Stat 205B Lecture Notes #6

Lecturer: Yuval Peres, Scribe: Aaron Wagner

February 7, 2002

Disclaimer: These lecture notes have been only lightly proofread. Please in-
form peres@stat.berkeley.edu of errors.

In this lecture, we study exchangeable sequences of random variables. We will
apply the results of this study to Pdlya’s urn, which was introduced in Lecture 2.
Recall Pélya’s urn begins with r red balls and ¢ green balls at time zero. At
each subsequent time step, we remove a ball from the urn, then replace it and
add another ball of the same color.

Pélya’s urn has the intriguing property that the probability of adding a par-
ticular finite sequence of ball colors does not depend on the order of the colors,
only the number of reds and greens in the sequence. The following definition
generalizes this notion to an arbitrary sequence of random variables.

Definition 1 A sequence of random variables { X, }n>1 (each taking values in
an arbitrary space S) is ewchangeable if for all N € N and any permutation
7 of the integers {1,..., N}, the distributions of (X1,...,Xn) (in SV) and
(Xz(1), -+ Xp(y) are identical.

Exercise 1 Show that the sequence of ball colors picked from Pdlya’s urn is
exchangeable. Here S = {R,G}. Durrett performs the calculation on page 241
of his text.

A sequence of i.1.d. random variables is clearly exchangeable, and evidently
exchangeable random variables are marginally identically distributed. However,
the variables need not be independent. Suppose we have a bag containing two
coins, one that lands heads with probability 1/2, and another that lands heads
with probability 1/3. The coins are physically indistinguishable. We choose a
coin uniformly at random, then flip it forever. The coin tosses are identically
distributed but not independent: observing a head increases the posterior chance
that we chose the fair coin. The coin flips are, however, exchangeable.

This fact holds more generally.

Proposition 1 A mizture of exchangeable random variables is exchangeable.
More precisely, if 8 is a random variable in © with law v, and X,, = XT(LG), where
for each ¢ € O, Xr(f) 1s exchangeable, then X, is exchangeable.

Proof.

P((X1,..., Xx) € A) :/ PX X € A) (o)
®

:/@p(xg‘f{),...,xg‘f}v) € A) du(9)

:P(Xﬂ(l),...,XW(N) EA). O



In words, the space of exchangeable sequences is convex. The next result
shows that the “extreme points” of this convex set are contained in the space of
1.1.d. sequences.

Theorem 1 (de Finetti) (Finite-state variables) Let {X,}5, be an ea-
changeable sequence with values in a finite set S. Then {X,} is a mizture of

i.1.d. sequences, i.e., there exist a space Og, 1.i.d. sequences {(Xr(f))}%@s, and

a random variable 0 taking values in ©g such that
P((X1,...,Xn) € A) :/ Px® X\ e 4) dv(e)
Og

for all N, where v 1s the law of 0.

Remarks. It will turn out that Og is the space of probability measures on 5.
In particular, if #S5 = 2, then we can take ©g = [0,1]. A remarkable corollary
to de Finetti’s Theorem is that Pélya’s urn can be obtained as a mixture of
independent coin flips.

Warning. Even though the notion of exchangeability is meaningful for fi-
nite sequences of random variables, de Finetti’s Theorem requires an infinite
sequence. Consider the pair of random variables (X1, X3) that equal (0,1) with
probability 1/2 and (1,0) with probability 1/2. The pair (X1, X3) is exchange-
able in that (X7, X2) 2 (X3, X1), but it cannot be a mixture of i.i.d. sequences.
To see this, suppose (Yl(p),Yz(p)) arei.i.d.on {0,1}% with P(Yl(p) =1) =p. Then

P(Yl(p) — YZ(p)) — p2 4 (1 _ p)Z
PP # vy = 2p(1 = p).

Thus P(Yl(p) = Yz(p)) > P(Yl(p) + Yz(p)). If (X1, Xo) was a mixture of i.i.d. pairs
then we would have P(X; = X3) > P(X; # X3), since in that case,

P(X; = X5) = / Py = v{PYu (dp)

:/ﬁ+u—m%wn
JE
o

V3P )w(dp)
= P(X; # X3).

v

for some probability measure v on [0, 1]. But in the present case, P(X; # X3) =
1.

We can use this calculation to construct more subtle counterexamples, such
as the following. Suppose (X1, X2) take values (0, 1) and (1,0) with probability
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Figure 1: Placement of Vjy, ..., V,, around a circle.

1/3 each, and values (0,0) and (1,1) with probability 1/6 each. Then (X1, X3)
are exchangeable but they cannot be a mixture of 1.i.d. sequences.

De Finetti’s Theorem is still useful in the context of finite sequences because
it shows that if a finite sequence of exchangeable random variables can be ex-
tended to an infinite sequence of exchangeable random variables, then the infinite
sequence, and hence also the finite sequence, is a mixture of i.i.d. sequences.

We return to Pélya’s urn. Pdélya himself showed that if » = ¢ = 1, then the
sequence of ball colors is a uniform mixture of i.i.d. binary sequences.

Theorem 2 (Pdlya) Let (X)) be the sequence of ball colors chosen from
Pdlya’s urn with v = g = 1. Let 8 be uniformly distributed over [0,1], and
for each ¢ € [0,1], let {Xr(fz’) 00, be an i.1.d. sequence of {R, G}-valued random
variables that is independent of 0, with

PP =R)=¢=1-P(x{” =G).
Then { X, )02, & {xO1ee .

Pélya’s proof was entirely computational; now more transparent proofs are
available. Here is one, which requires the following lemma.

Lemma 1 IfVi,...,V, are i.i.d. uniform on [0,1] and VD ... V) are their
order statistics, then V() —0, V) v 1 -V are identically distributed
(in fact, exchangeable).

Proof. One way to prove this is by manipulating densities. A more elegant
approach is to add another independent uniform [0, 1] random variable, V4, and
to think of Vj, ..., V], as living on the circle with circumference 1, say with 0 at
the top and increasing clockwise. Starting with V and moving clockwise around
the circle, label the first point Wy, the next Wy, etc., as shown in Figure 1. Write
V() =0. Now {(V; — Vo) mod 1}, are i.i.d. uniform over [0, 1] and (V; — V{)
mod 1 is the length of the (clockwise) arc (Vo, Vi) (the clockwise arc (Vp, Va) is
shown in bold in Figure 1). The ith order statistic of {(V; — Vo) mod 1}7, is



the length of the arc (Wy, W;). Then the distribution of V() — =1 ig identi-
cal to the distribution of the length of the arc (W;_1, W;), fori=1,...,n, and
1 — V() equals the length of the arc (Wh, Vo) in distribution. But these arc

lengths are identically distributed since Vj 1s indistinguishable from Vi, ... V.
O

After proving the theorem, we will provide an intuitive summary of the ar-
gument.

Proof of Theorem. Let {U;}52, be a sequence of i.i.d. random variables that
are uniformly distributed over [0, 1]. TLet U be uniformly distributed over [0, 1]
and independent of {U;}52,. Let

P G ifU, <U
"T1U R ifU, >U

Evidently,
[ee] d [ee]
{X(e)}n—l ={Zn}n%-

It suffices to show that {X,}N_, = {Z W_, for all N € N. We show this by
induction. It is true for N = 1 since Xy and 7; are both uniformly distributed
over {GG, R}. Suppose it holds for N, and let ¢ = (¢1,...,cn) be a sequence in
{G,R}N, and let y(¢) = #{i € {1,...,N} : ¢; = G}. Write Z = (Z1,...,Zn)
and X = (X1,..., Xn). We must show that for all ¢,

P(ZN+1:G Z—C) (XN+1:G,X:C)
P(Zn4y1 =G|Z =c) = (XN+1 G)X =0
7

)+
N—|—2

By Lemma 1, {Z,}52, is exchangeable. Thus,
P(Zys1 =G, 7 =c)

P(Zni1=GlZ=¢) =

P(Z =¢)

_ PUn41 =G (7)) =5(e))/N!
P(y(Z) =~(c))/N!

= P(Zn41 = Gv(Z) = 7(c)).

Let U be the ith order statistic of {U/,U/1,...,Ux}. Then

P(Zns1 = Gly(Z) = ~(c)) = P(Un41 < U|U = ety
—P(UN+1<U 9ty = phle+ ))

It is simple to show, using symmetry arguments, that the events Uni1 <
U0+ and U7 = U+ are independent. This gives

P(Zn+1 = G1(Z) = 4(c)) = P(Un41 < UOOFY)
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Figure 2: U partitions the unit interval into a green subinterval and a red one.
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Figure 3: Uy,Us, Us, ..., further partition the [0, 1] interval.

Now Uny1 and U9+ are both continuous random variables, and indepen-
dent, hence jointly continuous. Let f(-) be the density of U0+ Then

()
(UN_|_1<U +1 / / (z < y)f(y) de dy

:/ yf(y) d _E[U(W(C)-l-l)].

The lemma shows that E[l/()] — E[7(~1] = 1/(N 4 2). Thus

Y(e)+1
g+l — () _g 4 Z @ _ =1

v(e) +1
N4+2°

Intuition. We can think of U as partitioning the unit interval into two
subintervals, as shown in Figure 2. Label the interval to the left of U “green”
and the one to the right “red.” Now if U; lands in the green (resp. red) interval
then 7Z; = G (resp. Z; = R). By sequentially labeling the U; on the interval,
we form a finer and finer partition of [0, 1], as shown in Figure 3. At each time
step, the number of green (resp. red) intervals equals the number of green (resp.
red) balls in the urn. The length of each of these subintervals corresponds to a
difference between consecutive order statistics of {U, Uy, ..., Un}, so we expect
them all to have the same length by the lemma. Then the chance of Uny1
landing on the green interval is just the ratio of the number of green intervals
to the total, i.e., the fraction of green balls in the urn.

EU0©+)] = O

Exercise 2 Generalize Theorem 2 to Pdlya’s urn with an arbitrary (posi-
tive) initial number of red and green balls. Find the limiting distribution of

Gk/(Rk + Gk)

Remark. In the »r = ¢ = 1 case, we see that the limiting distribution of
G /(Rr+Gy) is uniform over [0, 1]. For general » and g, the limiting distribution
will be an order statistic of several i.i.d. uniform [0, 1] random variables.



