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1 The main ergodic theorems

Let (Ω,F , P) be a probability space, and T : Ω −→ Ω a measure preserving transformation,

meaning two things: it is measurable, and P(T−1(A)) = P(A) for all A ∈ F . Here we took the

inverse because T (A) is not necessarily measurable. The set of T -invariant sets, I = {A ∈ F :

T−1A ⊆ A} is a sub-σ-algebra of F . Note that A = T−1A almost everywhere for A ∈ I. For

any function f ∈ L1(Ω), let us define the measurable functions

Snf(ω) :=
n−1
∑

j=0

f(T jω), Mnf(ω) := max
1≤j≤n

Sjf(ω) and Mf(ω) := sup
j≥1

Sjf(ω).

The most important result in ergodic theory is the following Pointwise Ergodic Theorem due

to G. Birkhoff (1931). He formulated and proved it stimulated by J. von Neumann’s much

simpler L2 version.

Theorem 1.1. (Birkhoff’s Pointwise Ergodic Theorem) For f ∈ L1(Ω),

1

n
Snf(ω)

a.s.

−→ f(ω) = E(f | I)(ω).

The original proof was 50 pages long. Then Kakutani and Yosida formulated their Maximal

Ergodic Theorem in 1939, having a much cleaner 10 page proof, from which Birkhoff’s theorem

can be deduced nicely.

Theorem 1.2. (Maximal Ergodic Theorem) For f ∈ L1(Ω),
∫

{Mf>0}

f dP ≥ 0.

Similar maximal inequalities are very important in all parts of analysis, and usually they

can be considered as improvements to Markov’s inequality. Just to mention two examples: we

saw the different Lp maximal inequalities for (sub/super)martingales. The Hardy-Littlewood

maximal function associated to a real valued Lebesgue-measurable function f ∈ L1
loc(R

d, λ) is

Mf(x) = sup
r

Sr|f(x)| = sup
r

1

λBr(x)

∫

Br(x)

|f(y)| dλ(y),

and the corresponding maximal inequality is

λ{x : Mf(x) > α} ≤
3d

α

∫

|f(x)| dλ(x)

for any α > 0.

Now we deduce Birkhoff’s theorem from the Maximal Ergodic Theorem. It could be done

more shortly, in one step, but instead we will first prove the existence of the a.s. limit, then will

identify the limit.



Proof of Birkhoff’s theorem. For a < b rationals let us define the measurable set Ωa,b =

{lim infn
Snf

n
< a, and lim supn

Snf
n

> b}. It is easy to check that TΩa,b ⊆ Ωa,b. Now suppose

that P(Ωa,b) > 0 for some a, b ∈ Q, and define P̃(·) = P(· |Ωa,b). It is clear that Ωa,b ⊆

{M(f − b) > 0}∩ {M(a− f) > 0}, so the Maximal Ergodic Theorem applied to (Ωa,b,F|Ωa,b
, P̃)

gives
∫

Ωa,b

(f − b) dP̃ ≥ 0 and

∫

Ωa,b

(a − f) dP̃ ≥ 0.

Summing up these inequalities we get
∫

Ωa,b
(a − b) dP̃ ≥ 0, which contradicts to a − b < 0 and

P̃(Ωa,b) = 1. Thus we have

P

(

∪
a<b∈Q

Ωa,b

)

= 1,

which means a.s. convergence.

Now write f = limn
Snf

n
for this a.s. limit. What can this limit be? First of all, note that f

is invariant: f = f ◦ T . Or, to say the same thing differently: it is I-measurable.

Lemma 1.3. For any f ∈ L1(Ω) and measure preserving T ,
∫

Ω
f ◦ T dP =

∫

Ω
f dP. More

generally, for any invariant set B ∈ I,
∫

B
f ◦ T dP =

∫

B
f dP.

Proof. The first statement is true for any f = 1A, A ∈ F , by the definition of a measure-

preserving transformation. Then we can pass to general f ’s by the “standard machine”: ap-

proximate f ≥ 0 by step functions, and use the Monote Convergence Theorem, and then write

f ∈ L1 as f = f+ − f−. The second statement follows by noticing that (f1B) ◦ T = (f ◦ T )1B

a.s. for B ∈ I.

This lemma implies that
∫

B
Snf dP = n

∫

B
f dP for B ∈ I. For f ≥ 0 we can now apply Fatou’s

lemma to get
∫

B
f dP ≤

∫

B
f dP, and for bounded f we can apply the Dominated Convergence

Theorem to get
∫

B
f dP =

∫

B
f dP. So it is reasonable to expect that f = E(f | I), the unique

I-measurable function that gives the same integral on each invariant set as f .

To actually prove this claim, set g = f − E(f | I). Since E(f | I) is T -invariant, we have to

prove that g = lim Sng
n

equals 0 almost surely; note that we know the existence of the limit from

the existence of f . Let us proceed similarly as before: take Ωε = {g > ε} ∈ I for some ε > 0,

and consider the restriction of our dynamical system to Ωε. If P(Ωε) > 0, then we have a decent

measurable dynamical system, and the Maximal Ergodic Theorem gives
∫

Ωε
(g − ε) dP ≥ 0. If

P(Ωε) = 0, then the same inequality is trivial. Hence

εP(Ωε) ≤

∫

Ωε

g dP =

∫

Ωε

E(g | I) dP = 0,

where in the first equality we used Ωε ∈ I and the definition of conditional expectation, while

the second one follows simply from the definition of g. Thus we have P(Ωε) = 0. Similarly,

P(g < −ε) = 0. These show that g = 0 a.s., and the proof is complete.

The general belief after 1939 was that the maximal theorem and Birkhoff’s theorem were

basically equivalent. As a shock came Garsia’s three-line proof of the maximal theorem in 1965.

Garsia’s proof of the Maximal Ergodic Theorem. The sets {Mnf > 0} increase up

monotonicly to {Mf > 0}, so by the Dominated Convergence Theorem it is enough to prove
∫

{Mnf>0}
f dP ≥ 0. Note that f + [Mn−1(f ◦ T )]

+
= Mnf , and f + [Mn(f ◦ T )]

+
≥ Mnf , hence



∫

{Mnf>0}

f dP ≥

∫

{Mnf>0}

{

Mnf − [Mn(f ◦ T )]
+}

dP

=

∫

{Mnf>0}

{

[Mnf ]+ − [Mn(f ◦ T )]+
}

dP

≥

∫

Ω

[Mnf ]+ dP −

∫

Ω

[Mn(f ◦ T )]+ dP = 0,

where in the last step we used Lemma 1.3 again.

2 Information Theory

We closed the semester with a very brief introduction to information theory by Peter Ralph.

Given a random variable X on (Ω,B, P), and a sub-σ-algebra F ⊆ B, let us define the condi-

tional probability, information and entropy as

P(X | F) = E
(

1X−1(X(ω)) | F
)

,

I(X | F) = − log P(X | F),

H(X | F) = EI(X | F).

In particular, if X is a discrete variable, P(X = x) = px, and F = B, then P(X | F) is the

random variable ω 7→ pX(ω), and

H(X) = H(X | F) = −
∑

x

px log px.

If F = σ(Y ) for another r.v. Y , then

H(X |Y ) = −
∑

x,y

P(X = x, Y = y) log P(X = x |Y = y) = H(X, Y ) − H(Y ).

So

H(X, Y ) ≤ H(X) + H(Y ),

with equality if and only if X and Y are independent.

The most important theorem about entropy is probably the following:

Theorem 2.1. (Shannon – McMillan – Breiman) For a stationary ergodic sequence (Xn)∞−∞

on a countable state space, with H(X0) < ∞,

−
1

n
log I(X1, . . . , Xn)

a.s.

−→
L1

H = H(X0 |X−1, X−2, . . . ).

An equivalent reformulation in the case of Xi ∈ S, where S is a finite set: to capture 1 − ε

probability mass of the possible outcomes (X1, . . . , Xn), we need at least around exp((H ± ε)n)

sequences. E.g. in the case of an i.i.d. uniform sequence, we have H = log |S|, so we need almost

all possible outcomes. Thus larger entropy can be interpreted as a larger degree of random

independence in the sequence. Among all probability distributions X on a finite set, the uniform

one has the largest entropy H(X), and among all probability densities on R with EX2 = 1, the

standard normal has this maximizing property.

It is also possible to define the entropy of a measure preserving transformation, which notion

is central in the theory of dynamical systems.


