of D and the set of all edges incident with z besides
the three lying in Tyyy. Also, L(T,,41) = B’ U {w}. The level heights of
the points in B’ coincide with those of the corresponding points in L, with
the exception of the endpoint in B’ of the path in W’ starting in v: this
point, as well as w, has level height I(z) + 1. As z € L'(T"), we see that
Tn+1 has property (5.6). We show that T}, ; is expandable: it has property
(a) by construction. To see that (b) holds, let |A| < |L(Th41)| — 1 = |B/|
and ANT,41 C L(T,41), without loss of generality |4| = |B’|. Either we
have A = B’, in which case w € L(T,,+1) \ A satisfies the requirement of
{b), or else A does not have the defining property of B’ by the choice of
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B’ (maximality). In that case, there is u € {v} UL\ (AU {z}) such that
C(u, DU AU {z}), and hence also C{u, D(Tp41) U A), is infinite.

Case 2.2 If B’ as in Case 2.1 does not exist, then z must have a neighbour
w # v in the infinite part of X \ (D U L). Otherwise, B = (L \ {z}) U {v}
would be as in Case 1. (If T = {0}, then existence of such a w follows from
the assumption that C(o,v) is infinite; recall Lemma 5.4.) We construct
Ti+1 by attaching v, w and the edges [z, v] and [z, w] to T.

Again, T4 satisfies (5.6). We have L(Tn4+1) = (L \ {z}) U {v,w},
and D(T,+1) is D plus all edges outside T, 41 which are incident with x.
Once more, T,41 has property (a) by construction. If A C X does not
meet interior points (non-leaves) of Tp4+1 and |A| = |L(Tph+1)| — 1 = |L],
then there are two possibilities: either A = (L \ {z}) U {v}, in which case
C(w, D(T,+1) U A) is infinite, or else A cannot be of type B’ as in Case 2.1,
whence C(u, DU AU {z}) is infinite for some v € (L\ {z}) U{v}. But then
also C(u, D(Tn41) U A) is infinite, and property (b) is satisfied.

This describes the algorithm for constructing the sequence of trees T;,.
By Lemma 5.7, the expansion of Case 1 (which changes no level height)
cannot be carried out infinitely often in succession. Hence (1) we have
I(T,,) — o0, and (2) for each k > 0 there is n(k) such that I(z) = k for each
leaf = of Tpyx). Write Lg for L(Tnk)), and consider the union (limit) T of
the T;,. Then we can summarize the essence of our construction as follows.

(5.8) Proposition. Suppose that X is a graph with bounded geometry
satisfying ISz ., where § is non-decreasing and §(k) — oo. Then X has a
subtree T which is a subdivision of the binary tree and such that for each
k there is a set Ly, consisting of 2¥*! vertices satisfying

(1) Ly N Si(T) = 0, and there is precisely one element of Ly on each
of the 25! paths in T which go from Si(T) to Sk41(T);

(2) if o' is the root of T, then the component C(o',D(T) U Ly) in X
is finite for each k.

Note that it is not necessarily true that o’ = 0; compare with Lemma
5.4. The component in (2) is that of Ty,(x) \ L.

Proof of Theorem 5.2. We show that T has a finite energy flow with
input 1 from the root to co. This implies transience of the simple random
walk on T and hence also of the simple random walk on X.

Given e € E(T), we choose e~ as the endpoint closer to the root. We use
the “simple” flow u on T : at each branching (vertex in S(T')), it subdivides
equally between the two outgoing edges. Thus, u(e) = 1/2* on each edge
between Si_1(T) and Si(T). Let s denote the number of all these edges
(k > 1). The energy of the flow is



54 I. The type problem

(u,u) = E u(e)? = Zsk/4k .

e€E(T) k=1

Now, by monotonicity of § and the isoperimetric inequality (recall Lemma
5.4),

F(s1+--+sk) < s(m(c(o',D(T) U Lk))) < k(M —1)2++2,

Setting ¢ = (4 k(M — 1))2, we get that (u,u)/c is bounded above by

o0 8k

Zsk3(31+'“+8k < ZZ%’(SH- +8sp-1+8)” Zs(n) 2 <oo.

k=1 k=1 i=1
a

B. Transient subtrees in quasi-transitive graphs

We shall now complete the structural classification of all recurrent quasi-
transitive graphs. We start with the following observation, whose (easy)
proof is omitted.

(5.9) Lemma. Suppose I' < AUT(X) acts quasi-transitively and that &
is a compact normal subgroup of I'. Then X is roughly isometric with the
factor graph 8\ X, and the two graphs have equivalent growth functions.

Losert [216] has extended the main result on groups with polynomial
growth (Theorem 3.17) to locally compact topological groups. Let T' be
such a group, generated by a compact, symmetric neighbourhood U of the
identity, and with Haar measure || The growth function of I' with respect
toUis V(n) = IU "|. Change to another generating neighbourhood gives
rise to an equivalent growth function. For our purpose, the following result
of Losert [216] is important.

(5.10) Theorem. Let I' be locally compact, generated by some compact,
symmetric neighbourhood of the identity. If there are C,d such that the
associated growth function satisfies V(n) < C'n® for infinitely many n, then
T’ has a compact normal subgroup £ such that I'/R is a (possibly zero-
dimensional) Lie group.

From this, we can deduce the following.

(5.11) Theorem. Let X be a quasi-transitive graph whose growth func-
tion satisfies V(n) < Cn? for infinitely many n. Then X is roughly iso-
metric with a Cayley graph of some finitely generated nilpotent group. In
particular, there are an integer d(X) and constants Co,Cy > 0 such that

Con®X) <V(n) < C (n+1)¥X)  foralln.
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Proof. Let ' = AUT(X). Given an orbit X;, consider the graph
Y=X {2N_1) as constructed in the proof of Proposition 3.9. It is roughly
isometric with X, so that V3 (n) < C’n? for infinitely many n by Lemma
3.13. Choose 0 € Y and let U = {y € T : dy(y0,0) < 1}. This is a
compact, symmetric neighbourhood of the identity which generates I', and
U™o = By(n,0). We get that

lrl=" > HKyeT:yo=a}|=Irl W (n).

€ By (n,0)

The assumption and Theorem 5.10 now yield that I" has a compact normal
subgroup such that I'/R is Lie. As T is totally disconnected and compactly
generated, I'/& must be discrete (zero-dimensional) and finitely generated.

Consider the factor graph X’ = &\X. It is roughly isometric with X
(Lemma 5.9), and I'/ R acts quasi-transitively on X’ as a closed subgroup of
AUT(X"). Vertex stabilizers in I'/f are open and compact, whence finite.
By Proposition 3.9, X’ is roughly isometric with a Cayley graph of I'/&.
Applying Theorems 3.17 and 3.16 and Lemma 3.14 now yields the result. O

For d < 2, more is known.

(5.12) Theorem. If X is quasi-transitive with polynomial growth of de-
gree d € {1,2} then every quasi-transitive subgroup of AUT(X) contains a
discrete subgroup isomorphic with Z¢.

In the case of linear growth (d = 1) this is obvious: in the above notation,
there is an element with infinite order in I'/& acting with finitely many orbits
on the factor graph. Any of its preimages in I' under the factor map has
infinite order and acts with finitely many orbits. On the other hand, for
square growth, the theorem is not easy and has been proved very recently
by Seifter and Trofimov [296]. We will not give the proof here.

The last theorems combined with Theorem 5.2 yield the result that we
have been looking for.

(5.13) Theorem. Let X be a quasi-transitive infinite graph. If some quasi-
transitive random walk (X, P) is recurrent, then X is roughly isometric
with the one- or two-dimensional grid: AUT(X, P) has a discrete subgroup
isomorphic with Z or Z? which acts quasi-transitively and fixed-point-freely.
In this case, every strongly reversible, quasi-transitive random walk on
X with finite second moment is recurrent.
Otherwise, X contains a transient subtree.

Proof. If (X, P) as given is recurrent, then I' must be unimodular
(Theorem 3.26) and the simple random walk on X recurrent (Corollary
3.29). This in turn yields unimodularity of every quasi-transitive subgroup
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of AUT(X), and Theorem 3.31 now yields recurrence of every strongly re-
versible, quasi-transitive random walk with finite second moment.

Let V(n) be the growth function of X. If V(n) < Cn? then the simple
random walk on X is indeed recurrent (Lemma 3.12), and from Theorems
5.11 (and its proof) and 5.12 we see that AUT(X, P) must have the stated
properties. (The fact that the action of Z or Z2, respectively, is fixed-point-
free follows from commutativity of these groups.)

Otherwise, Theorem 5.11 tells us that V(n) > Cn®. From Theorem
4.18 we get that X satisfies IS;. We can now apply Theorem 5.2 to get a
transient subtree. O

6. More on recurrence

In this final section, we present further results on recurrent random walks
on quasi-transitive graphs, trees, and planar graphs associated with tilings
and circle packings.

A. Generalized lattices

By a d-dimensional generalized lattice we mean a locally finite graph
whose automorphism group contains the free abelian group Z¢ as a quasi-
transitive subgroup. From Proposition 3.9 we know that such a graph is
roughly isometric with the d-dimensional grid and that it has polynomial
growth with degree d. If X is a recurrent quasi-transitive graph, then we
know from Theorems 5.12 and 5.13 that X is a generalized lattice with
dimension d =1 or d = 2.

The purpose of this subsection is to determine further recurrence criteria
(besides strong reversibility) for quasi-transitive random walks on general-
ized lattices with dimension 1 or 2.

First, we recall what is known for random walks on the abelian groups
Z and Z? themselves.

(6.1) Theorem. Let i be an irreducible probability measure on Z¢ with
finite first moment M, (), and write

m(p) = Y ku(k)
keZd
for the mean vector or drift of the associated random walk.

(a) If m{u) # O then the random walk is transient.

(b) If d =1 and m(u) = O then the random walk is recurrent.

(¢) If d = 2, Ma(p) < o0 and m(u) = O then the random walk is
recurrent.

Proof. Part (a) follows immediately from the strong law of large num-
bers.
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(b) We use the following simple inequality, valid for any Markov chain
(X,P): forallz,ye X and N € N,

Zp(")(w y) = Zp(k)(w v) Z f9(z,y) < F(a, y)zp(")(y,y)

n=0 n=0

Now we consider the translation-invariant random walk P = P, on Z. Fix
M € N and set e =1/M. Then, for any k € Z and N € N,

MN
pr 0,k) < Zp(")(k k)= p™(0,0).

n=0 n=0
Consequently

MN
Zp(n) (0,0) Z Zp(n) 0,k)

N +1
n=0 k: |k|<N n=0

(n)
> Z > k).
2N + 1 MN 720 ke W2

Now, by the weak law of large numbers and the fact that m(u) =0,

lim Y p™(0,k)=1.

n—oo

k:|k|<ne

Hence, as N — o0, the right hand side of the last inequality tends to M/2,
and G(0,0) > M/2 for every M € N.

Part (c) is obtained by using Fourier transformation. We postpone the
proof to Chapter III, where we shall derive the asymptotic behaviour of

P (z,y). |

We now consider an irreducible random walk (X, P), where X is a gener-
alized lattice and AUT(X, P) contains a quasi-transitive subgroup isomor-
phic with Z¢. For k € Z¢, let ¥ be the corresponding automorphism of
(X, P). Let X;, i € Z, be the finite family of orbits of the latter group. As
mentioned in the proof of Theorem 5.13, the action of Z¢ must be fixed-
point-free. (Indeed, if some ~y fixes a vertex in some X;, then by commuta-
tivity it must fix every point in X;. If it is different from the identity, then
it has infinite order and hence must have infinite orbit in some X;, a con-
tradiction. Note that finiteness of 7 is crucial in this argument.) Therefore



58 1. The type problem

we may choose a “root” o; in each of the X; and we can identify T x Z¢
with X via the one-to-one correspondence

itk & meo0; .
In this notation, we have
(6.2)  p(ik,j(k+1)) = p(i0,51) for alli,j € T and k,1€ Z%.
The factor chain (I, 13) has transition probabilities

Bli,5) = Y_p(i0, jk).
k

As 7 is finite, it is positive recurrent and has a unique invariant probability
measure U; see Theorem 1.18. The random walk on X can be decomposed
as a pair _

Zn = ZnYn )

where (Zy,)n, is the factor chain and (Y,,),, is a sequence of Z4-valued random
variables. For each ¢ € I, define a sequence of stopping times by

ti =t! =min{k >0: Z, =i} and t;+1=min{k>tﬁl:2k=i};

compare with (1.12). Here t? is the time of the nth visit of (Zy)k>1 to
the orbit X;. By recurrence of }3, this is a.s. finite. From the general
theory of finite-state Markov chains (e.g. Chung [75]) it is known that t;
has moments of all orders (indeed, ]Ej (exp(cti)) < oo for some ¢ > 0), and
(i) = 1/E(t9).

Furthermore, (t;, —t%_,),>2 is a sequence of i.i.d random variables. They
have the same distribution as t¢, when Zy € X;. In this case we set t§ = 0,
and obtain the induced random walk (Z;:)n>0 on X;. The following is
obvious.

(6.3) Lemma. (X, P) is recurrent if and only if the induced random walk
on some (<= every) X; is recurrent.

Now, the induced random walk on X; may be identified with the Markov
chain
(Yi: )nz0

on Z%. Its transition probabilities inherit from P the translation invariance
under the action of Z¢. Thus, it is a random walk on Z¢ whose law is given
by

/.l,,(k) = ]P’m[tz <00, Zyi = ’Lk] .
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(6.4) Proposition. If M, (P) < oo (r > 1) then the rth absolute moment
M, (145) is also finite.

Proof. Consider the usual Cayley graph of Z¢, that is, the grid. We
know from Proposition 3.9 and its proof that the mapping ¢ : X — Z¢,
¢(tk) = k is a rough isometry. Hence,

S K" pi(k) < 0o = Eo, (d(Z0, Z4:)") < 00.
kezd

We know that t¢ has moments of all orders. Here, we shall need finiteness
of the following three quantities:
. . e .
A=E,(t), B=supE((t)"), C=) k7P,[t'>k].
z€X k=1
Using the inequality (a1 + - +a,)” < n""Y(a] +---+al,) (where a; > 0),

we obtain

E,, (d(Zo, Z)" Z Z n 1]EO. Zk—l, Z)" 1[t"=n]) = (I) + (H) y

n=1k=1
where -
(I) = k"' Eo, (d(Zk-1, Zk)" Ligimi))
k=1
and o o
Z Z r-1 E,, (d(Zk_l, Zy)" 1[t‘=n]) .
n=k+

In order to bound (I), we write

]Eoi (d(Zk-—la Zk)r 1[t‘=n])

Z Po.’[Zk—l =z, ti 2> k] Z p(.z‘,y) d(x: y)r < MT(P) Po-;[ti > k] .
zeX\X; y€X;

We get (I) < C M, (P). Next, for n > k we write

Eoi (d(Zk_l, Zk)r 1[t"=k])

3 PolZioa=z,t 2k Y pla,y)dz,y) Pyt =n—k,
ze€X\X; yeX\X;
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substitute n — k with n in (II) and use (n + k)" < 27" 2(n""1 + k"~ 1) to
obtain

D <223 Y Palfecr=z, 628 Y py)de)

k=1zeX\X; yEX\X;

X io:(nr‘1 + kY Pt = n)

n=1
o0
<22Y" N PofZea=3, 62K Y play)d(,y) (B+ETY)
k=1zeX\X; yeX\X;

< 22N P [t > K Mo(P) (B+ k1) <272 M (P) (AB +C).
k=1
Thus, both (I) and (II) are finite. O

In view of Theorem 6.1, we are now looking for a condition which guar-
antees m{y;) = 0. Let us define a new transition matrix P on X :

p(ik, j1) = p(i0, j1).
The resulting Markov chain will in general not be irreducible, as it is ab-
sorbed after one step in the set

X = {41: p(0, j1) > 0 for some i € T} .
The significance of (X, P) is that it keeps track of the increments in the

Z4-component of the original chain. More precisely, if we have the original
sequence of random variables Z,, = Z,Y,,, then we define
(6.5) Zn=ZnY,, where Yo=Yo, Vo=Yo—Yo1i(n21).
We get that (Z,,)n is (a copy of) the Markov chain with transition matrix
P and starting with Z.
(6.6) Lemma. Restricted to X, the transition matrix P is irreducible and
has an invariant probability distribution 7, given by
p(jk) = Y ¥(8) p(40, jk) -
i€l

Proof. Using that v is the invariant probability distribution of the factor
chain (I, P), it is straightforward to show that U has total mass 1 and is
invariant for P. _

To see irreducibility, let jili, jolo € X. Then there is ¢ € I such that

B(ik, jolz) = p(i0, j2lz) > 0 for all k € Z¢. Using irreducibility of (X, P),

we can find n such that p(™(j;1;,70) > 0. Translating this into P, we
get that there is some k € Z? (the increment of the last step) such that
7™ (j1l3,ik) > 0. In combination, we get ("1 (j11y, jalz) > 0. O
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Now we can deduce a law of large numbers for random walks on gener-
alized lattices.

(6.7) Theorem. In the above setting, suppose that M; (P) < oo and define
the drift of P by

m(P) =Y Y ki(i)p(i0, jk) .
keZdi,j€T
Then
lim %Yn =m(P) P,-almost surely for every z € X, and
n—oo

nlingo 1d(2y,2,) =0 almost surely <> m(P)=0.

Proof. We consider (Z,)n>1 as defined in (6.5). This positive recurrent
Markov chain lives on X with invariant probability distribution # (Lemma
6.6). If f : X — R? is any function such that [ |f|dP < oo, then the
law of large numbers for functionals of a recurrent Markov chain (see Revuz

[276], Thm. 4.3 and remark, p. 140) tells us that

R _
nlivnolo - ’; f(Zy) = /)‘{ fdv  almost surely
(for every starting distribution). Setting f(tk) = k, finiteness of M;(P)
implies D-integrability of |f|. Furthermore, [ fdP = m(P), and we get
that

n
% z Y = %(Yn —Yo) > m(P) almost surely.

k=1
The statement on convergence to 0 follows from the fact that ¢(tk) = k
defines a rough isometry. O

Now we can finally state the recurrence criterion that we have been
looking for.

(6.8) Corollary. Suppose that AUT(X, P) contains a quasi-transitive sub-
group isomorphic with Z¢, and that M;(P) < oo .

(a) If m(P) # 0, or ifd > 3, then the random walk is transient.

(b) If d = 1, or if d = 2 and M3(P) < oo, then the random walk is
recurrent if and only if m(P) = 0.

Proof. Transience for d > 3 is clear. Let y; be the law of (Yi: )n>o0,
which, as well as t?, is a sequence of sums of i.i.d. random variables. By
Proposition 6.4, p; inherits finiteness of the first moment from P. By the
law of large numbers,

: th o~ 1
e m(e) and o E(t]) =5

n n (i)

almost surely.
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From Theorem 6.7 we get that

Y Yt | mP)
n  tin v(3)

almost surely.

Hence, m(u;) = m{P)/v(i) is equal to 0 if and only if m(P) = 0. Using
Proposition 6.4, the results now follow from Theorem 6.1. 0

Consequently, in view of Theorem 5.12, if X is a graph with linear or
square growth, and if (X, P) is a quasi-transitive random walk with finite
first moment, then we can find a quasi-transitive subgroup of AUT(X, P)
isomorphic with Z or Z2, so that we can compute m(P) and decide on
recurrence or transience. (If X has square growth then we also need P to
have finite second moment.)

B. More on trees
Here, we shall present a recurrence criterion for nearest neighbour ran-

dom walks on trees, which involves the boundary at infinity and the notion
of logarithmic capacity.

(6.9) Definition. Let (M,0) be a compact metric space, and let v be a
Borel measure on M. The logarithmic potential of v is the function

bo(zlv) = /M ~logb(z,y) du(y)

on M. The logarithmic energy of v is

Iy(v) =/ do(z|v) dv(z).
M
The logarithmic capacity of a Borel set B C M is

Capg(B) = sup{v(B) : v a non-negative Borel measure with Ip(v) < 1}.

Note that Cape(B) > 0 if and only if there is a probability measure with
finite logarithmic energy such that »(M \ B) = 0.

Now let T be an infinite, locally finite tree; compare with §1.D. A (geo-
desic) ray in T is an infinite path # = [z, 21, T2, ...] without repeated
vertices. (We also think of 7 as a sequence of edges.) Two rays m, 7’ are
said to be equivalent if their symmetric difference has finitely many vertices.
An end of T is an equivalence class of geodesic rays. The boundary of T
is the set 9T of all ends of T. We set T = TUWT. If z € T and & € 9T,
then £ (as an equivalence class) has a unique representative which is a ray
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starting at z, denoted by w(x,&). If z, y are two distinct vertices of T', then
we define the “branch” Ty ,, its closure T} , and its boundary by

Toy={weT:yen(z,w)}, Teoy=TnN ’fx,y and 9T, =9TN ﬁ:,y.

T becomes a compact, totally disconnected Hausdorff space: a subbasis of
the topology is given by the family of all augmented branches ’f’m,y ; each of
these is compact and open. Fix a root o. For v € T, write |v| = d(v, 0). For
v, w € f, their confluent v A w is the last common vertex on the geodesics
w(0,v) and 7(o, w). This is a vertex of T, unless v = w € ¥T, in which case
vAw=v. Now
(6.10) 8(v,w) = { 0, =
exp(—lvAw|), v#w,

defines an ultrametric which induces the topology of T. In order to define a
Borel measure v on 9T, it is enough to specify the values v(9T, ),  # o,
consistently. As all these sets are open and compact, it is enough to check
finite additivity. The usual extension machinery (Carathéodory’s theorem)
does the rest for us.

Choose the orientation of edges such that for each e € E(T'), the endpoint
closer to o is e~. Measures v on Y1 are in one-to-one correspondence with
flows u from o to oo via

(6.11) u(e) = V(0T e+ ).

The input at o is ¥(9T). No energy is yet involved; u being a flow means
Y etmg U(€) =D - =, ule) = —v(VT) 8(x) . If we think of T being grounded
at 9T, then for B C 9T, the amount flowing out of T through B is v(B).

Now let P be the transition matrix of a nearest neighbour random walk
on T. Then P is reversible with respect to the measure

(6.12) (z) {1’ e
6.12 m(x) = -+
Meenos) Se7es)» @ #o.

Let r : E(T) — (0, 00) be the associated resistance function. Think of r asa
length element, inducing a new distance d. on T' by d-(2,y) = 3. cr(z,y) T(€)
for x # y. We write |v|, = d-(v,0). As in (6.9), one can use this metric to
define a new ultrametric 6, on T.

(6.13) Theorem. The random walk on T is transient if and only if
Capy, (9T) > 0.

Proof. Let v be a Borel measure on ¥7 and u the associated flow ac-
cording to (6.11). We write ¢, = ¢, and claim that for every £ € 97T,

(6.14) $eElv) = Y r(eyule)lor, ., (§).

ecE(T)



64 1. The type problem

Let e,, n > 1, be the successive edges on the ray n(o,£), such that e] =o
and e} = e ; = zn. Then (with 0- 0o = 0 as usual)

be(ElV) = /ﬂ el dv(n)

= €l v({€}) + Z |Znlr v(9To,0, \ 9T0,0041)

n=1
N
= &l v({£}H) + Nhlllm (Z r(en) v(¥To,e,) = 2N |r v(9To,0n 4 ))
n=1
N
= I (ED) + Jim 3 r(en) V0o, ~ V(OTon ).
n=1

Set fn(n) = r(en) max{0, (9T, s, ) — V(9T 2y, )} - This is non-decreasing
in N, and as N — oo, the pointwise limit is f(n) = r(en) (vV(9Toz,) —
v({¢ })) . By monotone convergence, we get

$r(€lv) = €l v{ED) + Y (en) (ulen) — v({ED) -

n=1

If v({£€}) = 0 then we see that (6.14) is true. If v({¢}) > 0 and |£], < oo then
Yo T(en) v({€}) cancels with |£|- v({£}), and (6.14) is again true. Finally,
if v({€}) > 0 and |£|, = oo then each side of (6.14) is equal to +oc.
Integrating both sides of (6.14), we see that Iy_(v) = (u,u), the energy of
the flow with respect to £2(E(T),r). Consequently, there is a finite energy
flow with input g = 1 from o to oo if and only if there is a probability
measure v on 9T with Io(v) < oo, that is, if and only if Cape (9T) > 0.
The result follows from Theorem 2.12. O

As a simple application, we can now explain recurrence of the comb
lattices in (2.21) from a more general viewpoint.

(6.15) Corollary. If 9T is countable and |¢|, = oo for all £ € 9T, then
the random walk is recurrent.

Proof. If v is a probability measure on 97" then there must be £ € 9T
with v({€}) > 0. But then Iy _(v) > [€], v({£})? = o0. O

This applies, in particular, to the simple random walk on a tree with
countably many ends and also to all nearest neighbour random walks on
such trees with inf g7y r(e) > 0.
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(6.16) A recurrent tree with exponential growth around each
point. Let T be the tree with root o constructed as follows: o has two
“sons”. For n > 1, the sphere S(o,n) = {z € T : d(z,0) = n} has 2"
elements x; n, ¢ = 1,...,2". Each of these has its “father” in S(o,n—1); for
i=1,...,27 1 the vertex Z;n has the three “sons” x3;—2n41, T3i—1,n+1
and 23; n41, While £an-1.; , has only one “son” £3.2n-14; . Thus, V(o,n) =
27+1 — 1. Besides the “leftmost” ray [o,71,1,%1,2,%13,-..], every geodesic
ray starting from o has only finitely many vertices with three “sons”. In
particular, 97 is countable and the simple random walk on T is recurrent.

Figure 5: a recurrent tree

O

(6.17) Exercise. Prove recurrence of the tree of Figure 5 by direct use of
the flow criterion (Theorem 2.12(b)).

(6.18) Trees associated with subsets of [0, 1]. Let A be a closed subset
of the unit interval [0, 1], and let ¢ > 2 be an integer. We associate with
A atree T = T(A,q) as follows. Set J;, = [(j —1)/¢", j/q"]. Then the
vertices of T are points z;, (n > 0, j € {1,...,¢™}), such that J;, has
non-empty intersection with A. Two vertices are neighbours if they are of
the form z;, and 2 nt1, and Ji ny1 C Jjn-

We ask when the simple random walk on T'(A, q) is recurrent. For ex-
ample, if A is the “middle third removal” Cantor set, then T(A,3) is the
binary tree, which is transient.

Take the vertex o = =z, corresponding to [0, 1] as the origin. Let
& € 9T. The geodesic ray mw(o,£) corresponds to a decreasing sequence
of intervals whose intersection is a point z € A. We define a mapping
@ : 9T — A by ¢(§) = z. It is continuous, indeed

(6.19) lo(€) — o(m)| < 6(&,m)'°81,

where 8 is the metric defined in (6.10). Also, ¢ is one-to-one except possibly
at countably many points which are mapped to g-adic rationals and where
@ is two-to-one.
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(6.20) Theorem. T'(A,q) is transient if and only if A has positive logar-
ithmic capacity with respect to the metric of R.

Proof. Let v be a probability measure on ¥7', and let & denote its image
under ¢, that is, #(B) = v(¢~'(B)). Then (6.19) implies that for every
£edT

dole) = [ —logbie,mavt) <
and hence
(6.21) I(®) = Iy(v) logq.

For a bound in the other direction, first observe that ¥Toz; ., = ¢ '(Jj5)
for ;. € T\ {0}. Therefore we can write, using (6.14) and integrating with

respect to v,
oo q"
=22 i)

n=1 j=1
Next note that for 0 < a < 1, we have ¢* ! < a™! < ¢* with &k =
ano 1j0,¢-»(a), whence

< ogq )} ~lole® — vldrw)

(o o)
—log|z —y| <logg Y 1jg,4-n(|x — yl)

n=0
for z,y € [0, 1}. Now, if {z —y| < ¢7™, n > 2, then
(z,9) € Jjn—1 X Jjne1UJjgn X Jigt1n U Jjgt+1,n X Jjgn
for some j € {1,...,q"'}. Hence (using 2ab < a? + b?)
7 x #({(, y €0, jz~y|<qg™™})

<Z( in=1)? + 7(Jjgn)? + 9( Jq+1n))<2z: Jin_1)

for n > 2. Now we compute the logarithmic energy of 7 on [0, 1]:

1 1
um=AA-muwmwww@

<logg) v xo({(z,y):le—yl <q™"})

n=0

<logq<2+22i Jjm— 1))

n=2 j=1
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Hence
(6.22) I(7) < 2(1+ Ig(v))loggq.

We can now conclude the proof. We apply Theorem 6.13 (with r = 1). If
Capg(Y¥T) > 0 then there is a probability v on 9T with Iy(v) < co. Defining
v on [0, 1] as above, we get from (6.22) that I(¥) < oo, and Cap(A) > 0.
Conversely, if I(#) < oo for some probability measure supported by A, then
U carries no point mass. Hence, using the fact that ¢ is two-to-one at at
most countably many points, we can define a probability measure v on 9T
by ¥(B) = #(¢(B)), and the image of v under ¢ is #. Thus, by (6.21),
Ty(v) < 0. a

In particular, we see that recurrence (or transience) of T'(A, q) does not

depend on the choice of ¢q. Also, if A has positive Hausdorff dimension then
T(A, q) is transient.

C. Extremal length and plane tilings

In this section we present another recurrence criterion for reversible
Markov chains with finite range, that is, giving rise to a locally finite net-
work. The criterion will be applied to the edge graphs of a class of tilings
of the plane. Let (X, P) be reversible with E = E(P), resistance r(-), total
conductance m(-) and associated network N

(6.23) Definition. Let IT be a set of non-empty simple paths in A”. The
extremal length EL(II) of II is given by

EL(II) = (inf{(u, uy:u€ 2 (E,r), L(u) > 1})_1
= sup{L(Ilju)? : u € 3 (E,r), (u,u) =1},
where L(IT|u) = inf{L(w|u) : m € I1}, with L(nfu) = 3", u(e)r(e).
(It is a straightforward exercise to show that the two expressions for

EL(II) coincide.) For x € X, let I, denote the set