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Chaotic flows
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Continuous time. Physical/SRB measure.

M compact metric space
Xt :M — M smooth flow (ie, XttS = Xto XS for s, t € R)

There exists a unique invariant SRB measure usgs:
Leb(B(HSRB)) > 0 where

1 T
B(usre) = {X EM: ?J P(X*(x))ds — f @dusrs, Vo€ C(M)}
0
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Mixing

After obtaining an interesting invariant probability
measure for a dynamical system, it is natural to study
the properties of this measure. Besides ergodicity there
are various degrees of mixing.

Given a flow Xt and an invariant ergodic probability
measure u, we say that the system (X, i) is mixing if
for any two measurable sets A, B

H(ANXT'B) —— u(A) - u(B)

or equivalently

J¢'(¢°Xt)duh—w>J¢duJ¢du

for any pair ¢, ¢ : M — R of continuous functions.
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Correlation function

Considering ¢ and ¢ o Xt : M — R as random variables
over the probability space (M, u), this definition just
says that “the random variables ¢ and ¢ o X! are
asymptotically independent” since the expected
value E(¢ - (¢ o X%)) tends to the product E(¢) - E(¢) when
t goes to infinity.

The correlation function

Ce(e, ¥) = [E(p - (¥ o X")) —E(p

UCD (WoXt)du— fcpdujwdu‘

satisfies Ct(o, ¢) = 0 in the case of mixing.
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Speed of mixing: decay of correlations.

Given observables ¢, ¥ : M — R in a Banach space X
(which depends on the systems and is in general a
space of functions with some regularity, Holder or C" for
some r > 1...) the correlation function (for the SRB
measure) is given by

Ce(¢, 9) = U((P o X") ¢ dusrs — f 1l dllSRBf @ dusrs

We classify decay of correlations into some classes
@ Exponential decay: 3C, ¥ > 0 so that

Ce(¢, @) < Ce™¢lllloll

@ Super-polynomial decay: V@ > 03Cg > 0 s.t.
Ce(¥, @) < Cat~Fliylllloll
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Some known results: Decay of correlations

super-poly. decay exp. decay

2 smooth foliations &
Anosov or ooopen non-integrability
Axiom A flows C* dense C! open set of C3

not all dim> 3 vector fields
geometric C? open C'-open set of C®
Lorenz C*™ dense vector fields
attractors
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Some known results: Decay of correlations
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Anosov or Ooopen non-integrability
Axiom A flows C* dense C! open set of C3

not all dim> 3 vector fields
geometric C? open C'-open set of C®
Lorenz C* dense vector fields
attractors

Dolgopyat 98" C>-Anosov flows whose stable and
unstable foliations are jointly non-integrable
have exponential decay

Dolgopyat 98" Generic suspension flows over subshift
of finite type are exponentially mixing

Pollicott 99" Equilibrium states of suspension semiflows
over subshift of finite type with "nice" roof
function have exponential decay
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Some known results: Decay of correlations

super-poly. decay exp. decay
> smooth foliations &

Anosov or Cooopen non-integrability
Axiom A flows C* dense C! open set of C3

not all dim> 3 vector fields
geometric C? open C'-open set of C®
Lorenz C*™ dense vector fields
attractors

Field, Melbourne, Torok 07’ C? open, C*® dense set of
Axiom A flows with superpolynomial decay
of correlations

Ruelle 83’, Pollicott 85" Examples with slow decay of
correlations.

Baladi, Vallée 05’ Exp. decay of corr. for C? suspension
semiflows on surfaces with countable
Markov partitions and "good roof function"
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Some known results: Decay of correlations

super-poly. decay exp. decay

2 smooth foliations &
Anosov or ooopen non-integrability
Axiom A flows C* dense C! open set of C3

not all dim> 3 vector fields
geometric C? open C'-open set of C®
Lorenz C*™ dense vector fields
attractors

Avila, Goliezel, Yoccoz 06’ Exponential decay of
correlations for Teichmuller flow; criterium
for suspension semiflows over hyperbolic
base with (countable) Markov structure

Melbourne 09’ C? open, C*® dense set of geom. Lorenz
attractors have superpolynomial decay

A., Varandas 11’ C2-open set of geom. Lorenz
attractors with exponential decay
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Some known results: Decay of correlations

super-poly. decay exp. decay
2 open smoc_)th folia.ti.ons &

Anosov or o dpense non-integrability
Axiom A flows C! open set of C3

i not all dim> 3 vector fields
geometric C? open Cl-open set of C®
Lorenz C* dense vector fields
attractors

A., Melbourne, Varandas 15" Super-polynomial decay
for C! open set of C*® geometric Lorenz
attractors and ASIP for time-1 map

A., Butterley, Varandas 16’ Cl-open set C3 Axiom A
vector fields, dim. > 3, with non-trivial
attractor with exponential decay
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Some known results: Decay of correlations

super-poly. decay exp. decay
2 smooth foliations &
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Axiom A flows C> dense C! open set of C3

_ not all dim> 3 vector fields
geometric C? open Cl-open set of C*®
Lorenz C*™ dense vector fields
attractors

A., Melbourne 16" Exponential decay of correlations for
C1+@ suspension semiflows on surfaces with
countable Markov partitions and "good roof
function"
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Lorenz equations

In 1963 Lorenz presented the following systems of
equations and payed close attention to certain
parameter values:

dx 10
—=0(y—x o=
gt ~ov—=x)

d

—y:rx—y—xz r=28
dt

0z b b=28/3
— =Xxy—bz =

at

for which the systems seemed to be “sensitive to initial
conditions” or “chaotic”.
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The Lorenz system has an attractor

Only around the year 2000 was it established, by
[Tucker, “The Lorenz attractor exists”, C. R. Acad. Sci.
Paris, 1999], that the Lorenz system of equations
with the parameters indicated by Lorenz does
indeed have a transitive attractor with a SRB
measure.

This proof was and remains a computer assisted proof,
rather involved, delicate and quite technical, which
works for a specific family of parameters. It was tested
on very fast computers at the time and took several
days to complete the calculations.

Tucker in fact showed that the Lorenz attractor is
a geometric Lorenz attractor, and so is an
example of transitive singular-hyperbolic set
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Description of Geometric Lorenz attractors

Consider the linear system (x, y, z) = (A1X, A2y, A32),
thus

At

X'(x0, 0. 20) = (' x0, €'y, €%3'2),

where A\; < A3 <0 <—A3 < A7 inangbh. of (0,0, 0).

For T = —)\il log |x| we get

X'(x,y,1)= (Sgn(X),ylxl—)\Z/)\ll |X|_’\3/’\1)
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Invariant constracting foliation

We assume that the “triangles” L(S*) are compressed
in the y-direction and stretched on the other transverse
and rotated back preserving the line segments
Sn{x=xp}:

This may be seen as a suspension flow over the
Poincaré return map R with roof function

(X, y) = —Ail log |x| + c(x) where c(-) is bounded.
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One-dimensional quotient map

The Poincaré first return map R:S* - Sis a
skew-product R(x, y) = (f(x), g(x, y)) for some functions
f:I\{0} =/landg:(I\ {0})x/—1, where
1=1-1/2,1/2].

S

. L_:=:::::::i::j[::x

fix)  x -12 0 +172
Moreover, the smoothness of f depends on the
smoothness of the contracting foliation and
@ f(x) =~ |x|* and so |f'(x)| ~ a|x|*~!
@ |9,9] = |x|F <A <1and|a,g(x y)l-IDF(x)"t <A
which give
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Sectional-hyperbolicity

Tucker in fact showed that the Lorenz attractor is
a transitive singular-hyperbolic set.
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Sectional-hyperbolicity

Tucker in fact showed that the Lorenz attractor is
a transitive singular-hyperbolic set.

We say that a compact invariant set A for a flow is
sectionally hyperbolic if the tangent bundle over A
admits a DX;-invariant and dominated splitting

TAM = E3 ® Ef, such that there are C, A > 0 satisfying for
everyxeAandt>0

e E*° is uniformly contracted: [IDX: | ES|| < Ce™t;

@ E€ is 2-sectionally expanded: for every
bidimensional subspace Fx contained in E; we have
| det(DX¢ | Fx)| = Cet; and

@ all equilibrium points, if any, are hyperbolic.
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Sectional-hyperbolicity and hyperbolicity

A sectional-hyperbolic compact invariant subset for a
three-dimensional vector field (where dimE* =1 and
dimE® = 2) is also referred to as a singular-hyperbolic
set.

Sectional-hyperbolicity is an extension of the notion of
hyperbolicity.

Hyperbolic Lemma

Every compact singular-hyperbolic set without
singularities is an hyperbolic set, that is, ES can be
written as [G] ® EY, where [G] is the flow direction and EY
is uniformly expanded:

AC, A > 0:[|(DX¢ | EY)7H| < Ce™™.
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Dominated splitting. Robustness.

The continuous splitting TA\AM = E* ® E€ is dominated if
it is DX¢-invariant, that is

DXtE: = E;t(x)
and there are K, A > 0 such that
IDXe | Exl - IDX¢ | E5, | < Ke™, ¥ x €A t > 0.

,VteR, VX €EN, x =5, cu;

Domination is a rather weak form of
hyperbolicity, but is a robust property. This means
that if a vector field Z admits an attracting set A, then
there we can find € > 0 such that for all vector fields Y
such that ||Y — Z||c: < € there is an attracting set Ay
close to A so that Ay has a dominated splitting (with the
same dimensions of the subbundles).

This robustness property is also true for sectional
hyperbolicity.
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The stable (contracting) foliation

To construct the physical/SRB measure for a geometric
Lorenz attractor the smoothness of the
one-dimensional quotient map is important: it needs to
be a C1+2 piecewise expanding map with finitely many
branches, for some a > 0.

This crucially depends on the regularity of the
contracting foliation over which the dynamics of the
return map is quotiented.

Moreover, the construction of geometric Lorenz
attractors provides that this contracting foliation
covers a full neighborhood U of the attractor.
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The attractor has zero volume

Moreover, the Lorenz equations define a vector field G
which is dissipative, that is, div(G) < —é < 0 for some
6> 0.

Hence, the Lorenz attractor A = Nt~ X:(U) has zero
volume, where X; is the flow generated by G.

However, this is a general result: a singular-hyperbolic
attractor has zero volume whenever the vector field is
of class C1*9 [see Alves, A., Pacifico, Pinheiro, Dyn Sist
anInt ], 22(3), 249-267 (2007)].
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Strongly dissipative condition

We further assume that our geometric Lorenz flows are
strongly dissipative, i.e., the divergence of the vector
field G is strictly negative: there exists § > 0 such that

(divG)(x) £ =6, VxeU,

and moreover the eigenvalues of the singularity at 0
satisfy the additional constraint

)\u+)\ss<)\s (A]_ +)\2 <)\3).

A consequence of domination, uniform contraction on
the stable direction and strong dissipativity, is the
existence of a X¢-invariant contracting foliation %,
defined in a neighborhood of A, which is C1*€-smooth
and whose leaves are Ct¢ curves with uniform size.

The strong stable foliation F5° is C1*+¢ for some € > 0.
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Sketch of proof of exponential decay

To obtain exponential decay for geometric Lorenz flow
the strategy is to show that this flow can be written as
a semiflow over C'*t% expanding maps with C! roof
functions satisfying a uniform non-integrability
condition. We now explain the terms,

Uniformly expanding maps:

Fix a € (0, 1]. Let {(cm,dm): m =1} be a countable
partition mod 0 of Y =[O0, 1] and suppose that F: Y —» Y
is C*+% on each subinterval (¢, dm) and extends to a
homeomorphism from [cm, dm] onto Y.

Let H={h:Y — [cm, dm]} denote the family of inverse
branches of F, and let H, denote the inverse branches
for F".
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Uniformly expanding maps and absolutely

continuous invariant probability measures

We say that F: Y — Y is a C1*® uniformly expanding
map if there exist constants C; > 1, pp € (0, 1) s.t.

(i) |h'leo < Capg for all h € Hp,
(ii) |log|h’||la < Cy forallheH,
where

, [log|h’|(x) — log |h’|(y)]
[log |h’||a = sup S :
Xty Ix—yl
Under these assumptions, it is standard that there
exists a unique F-invariant absolutely continuous

probability measure u with a-Holder density bounded
above and below.
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Expanding semiflows

Suppose that R: Y — Rt is C! on partition elements
(Cm, dm) with infR > 0. Define the suspension
YR={(y,u)eYxR:0<u<R(y)}/ ~ where

(v, R(y)) ~ (Fy. 0).

The suspension flow F¢ : YR — YR is given by

Fi(y, u) = (y, u +t) computed modulo identifications,
with ergodic invariant probability measure

uR = (u x Leb)/R where R = [, Rd.

We say that F; is a C*** expanding semiflow
provided

(iii) [(Roh)|w < C; for all h € H.

(iv) There exists € > 0 such that ;. €N« |h’|o < co.
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Uniform nonintegrability

Let Ry = ij_olR o F/ and define
whl,hz :Rnohl_Rnohz . Y—’R,

for h1, h, € Hp. We require

(UNI) There exists D > 0, and h1, hy € Hp,, for some
sufficiently large integer ng > 1, such that
inf|¢p;h,h2| >D.

The requirement “sufficiently large” can be made
explicit.
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Function spaces

Define Fq(YR) to consist of L*® functions v : YR — R such
that ||V]la = |V]w + |V]a < 00 where

lv(y, u)—v(y’, u)l
Vla = sup o .
(V. u)A(Yu) ly—y'I

Define Fq k(YR) to consist of functions with
IVllok = X, 194vlla < 00 where 3; denotes
differentiation along the semiflow direction.
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Obtaining exponential decay

Given v, w € F,1(YR) define the correlation function

Pvw(t) = J vwo Frduf — f vduR f wduR.

Theorem [Baladi-Vallée '05 (with C? expanding map),

A.-Melbourne '15 (with C1t% expanding map)]

Assume conditions (i)-(iv) and UNI. Then there exist
constantsc,C >0 s.t. forallt>0

lov,w(t)l < Ce=[Vlla,2lWlla,2
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Plan of the talks: stable bundle and foliation

Assume that A is an attracting set with a continuous
invariant partially hyperbolic splitting Ty = E° @ EY: we
have domination plus E* uniformly contracted. We get
@ a positively invariant ngbh. Ug of A and a
continuous family of cone fields €*(a), C<¥(a) over
Uo satisfying backwards expansion of ¢°(a) and
domination.

@ a continuous extension of the stable subspace
bundle E* over A to an invariant contracting bundle
E° over Uy.

@ a flow invariant contracting stable manifold bundle
WS over Ug consisting of C! leaves tangent to ES,
which is a topological foliation of Up.

Then we study the smoothness of this foliation.
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Plan of the talks: smoothness of stable foliation

@ Show that bunching implies smoothness of the
stable foliation W*, with the regularity being at
least Holder, and the holonomies along this
foliation have the same regularity.

In addition to the previous assumptions, assume
sectional expansion on EY,

@ Then strong dissipativity implies regularity, as in
the previous item.

Assume, in addition, that E* has codimension 2.

@ Then the quotient one-dimensional map is C1+¢
(even though the stable foliation is only Holder
regular).

Finally, assuming also sectional expansion on EY

@ Then the one-dimensional quotient map is a

piecewise C1+¢€ expanding map.
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Stable bundle Cone fields Extended bundles

Invariant stable bundle extension

Existence of an invariant extension of
the stable bundle to a full
neighborhood of the attracting set

We discuss existence and regularity properties of the
stable foliation associated with a partially hyperbolic
attracting set. Sectional expansion is not assumed.

Throughout, A is a partially hyperbolic attractor for a
vector field G € X"(M), r > 1, with dominated invariant
splitting TAM = E® @ EY and E* uniformly contracted.
Write d =dimM =ds +d,.
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Cone fields in a neighborhood of A

Let Up € M be a forward invariant neighborhood of A
such that (50 Xt(Uo) = A.

Choose a continuous (not necessarily invariant)
extension Ty,M = E°> ® EY of the splitting T\M = E* @ E.
Given x € Ug and a > 0 we define the cone fields

Gf((a) ={v=vo+v¥e Ef( ® E)‘-;“ v < allvelld,
(@) ={v=v+veE @ E" |Iv°|] < allv|}.
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Partial hyperbolic cone fields in Uy

Proposition

Fix T so that AT = 1/150. For any a € (0, %] there is a
positively invariant neighborhood Ug of A, s.t. Vx € Ug

(a) DX~H(C5. (b)) c €5(b) and DX'(€U(b)) c €5, (b), for
all b>a, t > T (backward invariance of stable cones

and forward invariance of center-unstable cones).
(b) 3c>0,A€(0,1)s.t. Vt>0

IDX~E(XDX)VII = At VI, Vv € €5, (a);
IDX vl Cx_tllef(x)ull { 0£ve c(a)
vl = llull u € DX7(€5,(a))

(backward expansion of stable cones and domination).
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Proof of the Proposition (extending cones)

If v lies in TyM where x € Uy, then we write
v=v+vleE>®EY. If ve¥(a), then
(L—a)|lv*|| < |lvll £ (1 +a)|lv*| where throughout
* € {s,cu}.

For x € A, it follows from invariance of the splitting
E° ® EY that (DXt(x)v)* = DX¢(x)v* for all v e TyM and
teR.

We fix the ngbh. Up as follows. For each x € A, we
choose a ngbh. Ux c M of x s.t. Uy is diffeomorphic to
RY where d = dimM. Then TuM is identified with

Ux x R9. Given y1, y> € Uy, a vector v € RY corresponds
to vectors vy, € Ty,M via this identification.

By the smoothness of the flow, we can choose Uy so
small that [[DXt(y1)vy, |l < 2[IDXt(y2)vy, |l for all x € A,
Y1, Y2 € UX, vV e Rd, te [—T, T]
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Fixing coordinate systems

By the continuity of the splitting E° & E<Y, for a > 0 fixed
we can ensure for all b> a/8, t € [T, T], that
if DXt(y1)vy, € G;l(b), then DX:(y2)vy, € G;Z(Zb).

We now fix Up to be a positively invariant neighborhood
of A contained in (., Ux. By construction, for every
y € Uy, there exists x € A such that

(i) DX¢(x)vx C €7 (b) = DXt(y)vy C G;(Zb),

(i) DXe(y)vy € €} (b) == DXe(x)vx C €} (2b), and
(i) SIDXe(x)vxll < IDXe(y)vyll < 2[IDXe(x)vll,
forallveRY, b>a/8, te[-T,T].
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Proof of item (a) of the proposition

From domination on the initial splitting over A we get

IPX()v)ll = IDXe(x)v* || < IDXEES NIV
t -1
< AIDX-el S I IV

= ATIDXES)HIT IV
< AT NOX V)V HIvell,

forallxe A, veTyM, t>0. In particular

DX+(€(b)) € €Y (bAY), VXeEAb>0,t20.
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From A to Uy

Now letyeUp, b>a, ve G;“(b). We can pass to a

nearby point x € A with corresponding vector
Vvx € €Y(2b) by (ii). Then DX¢(x)vx € G)C<Lt’x(2b)\t) for all

t > 0. In particular, since AT =1/150 < 1/16,
DX7(x)vx € G)C(‘;X(b/S) and DXi(x)vx € G)C(‘:X(Zb), vVt > 0.
From (i) we get

DXr(€S(b)) € €5 (b/4) c e (b) and
DX/(€S(b)) € €5 (4b), Vre[0,T],y € Uo.

By positive invariance of Uy, it follows inductively that
DXkT(G;“(b)) c G)CdTy(bM) c G)C(‘:Ty(b) forallye Uy, kezZ".
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The general t>T

For general t > T, write t = kT +r where k> 1 and
r € [0, T). Again using positive invariance of Up together
with cone invariance

DX¢(€5" (b)) = DXkr-DXr(€" (b)) € DXyt (€5, (4b)) < €5 (b).

This completes the proof of forward invariance for the
center-unstable cone fiels, and the proof of the
backward invariance for the stable cone field is
completely analogous.

Hence we have proved item (a) in the statement of the
proposition.
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Proof of item (b) of the proposition

Keep the choices of T and Up and recall that a € (0, %] is
fixed. First we backward contraction along the stable
cone field.

Suppose that xe Aand v e (?)S(TX(Za). By backward
invariance DX_r(Xrx)v € €;(2a), so using the
contraction on ES

IDX_r(Xrx)VIl = (1 = 2a)l|(DX_1(Xrx)V)°Il
= (1= 2a)I(DXT(x)) " vell = (1= 2a)A~T|Ivell
(1

> (1+2a) Y1 —2a)AT|v|
= 50||v| = 8]|vI|.
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Stable bundle Cone fields Extended bundles

Backward contraction from A to Uy

Now lety € Ug, v € G;Ty(a). As in part (a), we can pass
to a nearby point x € A with corresponding vector

Vx € G)S(TX(Za) and so ||IDX_7(XTx)vx|| = 8||vxl|. Using (iii)
together with positive invariance of Ug, we have that
[IDX_7(XTy)Vv|| = 2||v|| for all v € G;Ty(a).

By positive invariance of Uy and backward invariance of
the stable cone field, it follows inductively that

IDX—ir(Xiry)VIl 2 2X|IvIl - fory € Uo, v e €5 (a), k2 0.

Fort =kT +r where ke Z+,re[0,T), letve @f(ty(a)-

Then DX_¢(Xty)v = DX_r(Xry) DX_k1(Xty)v so it follows
from the previous estimates

IDX_¢(Xey)VIl = clIDX—kr (Xer (Xey))VI = c2X| v,
where ¢ = infrejo, 7}, yeuo,veT,m, v£0 ||DX—r( )V||/||V|| > 0.




Stable bundle Cone fields Extended bundles

Proof of domination of the cone fields

From domination in A we get forx € A, u, v € TyM,

IDXr (x| DX (ve|
el Covel
Letu e DX_T(G)S(TX(Za)), v € €Y(2a). By cone invariance

IDXrOvll _ (1 +28)IDXr(x)Vl

< IDXTIES ) < ATH(DXTIEC) I~ < A

< and
lvee] (1—2a)|v]
[IDXT(x)ul| < (1+2a)||IDXT(x)u?||
lull = (1—2a)w
and so
IDX7(x)ull < FIDXT(X)Vv|] < i”DXT(X)V”
llull B vl ~ 50 vl

forall vecf!(2a), ue DX_T(CZ;TX(Za)).
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Again from A to Uy and conclusion

Using (iii) it follows that
IDXr()ull _ 24 IDXr ()i
lull  — 25 vl
forally e Up, ve e;“(a), ue DX_T(G)SW(a)).

For general t > 0, we writet=kT +r, k>0,r€[0,T)
and proceed as in the proof of item (a).

This completes the proof of the proposition on
cone invariance, backward contraction on stable
cones and domination for the cone fields in a
neighborhood Uj of the attracting set A.
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Invariant stable bundle extended to Uy

Whereas the original splitting T\M = E* ® EV is
DXt-invariant, in general the extension E° of the
center-unstable direction cannot be assumed
invariant. However we have

Proposition

The continuous bundle E° over Ug can be chosen to be
DXt-invariant and uniformly contracting:
IDX! | ES|| < ctAt for all t > 0, x € Uo, where ¢ > 0,

A € (0, 1) are the constants in the previous Proposition.
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Impossible to extend the central bundle

Let us assume that the extension E@‘; is invariant.

Lemma

Let A be a compact invariant set for a flow Xt of a C!
vector field X on M and assume A contains a Lorenz-like
singularity 0. Given a continuous DXt-invariant splitting
TuM = E & F on a neighborhood U of o such that E is
uniformly contracted, then there exists a ngbh. V of o
stVcVcUanda point xo € V' \ A satisfying X(xo) € Fx.

However, for xo € V' \ A close to the singularity, we have
for some t > 0 that xs = X°(xp) e U forall -t <s < 0, Xxs
is close to W**(0) \ {0} and G(x_;) is almost parallel to
E%.

This is a contradiction since the angle between E** and
E°Y is bounded away from zero (see next picture).
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Behaviour in small neighborhood of o

EG

Figure : The flow direction contained in EY in a neighborhood
of o implies that EY is not continuous at o.
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Proof of the Lemma

We denote by m(Ex) : TxM — Ex the projection on Eyx
parallel to Fx at TxM, and likewise m(Fx) : TxM — Fy is the
projection on Fx parallel to Ex. We note that for x e U

X(x) =m(Ex) - X(X)+ m(Fx) - X(x)

and for t > 0 and x € V such that XI%t(x) e U, by
linearity of DXt and DX!-invariance of the splitting E® F

DXt X(x) = DXt - (Ex) - X(x) + DXt - 7(Fy) - X(x)
= M(Ext(x)) - DX' - X(X) + T(Fxt(x)) - DX" - X(x).

Assuming that m(Ex) - X(x) # 0 for all x € V\ A, we choose
a sequence of points x, € V and of times t, > 0 such
that t, ,/ o as follows.
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Choice of the sequence of orbit segments in U

EG
’
L4
L4
’
’
.
'l
O » y
Xt
z n
SS
EG Xn

Let x, € V be a sequence converging to
ze W (0)\ {0} and t, /" + so that XI%&l(x,) c U and

loc

xt, = X'"(xp) tends toy e WY (0)\ {0}.

loc
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Exploring the invariance and backward

expansion

Since m(Ex) - X(x) # 0 we get

lim DX~ .X(xt,)= lim X(xp)=X(z) butalso
n—-+400o

n—-+4-00

IDX= + (Ex, ) - X (Xt )| 2 cXPIT(Ex, ) - X (Xt )| == +00,

because x;, — y and E® is a continuous bundle by
assumption.

This is possible only if the angle between Ex, and Fx,
tends to zero when n — +o0.
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Closing angles

Indeed, using the Riemannian metric on TyM, the angle
a(x) = a(Ex, Fx) between Ex and Fy is related to the
norm of m(Ex) as follows: ||m(Ex)|| = 1/sin(a(x)). Thus

IDX~t - (Ex,,) - X(Xe,)|| = IT(Ex,) - DX™ « X(xe, )l

1
< ———— - |IX(xp)|l, Vh=1.
Sin(a(x0)) IX(Xn)l
Hence, because || X(xp)|| — [IX(2)|| # 0 we deduce that
a(Xn) — 0.

However, since E @ F is a continuous splitting in U, then
E & F are bounded away from zero in V, which gives a
contradiction.

We conclude that in V there must exist a point xp
as in the statement of the lemma.
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Proof of the Proposition (invariant E°)

We begin with the original choice of continuous splitting
TuM=E*® E. Leta € (0, %] and choose T and Ug as in
the Proposition on cone invariance and domination.

For x € Up, define (as usual in hyperbolic dynamics)

Fx =[] DX=t(€5 (a).
t>0
We show that {Fx} is the desired stable bundle. That is,
we show that forall t > 0,

(i) x — Fx is a continuous map from U to the
Grassmannian bundle G = {Gx, x € Ug} where Gy is
the space of ds-dimensional subspaces of TyM,

(i) Fx = E)S( for x € A,

(iii) {Fx, x € Up} is DX¢-invariant and uniformly
contracting.
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Nested family of cones and subspace contained

in the intersection

Now {DX_t(ef(tX(a)), t >0} is a nested family of closed
cones, and by backward invariance, the cones are
contained in ¢;(a) for t > T. In particular, Fx c €;(a).

We can also regard {DX_t(Gf(tX(a)), t>0} as a nested
family of closed subsets of Gx, so Fx is a closed subset
of Ox.

By compactness of gy, the elements DX—tEf(tx € Gx have
a convergent subsequence DX_tnEfQ N with limit Fx € Gy.

Since DX—tEqu € DX_t(G)S(tX(a)) and Fy is closed, it
follows that Fy € Fy.
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Uniqueness of the subspace in the intersection

To summarise, we have shpwn that thqre exists a
gs-dimensional subspace Fx such that Fx ¢ Fx and
Fx=limpoeo DX_tnEf(t N (in Gx). Without loss we may

suppose that t, > T for all n.
Next we get Fy = Fx. Choose vectors u, € E)SQ , st
IDX—t,(Xt,x)unll = 1.

Suppose for contradiction that Fy £ Fx. Then Fy is a
nontrivial cone containing F,, and so there exists

vV E E)C(u nonzero such that w, = DX_¢,(Xt,X)un + v € Fx for
n sufficiently large. It follows from the definition of Fx
that DX, (X)wn = up + DXt,(X)v € Gf(tnx(a). Hence

(DXt (X)V)Il < allun + (DXt (X)V)°]l.
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Uniqueness from domination

Sincev e E)C(“, it follows from forward invariance that
DX¢,(x)v € € (a) and hence we obtain
I(DX¢, (x)v)*Il < all(DX¢, (x)v)“ll and
IDX, (x)vIl < (1 + a)l(DXe, (x)v) .
Substituting into the last inequality yields
(1—=a?)lI(DXt, (x)v)“|l < allunll and then
IDXe, (X)VII < (1 +a)(1—a°) talluall.

On the other hand, u, € Ef(t o VE E)C(“, so by domination
IDX¢, (x)VIl - llunll .
# >cA " n — c)\_t"llunll.

lIvI| IDX—¢, (Xe,X)unll

Letting n — co yields the desired contradiction, and so
Fx and Fx coincide. In particular, Fx € Gy for.all x € Up.

V. Araujo Smooth stable foliation vs exp. decay




Stable bundle Cone fields Extended bundles

Continuity of the family of subspaces

To prove continuity of the map x — Fy, fix x € Up and let
U c G be a neighborhood of Fy.

There exists to > 0 such that (., DX_+(C5 ,(a)) c U.

By smoothness of the flow, F, C ﬂtsto DX_t(Gf(ty(a)) cu
for y sufficiently close to x.
This completes the proof of (i).

It is immediate from invariance of the bundle E°|, that
Ef( C Fy forall x e A.

Since the dimensions are the same, Ef( =F, forall xeA
establishing item (ii).
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Invariance and uniform contraction

Forr>0,
DX"Fx = ﬂ DXr_ xf— X’x ﬂDXr_ xt—f(Xfx)( )
t>0 t>r
= () DX (€5 xr (@) = Fxrxs
t>0

so the bundle {F,} is DXt-invariant.

Finally, if v € Fy, t > 0, then DX'(x)v € €}, (a) so by
backward expansion on stable cones,

IVl = cA—HIDXE (x)v.

Hence ||IDXt | Fx|l < c~1At so item (iii) holds.

This completes de proof of the proposition on
existence of invariant extension of the stable

direction from A to a full neighborhood Uj of A in
the ambient space.
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Stable foliation in a neighborhood of A

Existence of a flow invariant
contracting stable manifold bundle
W* over U, consisting of C! leaves
tangent to £°.

From now on, we suppose that the continuous

extension Ty,M = E* @ EY of TAM = E®* ® EY is chosen so
that E° is invariant and uniformly contracted.
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Existence of stable foliation in Uy

Let Dk denote the k-dimensional open unit disk and let
Emb’ (DK, M) denote the set of C” embeddings
¢ : DK - M endowed with the C" distance.

Theorem
There is a positively invariant neighborhood Uy of A,
and a constant 0 < v <1s.t.
(a) Vx € UpIWS € Emb"(D%, M) with x € W5 s.t.
O T WS =ES.
o X{(W;)cw;, ,Vt=>0.
O d(Xix, Xly) < Vvid(x,y), Vy € ws, t>0.

(b) there is a continuous map 7 : Ug — Emb?(Dd%, M)
such that y(x)(0) = x and y(x)(D%) = W=.
(c) {Wf( :x € Up} defines a topological foliation of Up.
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Proof of existence of stable foliation on Uy

We follow the exposition on Section 6.4(b) of the book
by Katok and Hasselblat, Introduction to the
Modern Theory of Dynamical Systems, C.U.P,,
1995.

Let T >0, c>0, A € (0, 1) be the constants in the
propositions on existence of cone fields and extension
of stable invariant directions to Up.

Increase T > 0 if necessary so that A = c AT € (0, 1)
and define the diffeomorphism f = X7 : Uy — Up.

For each x € Up, we consider the exponential map
expy : TxM — M. This transforms a small enough
neighborhood of 0 diffeomorphically onto a
neighborhood of x, and Dexp,(0) =1.
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Setting of local adapted coordinates

Choose orthonormal bases on R%, R%u and, for each
X € Ug, choose orthonormal bases on Ef( and Ei“.

Let PS : R% — ES, PV : R — EC be the corresponding
isometric isomorphisms.

Since Up 3 x — Ef( ® E)C(“ is continuous, we can arrange
that x — P)S( and x — P)C(u are continuous families of
isomorphisms.

Define Pyx,n = P%, +Df"(x)P! : RY — T¢,M, which is a
continuous family x — Py , of isomorphisms for each n.
In general Py , is not an isometric isomorphism,
since Df" - EfY is not necessarily orthogonal to E2,, .

However, we have Df"ETY c €5/ (a) for some a € (O, %],
so the angle between the subspaces £;, and
Df"E’Y is bounded away from zero.
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Hence there is a constant C; > 1 such that

1
C_ S ”Px,n” S Clr VX € UOIn 2 O.
1

Next, Qx n = €XPsy oPx n : RY — M maps a neighborhood
of 0 in RY diffeomorphically onto a neighborhood of fx
and Ugp 3 x — Qx,p is a continuous family of
diffeomorphisms for each n.

Let D, c RY denote the p-neighborhood of 0. Using
boundedness of ||P,|| and compactness of A, and
shrinking Ug if necessary, we can choose p > 0 so that
Qx,n : Dp — M is a diffeomorphism onto its range for all
n. Moreover, there is a constant C; > 1 such that

G lllpll < d(f"x, Qx,n(p)) < Callpll,

forall xe Uy, n=0, p€D,.
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Local expression for the dynamics

Now define the family fi,n = Q}} ., of o Qxn:Dp — R

By construction, Dfy ,(0) is identified with Df(f"x) and
fx,n are uniformly C" close to Dfy »(0) on Dp.

Hence for any § > 0 there exists p > 0 and a family of
(surjective) C" diffeomorphisms gy n: R - R?, n> 0, s.t.
llgx,n — Dfx,n(0)llcr < 6 and gx,n = fx,n on Dy. [For a proof
of this standard result see e.g. Lemma 6.2.7 in
Katok-Hasselblatt book cited above]

Proposition

For all n > 0 we have ||[Dgx »(0) | R%|| < A and

IDgx,n(0) | R%|| - [IDgx,n(0)~1 | R%|| < A.
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Dynamics in local coordinates
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Dynamics in adapted coordinates
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Proof of the proposition

Choose a as in the previous Proposition ensuring the
existence of invariant cone fields in Up.
By construction, Dgx,n(0) = Dfx,n(0) is identified with
Df(f"x) and
IDGx,n(0) | R%|| = IDF | E5, Il = IDXT | DX-7E5_pn Il
IDgx,n(0)~* | R%|| = ||IDF~* | DFPTHECY]|
< |IDX_7 | DX7(CS (a))ll,

fnx
where we have used invariance of E° and forward
invariance of €(a).

The first estimate is immediate from the proposition on
existence and contraction of the extension of the stable
direction to Up.

The second estimate follows from the domination on

the cone fields, and concludes the proof.
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A modified Invariant Manifold Theorem

We require a slightly modified version of the
Hadamard-Perron Invariant Manifold Theorem from
Theorem 6.2.8, pp 242-257 in Katok-Hasselblatt book.

The only difference from the proof of Theorem 6.2.8 in
Katok-Hasselblatt is that the rates A, u, may depend
on n.

However, the ratios A,/u, are controlled uniformly, and
it is easy to check that the proof in pp 242-257 of
Katok-Hasselblatt is valid in this slightly more general
setting with no change in the arguments.

We now state this result for future use.
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A Hadamard-Perron Invariant Manifold Theorem

Fix r>1, Amin > 0 and o € (0, 1). Then there exists v,
5 > 0 arbitrarily small so that: for each n let g, : R? —» R?
be a C" diffeo s.t.

gn(U, v) = (Apu + anp(u, v), Bav + Bn(u, v)), (U, V) € R% @ R,

for linear maps A, : R% — R%, B, : R9u — R and C’
maps oy : RY — R%, B, : RY — R with

an(0,0)=0,Bm(0,0)=0 and |[anllcz <6, ||Bnllcr <.
Define A, = [|Anll, un = 1B, 1[I"* and suppose that
)\n 2 Am/n and An/l.ln S g.

Set A7 = (1+7)(An +8(1 +7)), W, = {75 — & and suppose

that )\;7 <V, < /,l”7 forallneZ.
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Then there exists a unique family of
ds-dimensional C' manifolds

Zn={(X, n(x)) : x € R},
where @, : R% — R satisfies for alln e Z
¢n(0,0)=0, D@n(0,0)=0 and [|D@nllco <,

and the following properties hold
Q 9n(Zn) =2Zn+1,
Q lign(@)ll < A7liqll for q € Zy,

O Iflignik—10-+-0gn(Q)ll < CVpik-1... Vnllqll for all
k>0 and some C > 0, then g € Z,.

If sup,An <1 (i.e. we have uniform contraction),
then the manifolds Z, are C'.
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Verifying the conditions of the theorem

Fix x € Ug. The sequence of diffeos gy, : R — RY is
defined for n > 0.

For n <0, we set gx.n = 9gx,0- The diffeos gx , now have
the structure required in the theorem.

Take 0 = A € (0, 1) and Amin = infxey, IDX7 | E3|| > 0. By
Proposition on adapted coordinates, the linear maps Ap,
B, satisfy the constraints Amin < Ap <0 and Ap/up, < 0.

Choose v, 6 > 0 so small that sup, A’ <1 and
supn)\;/u;7 <1.

Choose vy, € (A7, u7) such that v = sup, v, < 1. Finally,
shrink p so that ||an|lc: <6, |IBnllcr < 6.

This shows that the hypotheses of the theorem are
satisfied, with v, < v < 1 for all n.
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Using the conclusion of the theorem

Let Zx » denote the family of ds-dimensional C"
manifolds and set W)S( = Qx,0(Zx,0 N Dp).

Repeating the construction for every x € Ug, we get a
family 755 = {Wf(, x € Up} of ds-dimensional C"
manifolds covering Up.
Lemma (F°° is the desired family of stable manifolds)
Let x,y € Up. Thenforalln>0
(a) d(x,y) <G lp,y e Ws = d(f"x, fy) < C2v"d(x, y).
(b) Let C>0. If d(x,y) <C;'C1p and

d(f"x, fy) < Cv"d(x, y) for alln = 0, then y € W;.

(c) There exists € > 0 such that if d(x,y) <€ and y e W;
then fy c W2 .
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Proof of the lemma

Let Fx,n =fxn—10---0fx0, Gxn=0gxn-1°+-+°0dxo. Note
that if Fx n(q) € Dy for all 0 < n < No, or if Gx,n(q) € D, for
all 0 £ n < Ny, then Fx »(q) = Gx.n(q) for all 0 < n < Np.

(a) Let y € W* with d(x, y) < C;'p. Then
q= O;%)(y) € Zy 0, SO by (1-2) of the Inv. Manifold Thm.

IGxn(@)ll < V7l = VIIQ, ;W) < V'C2d(x,y) < p,

foralln>0. Now f" =QynoFxpo O;%, o)

) = Qs Fn() = Qun©Grn(a).
Hence
d(F"x, fy) = d(f"X, Qx,n°G,n(q)) < C2lIGx,n(q)Il < C21"d(x, y)

completing the proof of item (a).
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Characterizing the stable manifold

(b) Suppose that d(x, y) < C;'C'p and
d(f"x, f"y) < CV"d(x,y), Vn=0.
Let g = Q ¢(¥) so d(x,y) < Callqll.
Now Fy p = C);}7 of"0Qx0, SO
IFx,n(a)ll = ||Q;,},°f"()’)|| < Cd(f"x, fy) < CoCVd(x, y) < p.
Hence
1Gx,n(@)Il = IFx,n(q)ll < C2CV"d(x, y) < C5CV"|iqll.

By item (3) of the Inv. Manif. Thm. q € Zx, o N D, and so
y= Qx,O(q) C W)S(

This completes the proof of item (b).
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Forward invariance of the stable manifolds

(c) Let X/ =fx, y’ = fy and choose E > 1 such that
d(x,y) < Ed(x’,y’) for all x, y € Uy.

Suppose that y € W2 and d(x, y) < C;°E~'p. Then
certainly, d(x, y) < C;'p, so by part (a),
d(f"x’, f1y’) = d(f"1x, " y) < Cov™d(x, y) < C3EVTd(X', )

where C = C%E.

Also, d(x’,y’) £ C2d(x,y) < C;E~'p =C;1Cp, so the
result follows from part (b).

This completes the proof of item (c) and of the lemma.
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Foliation

The C" embedded disks W)f depend
continuously on x in the C° topology

Lemma

There is a continuous map v : Ug — Emb®(D%, M) such
that y(x)(0) = x and y(x)(D%) = Ws. Moreover, there
exists L > 1 such that Lip y(x) < L for all x € Ug, where

Lo v — ey FYOO(W), YY)
ipY(x)=sup .
u£u’ llu—u’||
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Proof of the continuity lemma

Fix x € Ug and recall that Wf; = Qx,0(Zx,0NDyp).

For y close to x, let A, = Q;%(W}S/). Let

Py =Q 5(¥) = Q; 5 °Qy0(0) €A,.

In particular Ax =Zx,0 N Dy, and px = 0. Moreover, y — p,
is continuous.

Now T, Ay = DQ;%(y)Tij = DO;I%)(y)E}S/, so it follows
from smoothness of Qx o and continuity of E° that A,
can be viewed as a graph over D% c R% for y close to x.
In particular, Ay = {(u, ¢y(u)) : u € D%} where

Py : DI — RIeu,

Hence Wf/ = {Ox,0(U, Py (u)) : u € D¥}. The family of
functions ¢, are C" with uniform Lipschitz constant.
Since p, € Ay, there exists u, € D% such that

py = (Uy, dy(Uy))
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Ay, as graph of ¢,, near Ay.
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Define the family of embeddings 7y : Ug — Emb’ (D%, M)
given by
Y(V)(U) = Qx,0(U, Py (u)).

We claim that y — ¢, is continuous at x in the C°
topology, and hence the embedding 7 is continuous at
x in the C° topology.

Indeed, suppose that y, — x. By Arzela-Ascoli, we can
pass to a further subsequence such that

liMp oo SUPLends [Py, (U) — ¢ (u)]| = O for some continuous
function ¢ : R9% — R,

Since py, — 0, for n large enough we have that

Py, € D%Cgsp'
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Now fix u € D%. Shrinking the disk D%, we can ensure
that gn = (u, ¢y, (u)) € D%c;”p for n sufficiently large.
Hence

d(Qx,0(dn), ¥n) < d(Qx,0(an), X) +d(x, yn) < C;°p < ;' p.

By construction, Qx 0(gn) € an, so by item (a) of the
existence lemma for the stable leaves

d(f¥ o Qx,0(qn), f¥yn) < C2V¥d(Qx,0(qn), yn) forall k> 0.
Letting n — oo, we obtain that

d(fQx,0(u, Y(u)), F¥x) < C2VKd(Qx,0(u, ¥(u)), x) forall k > 0.
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By item (b) of the existence lemma for the stable
leaves Qx,o(u, Y(u)) € W5 so (u, ¢(u)) € Ax. It follows that

Y(u) = dx(u).
Hence all subsequential limits of ¢, (as y — x) coincide
with @x so limy_x ¢, = ¢« in the C° topology as required.

This completes the proof of the continuity of the stable
manifolds with respect to the base point.
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The stable manifolds are a topological foliation

The family of disks {W; : x € Uo} defines a topological
foliation.

To prove this, let x € Ug and choose an embedded
d“-dimensional disk Y ¢ M containing x and transverse
to Ws.

X
By continuity of E°, we can shrink Y so that Y is
transverse to Wf/ atyforallyeY. Let ¢ : DY —Y be a
choice of embedding and define x : D° x DY — Up by
setting

X(u, v) =y (v))(u).

Note that x maps horizontal lines {v = const.}
homeomorphically onto stable disks.
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Topological foliation chart

/ WXI Q)Cll
—
Q)S
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By the previous lemma (on continuity of Ug 2 x — Wf(),
each of these embeddings is Lipschitz with uniform
Lipschitz constant L and using this together with
continuity d(x(u, v), x(uo, vo)) <

< d(y(@(v)(u), Y(¥(v))(uo)) + d(v(¢(v))(uo), ¥(¢¥(vo))(Uo))
< Lllu—=woll + [Iv(¢(v)) = ¥ (¥(vo))llco — O,

as (u, v) — (up, vo), establishing continuity of .

Suppose that x(ui, vi1) = x(uz, v2) with common value

y € Upg. Theny e W>S<1 N Wf(2 where x; = §(vj).

We claim that x; = x> with common value X. In
particular v; = v».

But now y(X)(u1) = y(X)(uz) and so u1 = uy. It follows
that x is injective and hence is a homeomorphism onto
a neighborhood of x as required for {W} }xeu, to be a
topological foliation.
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It remains to prove the claim.

Note that WS can be viewed as a graph over WS Let
A= Ws n Ws We show that A is open and closed in
WX1 Slnce y eA and Wf;1 is connected, A = Wil and in
particular, x = x1 as required.

It is clear that A is closed in W)S(l. To prove that A is
open, suppose that ze€ A. Since W)—‘;j are tangent to Ef(j
with uniform Lipschitz constant, there exists C > 0 such
that d(x1, x2) < Cd(z, x;) forj =1, 2.

LetZz' € W be such that d(z, 2') < (1/2C)d(x1, x2).

Note that this implies d(x1, x2) < 2Cd(Z/, x3).

We must show that z’ € A.
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Now

d(f"Z', f'x2) < d(f"Z/, f"x1) + d(f"x1, f"z) + d(f"z, f"x3)
< CVMd(Z, x1) +d(x1, 2) + d(2, x2)}
< CovM{d(Z, x2) + d(x2, X1)
+ d(x1, x2)+d(x2,2")+d(Z',2) + d(z,Z/)+d(Z/, x2)}
= C2V"{3d(Z/, x2) + 2d(x1, X2) + 2d(z, Z')}
< C%V”{Bd(z’, X2) + 4d(x1, x2)}
< (3+8C)C3Vd(Z, x2).

We can arrange that x takes values in B¢(x) where € is
as small as required.

By item (b) of the lemma on existence of stable
manifolds, z’ € W*(x2) and hence z’ € A completing the
proof.
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Flow invariance of the foliation

There exists € > 0 such that Xt(Wf( NBg(x)) C Wf(tx for all
t>0, x e Uy.

To prove this, choose ng > 1 such that C%v”o < 1.

Shrinking ¢, it follows from items (a)-(c) of the lemma
on existence of stable leaves, that

1o (W5 N Be(x)) € Win,, N Be(f™0x) and, inductively, that
fk”O(Wf; N Be(x)) € W5, N Be(fkMx) for all k > 0.

fkno x
Next choose C > 1 such that d(X"x, X"y) < Cd(x, y) for all
X,y e Uo, re [—noT, noT].
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Suppose that y € W} and let x’ = X"x, y’ = X"y. By item
(a) of the lemma on existence of stable leaves, for y
sufficiently close to x and foralln>0

d(f"x’, fy") =d(X"f"x, X"f"y) < Cd(f"x, f"y)

2 22
< CCoVd(x,y) S C2CoV (X, y).

By item (b) of the same lemma, X'y € WS,X fory
sufficiently close to x.

Hence there exists € > 0 such that X"(W; N Be(x)) ¢ W5,
for all r€ [0, noT], x € Up.

The result for general t follows by writing t = knoT +r
where k > 0, r € [0, ngT).

The proof is complete.
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Completing the proof of existence of the stable

foliation

Recall that f = XT. Choose C such that
SUPrejo, 1 (X", X"y) < Cd(x, y) for all x,y € U. Write
t=nT+r,n>0,rel0,T).

By item (a) of the lemma on the existence of stable
leaves, if d(x,y) < C,'p and y € W¢, then
d(X'x, X'y) = d(X"T+x, X"T*y) < C5CV"d(x, y) < C'Vd(x, y),

where C’ = C%Cv—1 and v =T,

Passing to an adapted metric, we can arrange that
there are constants € > 0, v € (0, 1) such that if

d(x,y) <eandy e W, then d(X'x, X'y) < vd(x, y) for all
t>0.
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From now on, we write W; instead of W5 N Be(x). With
this notation, the previous Corollary states that
XY (W) € W5, forall x € Uo, t 2 0.

This completes the proof of the Theorem on the
existence of a foliation everywhere tangent to the
extension {E; }xeu, of the stable bundle to the whole of
Uop.
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Regularity of the stable foliation: with bunching

We recall that Xt is the flow generated by a C" vector
field G wherer>2. Letq €0, r].

We suppose that there exists t > 0 so that the
following bunching condition holds:

IDXT | EIl - IDX™" | EGY
X

Sl IIDXEECY)|9 <1 forall x €A

Let g € [0, [r]]. If the g-bunching condition holds for
some t > 0, then the bundle E* is C9 over Uy. That is,
the map x — E is a C7 map from a smaller
neighborhood U; c Up of A to §1 (the Grassmann of all
one-dimensional subspaces on Ty, M).
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Consequences of smoothness of the stable

bundle

Q It is immediate from domination that a g-bunching
condition holds with g = 0. By smoothness of the
flow and compactness of A, a g-bunching condition
holds for some g > 0. Hence the stable bundle
E° is at least Holder over U;.

© When g > 1 in the previous theorem, it follows by a
theorem of Frobenius that the family of stable
manifolds {W;} ey, already obtained forms a C9
foliation of U;, in the sense that the foliation
charts are C“.

Moreover, the holonomy maps along the
stable leaves are C? smooth.
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Holonomies

Y’ Y
S
h(x) _— Wy cd /\\ pM
X ,— ||
h(Xz) /\ WX2 X \-/
29)
Q)S
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Example of non-smooth bundle and holonomy

Let p be a fixed point of an Anosov diffeomorphism

f: T3 — T3 with the splitting T, T3 = E° ® EY & EY into 1d
non-trivial subspaces. We assume that f is locally
smooth linearizable at a neighborhood U of p and
(fixing an orientation)

O0<A=|Dfh |E?ll <1< u=|Dfp|EYl < o=]|Dfp|E"|.

We also assume that there exists

g=(1,0,0) e W¥(p)m W*(p)\ {p} in U such that
TqWY(p) > v = (v2, v&, v¥) with (v€, vY) £ (0, 0).

We set g, =f"q=(A",0,0),

Vp = ng -v = (A"v®, u"ve, o"v!) and, for a cross-section
D={z=1}nU in linearized coordinates, we set
r=hqgn,and r=hp, wheren>1and h: {z=0}nU—-D
is the holonomy along the leaves of the strong-unstable
foliation, tangent to the subbundle EY.

V. Araujo Smooth stable foliation vs exp. decay



Foliation Existence Topological foliation Bunching Dissips:

Example of unsmooth foliation/holonomy

uu

W (p)

W p)
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Smooth holonomy leads to a contradiction

If EY is C1, then h is C1, thus

L. gl
llgn — pnll "=

hgqn—hp =Dhp - (gqn—q) +L(p,qn) with

and so lim, % = |IDhp - e1]| # 0. However, in the
linearized, if we write hgm =rm = (rfn, r,‘;,, 1) for some

m =1, then
hQnim =rmin= QA" u"rc 1) with ro #0,n>1.

Since hp=r=(0,0,1) and p = (0, 0, 0), we deduce that
if EY (and so h) is smooth, then 1" is comparable
to A",

This contradiction shows that, in this example,
the bundle EY cannot be smooth.
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Proof of the theorem

Choose t as in the g-bunching condition and set f = X*.
Increasing t if necessary, we can ensure that

IDf | ESNNIDF~ | ESUIN < IDF | ES |- (IDFH | ESY|| - IDF | TxMI|9 < 1,
for all x € Ug. Let Ty,M = E® ® EY be the continuous

splitting with E® invariant already constructed.

Take Ty,M = F° ® FY a C" approximation of this splitting
and for each x € Uy, let L(F;, F{) denote the space of
linear maps from F; to F{Y, "and let Dx denote the unit
disk in L(F5, F3!) (Wlth the norm induced by the
Riemannian metric).

Define the corresponding disk bundle Do = {Dyx, x € Up}.
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Invariant section over overflowing

diffeomorphism

Let U1 =f(Uo) Cc Up and set D1 = {Dx, x € U1 }.

Let h = f~1|y, : U1 — Up. Since h(U1) = Ug D Uy, the C”
diffeomorphism h is overflowing in the sense of
Hirsch-Pugh-Shub, Invariant Manifolds, '77.

Represent Dh(x) : TxM — ThxM using the splitting F* & F<Y
by writing

Ax B
Dh(x):(ci Di);FixFy—»Ffmegi, x € Us.

We define the graph transform I': D; — Do,

[x(£) = (Cx + Dxf)(Ax +Bxt)™t, 1€ Dy, x€Us.
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A Lemma and the Theorem

The neighborhood Ug of A and the C" splitting F° @ F<
can be chosen so that I : D; — Dy is well-defined and
Lip(Tx) - IDh~ Y| ThxM||9 < 1 for all x € U;.

Now we use this result to prove the theorem.

Since E; can be regarded as graph of an element

weE L(Ff(, Ff(“) with ||w]| as close to zero as desired, we
can assume without loss of generality that ||w|| < 1, and
hence E® is identified with a continuous Df-invariant
section of D;.

Note that Dh(x)graph(£) = graph(I'x(£)) for £ € Dx. Since
h = df~1, it follows that ES: U; — D; is a continuous
M-invariant section.
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From the lemma, the graph transform I : D; — Do
defines a fiber contraction over the overflowing
diffeomorphism h: U; — Up, and this fiber contraction is
g-sharp in the terminology of Hirsch-Pugh-Shub (HPS).

When g is an integer, we have verified the hypotheses
of the “C" Section Theorem 3.5” from HPS (with q
playing the role of r, and vector bundles replaced by
disk bundles as in a Remark at p. 36 of HPS).

It follows that E° : U; — D3 is the unique continuous
M-invariant section and moreover that this section is C9.

This completes the proof in the case that g is an
integer.

The general case follows from Remark 2 in p. 38
of HPS.
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Proof of the g-sharp graph transform lemma

To prove the lemmma we start noting that by the
bunching assumption, we can choose Ax € (0, 1) s.t.

IDF [ ES||-IDF | EUl < Ax and  Ax[IDF| TM|I? <1,

for all x € Ug. Since fis C! and Uy is compact, there
exists 6 € (0, 1) such that (Apx +268)(1—6)"? < 1 and

(Anx +26)(L—8)2|IDh~Y | ThxM||9 < 1,

for all x € Uy.

Since F° is close to the Df-invariant contracting bundle
E°, we can arrange that ||Cx|| £ 1 and ||A;1|| <1 for all
x € U;.

Also, F is close to EY which is invariant when
restricted to A so we can arrange that ||Bx|| < 6.
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Moreover, A;l is close to Df | E;X and Dy is close to

Df—1| ESY so we can ensure that ||A;1||||DXII < Anx for all
x € U;.

Let £, 1’ € Dx. Note that [|A_1Bl|| < 6, so
(1 +A1BxE)~ | < (1—6)~t. Similarly,
(I +A-1Bx')~H| < (1—6)1. Hence

I(Ax + Bxt) ™ — (Ax + Bxt’) ||
= [I(Ax + Bx)"H(Bx (£’ — £))(Ax + Bxt’) 72|
< IAZH128(1— 8)=2 (1 — 4|
< IAHIS(1— &)1 —ll.
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Thus we arrive at
ITx(£) — Tx (2| < IDx (£ — £")II1I(Ax + Bx2) |
+ [[(Cx + szl)””(Ax + Bxl)_l — (Ax + BXZ/)_lll
< A HIDKII(L = &)~ i — 21
+ (1 + ID<IIAHIS(1— 8)72 [l — /]l
S Anx(1=8)7HIE— 2] +28(1 = &) |iL—2'1l,
and so
Lip(Tx) < (Anx +26)(1—6)72,
for all x € U;.

In particular, Lip(F'x) < 1 so I'x(Dx) € Dux, and hence T is
well-defined.

The statement of the lemma follows from this estimate
combined with

(Anx +28)(1—8)"2|IDh™Y | ThxM||9 < 1.
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Strong dissipative condition

This is a verifiable condition for smoothness of stable
foliations and we can get an estimate for the degree of
smoothness of the stable foliation for the Lorenz
attractor.

Recall that ds = dimES. Given A = {aj} € RY*Y, let
A|l2 = Zuaz )2,

Definition

Let g > 1/ds. A partially hyperbolic attractor A is
g-strongly dissipative if
(a) For every equilibrium p € A (if any), the eigenvalues
A1 <Ay <--- < Ay of DG(p) satisfy
A1 —)\d5+1 +gAg < 0.

(b) supxer{divG(x) + (dsq— L)II(DG)(x)ll2} < O.

V.
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Smooth stable foliation

Let A be a sectional hyperbolic attractor. Suppose that
A is g-strongly dissipative for some q € (1/ds, [r]]. Then
there exists a neighborhood Ugp of A such that the stable
manifolds {Wf(, x € Up} define a C9 foliation of Uy.

To prove this, for each t e R, we define n¢: A — R,

ne(x) = log {||Dxf|E§|| IDX~t|EY

I IDXYE 9}

Note that {n:, t € R} is a continuous family of

continuous functions each of which is subadditive, that
IS, Nstt(X) < Ns(X) + Ne(X*X).
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Proof of smoothness condition

Let M denote the set of flow-invariant ergodic
probability measures on A.

We claim that for each m € M, the limit limi~ %n(x)
exists and is negative for m-almost every x € A.
Proposition (Arbieto-Salgado, 2010)

Let {t— ft : A = R}ter be a continuous family of
continuous functions which is subadditive and suppose
that [ f(x)du < 0 for every u € My, with

?(x) = tlim %ft(x). Then there exista T >0 and a
— 400

constant A < 0 such that for every xe A and every t > T:

fi(x) < At.

It then follows that there exists constants C, 8 > 0 such
that expne(x) < Ce~Pt forall t > 0, x € A.
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In particular, for t sufficiently large, expn«(x) < 1 for all
X €N,

Hence the g-bunching condition is satisfied for such t
and the result follows from the previous theorem and
remarks.

It remains to verify the claim. For each m e M, we label
the Lyapunov exponents
A1(M) < A(m) < -+« < Ag(m).

Since A is partially hyperbolic, the Lyapunov exponents
Aj(m),j=1,...,ds are associated with E* and are
negative, while the remaining exponents are associated
with EY,
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For m-a.e. x € A we have

lim ! log IDXY|ES|| = A1(m)

t—oo t X !

1

lim —log IDXYESE Nl = =Ade41(m),

1 1

lim —log |[[DXEY|| = lim —log |IDX! | TxM|| = Ag(m).

t—o0 t X t—oo t
Hence, m-almost everywhere,

1
Jm —Ne(X) = A1(m) = Ad, 11 (m) + gAa(m).

If m is a Dirac delta at an equilibrium p € A, then it
is immediate from item (a) of the definition of
strong dissipativity that lim;_» %nt(p) <0.
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If m is not supported on an equilibrium, then there is a
zero Lyapunov exponent in the flow direction.
Sectional expansion ensures that Ay, (m)=0 and
Aj(m)>0forj=ds+2,...,d. Hence, m-almost
everywhere,

1 1 &
Jim —ne() = Ax(m) +aAa(m) < — > A(m) +qAe(m)
Sj:1

1 ds 1 d
= —(22(m) + dsara(m)) < —( 25 Ai(m) + (dsq— DAa(m))
S j:]. S j:1

11
— lim —(log | det DX (x)| + (dsq — 1) log ||Dxf(x)||)

s t—o0 t
1 1 t _
< —lim —J (dIVDG(XSX)—I—(dsq— 1)||DG(X5X)||2)ds
dS t—oo 0
< d- sup {divDG(x) + (dsq— 1)IDG(x)lI2}.

X€EN
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Foliation

By item (b) of the definition of strong
dissipativity, we again have that lim:_« %nt(x) <0
for m-almost every x € A.

This completes the proof of the claim and the
theorem follows.
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C'+¢€ stable foliation for dissipative

singular-hyperbolic attracting sets

Using the strong dissipativity and bunching
results we estimate the degree of
smoothness of the stable foliation for the
Lorenz attractor in the classical parameters
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C'+¢€ stable foliation for dissipative

singular-hyperbolic attracting sets

Note that if sup, divG < 0, then condition (b) holds for
q = d_1 + ¢ for € sufficiently small.

When dimM = 3, we have ds = 1 and hence we deduce
that in the dissipative case singular-hyperbolic
attracting sets have a uniformly contracting (stable)
foliation on a full neighborhood of the set and which is
Clté-smooth, that is, it admits C1*% foliated charts and
the holonomies along the stable leaves are also C1*¢ for
some € > 0.

In the case of the Lorenz attractor in the classical
parameters, we can estimate de value of 1 + € as
follows.
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Clt€-smooth stable foliation for the Lorenz

attractor

The classical Lorenz equations

ax 10
—=0(y—x o=
gt ~ov—=x)

d

—y:rx—y—xz r=28
dat

dz b b=28/3
— =Xxy—bz =

at Y

define a smooth vector field G such that

divG=—%, A1~-22.83, X =-% A;x1183
are the divergence and the eigenvalues of DG at the
unique singularity at the origin, respectively.
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Estimate for the degree of smoothness

Thus, since after the work of W. Tucker (2000) the
classical Lorenz attractor is a geometric Lorenz

attractor, we have that it is (1 + €)-strongly dissipative
for € > 0 sufficiently small.

Hence, the stable foliation is C1*¢ for the classical
Lorenz attractor, for some € > 0. In fact, we can prove

The stable foliation for the classical Lorenz attractor is
at least C1-264,
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Proof of the estimate

Note that By definition, g-strong dissipativity holds for
any g < min{qgi, g2} where

A2—A1

~ 1.704,
A3

qi =
divG 41 1

Gp=1l-— =1 ——
sup, IDG]2 3 sup, lIDG|l2

Now
2 64 2, W2 2
||DG(X)||2:201+?+2X1+X2+(X3—28) ~ 208.11+V,

where
V =2x2 + x5 + (x3—28)°.
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Estimate on the size of attracting set

To estimate sup, ||DG]|, there are various explicit
estimates on the Lorenz basin of attraction.

One of the best and easier to state estimates can be
found in Giacomini-Neukirch (1997) [“Integrals of
motion and the shape of the attractor for the Lorenz
model.” Phys. Lett. A], which shows that a trapping
region is given by ellipsoids of the form

c—28
10

X3+ X5+(x3—28)% =

c2b?
4(b—-1)
Taking c = 48 we obtain 4(b 1) = 2457.6 and then we

can explicitly calculate V <2457.6, and so g, > 1.264
as stated.
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Holder-C! condition on the stable holonomies

In general, even without bunching or strong dissipative
condition, for singular-hyperbolic (three-dimensional)
flows, using the low codimension of the stable leaves
inside cross-sections, the holonomy along stable
manifolds is differentiable and its derivaties are
Holder continuous.

Moreover, using this Hélder-C1 property of stable
holonomies, we can also show that the Poincaré
return time function to a cross-section is
Holder-continuous.

This is used in a crucial way to study the ergodic theory
of singular-hyperbolic attractors: to prove the existence
of physical/SRB measure for the flow on these
attractors and study its statistical properties. However
the proof of these properties was only sketched in the
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C'*?% stable holonomies and C1* quotient map

flx) x -12 0 +172
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Partial hyperbolic attracting set with

codimension 2 stable direction

Let G be a flow on a manifold M which is partially
hyperbolic on a compact invariant attracting set

A and the stable direction has codimension 2, that
is, there exists a DXt-invariant and continuous splitting

TAM = E3 ® E{ such that there are C, A > 0 satisfying for
everyxe Aandt>0

e E° is uniformly contracted: [IDX: | ES|| < Ce™t;
@ ES dominates ES: ||[DX¢ | Exll - IDX—¢ | X(X)u < Ke™t,

@ if ds =dimE}, d° =dimES and d =dimM = d* +d°,
thend“=2and d*=d— 2

We assume from now on that A = (),.o X{(Uo) for an
open neighborhood Ug of A in M.
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Extensions of the stable bundle and

central-unstable cone field.

We also assume that the splitting has been
extended to a continuous decomposition of

Tu,M = E°* ® E where E° is DX'-invariant for t > 0 and
there exists a continuous family (CZY)xeu, of central
unstable cones so that Ef( C Gz and Ef( n Gf(“ = {0} for all
x € Ugp.

Now let © c Ug be a cross-section to the flow, that is,
a C2 embedded compact disk transverse to G at every
point x € ¥. Set 1o = inf{|t| : X!x € ¥, t £ 0}, which is
strictly positive by compactness of %.

For x € * we define W;(X) to be the connected

component of ¥ N (<72 X'(WS)) which contains x.
This is the stable foliation on the cross-section.
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Codimension one stable foliation on

Note that because E® is always Holder-continuous on Up
then W} is a C*€ immersed smooth submanifold of Uy,
for some € > 0.

In addition, since £ and (<2 X' (WS)) are
codimension one submanifolds of class C1+¢€ of Uy which
are, moreover, transverse by construction, then its
intersection W;(X) is a codimension one
submanifold of X. These leaves form a
codimension one foliation 3’; of Y.

Let vo, Y1 be a pair of smooth curves contained in
Y given by v;:[0,1] = %,/ =0, 1 whose tangent space
is everywhere contained in the center-unstable
cone: for some smalla >0

Yi(t) € (:’i‘.’(t)(a) NTywE, forallte[0,1],i=0,1.
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Holder-C! stable holonomy on cross-sections

We further assume that 7y, crosses ¥, that is,
¥i([0, 1]) h W3 () = vi([O, 1]) n W3 (X) is a single point for
allxex,i=0,1.

Hence there exists a map h: yg — Y1 associating to
each yo(t) the unique (transversal) intersection point of
Wio(t)(Z) with 7y1; this is the holonomy map of F°(%)
from yo to v1.

The holonomy h is differentiable and its derivative is
Holder.

To prove this we need to consider the holonomies
of the stable foliation 7 of the flow.
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Holonomies on the cross-section and on Uy

Figure : The cross-section X to the flow together with the
curves y; and surfaces yf, i=0,1, the holonomy H (along the
stable leaves of the flow) restricted to yp and the holonomy
h (along the stable leaves on the cross-section) after
composing with the projection m;.

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

Consequence of the Theorem

A consequence of the theorem on Holder-C!
smoothness of the stable holonomy on cross-sections is
that if we consider the quotient map of a Poincaré
map to the cross-section X over the stable
foliation 7°(X), then this quotient map becomes a
Cl+¢ one-dimensional map for some ¢ > 0.

This is the crucial feature that enables us to use
the ergodic theory of one-dimensional dynamics
to study the ergodic theory of these attracting
sets without assuming bunching or dissipative
conditions.
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The stable holonomy for the flow on Uy

We consider the surfaces v§ = Urejg, g X' (¥i), i =0, 1 (at
least of class C? since both yg and X; belong to this
class) for some fixed 0 < € < T¢/2.

These are transverse to the stable foliation 3° of the
flow, by construction.

We can then consider the holonomy H : yg — Y3 given
for each z € yg by the unique (transversal) intersection
of W? with y%.
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Proof of the Theorem

We write h as a composition of the restriction

h=H ly,: Yo = & =H(yo) € v; with mj: v —» v;,i=0,1,
which is the natural projection along flow lines. That is
h =1 o h where we set

m(2) = v1(s) < 3|t| < £: X (y1(s)) =z

for some s € [0, 1].

Then we can write the image §; = h(yo) as the
following graph in yi over yi:

E1 = {XEnED(y4(s)): s €0, 1]}

foramap §:vy1 — R.
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Holonomies on the cross-section and on Uy

Figure : The cross-section X to the flow together with the
curves y; and surfaces yf, i=0,1, the holonomy H (along the
stable leaves of the flow) restricted to yp and the holonomy
h (along the stable leaves on the cross-section) after
composing with the projection m;.
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Remember that h is given by the restriction H | yo.

Now Holder continuity of the holonomy maps H along
strong-stable laminations is a general feature of C1+
partially hyperbolic dynamics for any a > 0; see
Pugh-Shub-Wilkinson “Holder foliations*“. Duke
Math. ). '97.

Hence §:v1 — Ris H('jlder-continuous because

[0,1] 35— E1(s) = X519 (y1(s)) is a Holder continuous
curve in y? and (t, s) — Xt(y1(s)) is a C! parametrization
of the surface yi D &;.

Moreover, in this setting, these holonomies are also
absolutely continuous with respect to the
induced smooth measures m; on yf, i=0,1 from
the Riemannian volume on M; see Pesin-Sinai “Gibbs
measures for partially hyperbolic attractors” ETDS '82
or Pugh-Shub “Ergodic Attractors” TAMS '89. This
means that H.(mg) < ms.
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Holder Jacobians

This also means that H admits a Jacobian, that is, there
exists JH : Y& — [0, +-00) such that m1(H(A)) = [,JHdmo
for all Borel subsets A of vy.

In addition, this Jacobian is a Holder-continuous
map; see e.qg. Theorem 8.6.13, p 255 in Barreira-Pesin
“Nonuniform hyperbolicity” CUP '07.

Let us denote by A; the measure induced on 7y, by the
area measure m; from v¢,i=0, 1.

Altogether this ensures that h: yo — 7y1 is absolutely
continuous in the sense that h«(Ao) < A1 and its
Jacobian is also Holder-continuous, which implies that

the Radon-Nikodym derivative d(Zj\’l\O) can be seen as

A1-a.e. equal to h’, and so h becomes a Hoélder-C! map!
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Holonomy has derivative which is Holder

Indeed, given any open interval (a, b) c [0, 1] we define
Ai(vi(a, b)) = mi(m yi(a, b)),i=0,1 and so

A(h(vo(a, b)) = Ax(mh(Yo(a, b)) = Ax(mH(m5 M yo(a, b))

= m1(H(m; yo(a, b)))

— J JHdmg = J JHA((m0) «mo)
5 vo(a,b) Yo(a,b)
Yo(a,b)

we see that the Jacobian of h can be seen as the
restriction of JH to the image of 7yo.
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Absolute continuity and a.e. differentiability

Finally, absolutely continuous maps as h are
differentiable )\y-a.e., that is h’ exists \g-a.e. and,
moreover, are primitives of the derivative. So we
have

M(h(vo(a, b)) = j ey
Yo(a,b)

forall0<a<b<1l.

Since we also know that |h’ o yo| =JH o Yo, Ap-a.e. and JH
is Holder-continuous, then we can extend h’ to a
Holder-continuous function [0, 1] = R which is the
derivative of h.

This concludes the proof of the Hélder-C1 smoothness
of holonomies in this settting.
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Piecewise expansion for the quotient map

If we also assume that E€ is seccionally
expanding, then we can find a collection of
cross-sections to the flow and a Poincaré
return map which admits a one-dimensional
quotient map over the stable foliation that is
a Cl*¢ piecewise expanding map.
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Cross-sections and Poincaré maps

Given two cross-sections ¥, ¥ to the flow, let us assume
that there exists x € int(X) and 7 > 0 so that

Xz(X) € int(X) (we write int(X) for the interior of X as a
manifold with boundary).

The Tubular Flow Theorem ensures that there exists an
open neighborhood Uy of x in ¥ and a uniquely defined
smooth Poincaré map

fiUxCE—>E, r(x)=XrxX) (1)

for a suitable Poincaré return time function r: Uy — Rt
with r(x) = T, in such a way that f |y, becomes a
diffeomorphism onto an open neighborhood Vg = f(Ux)
of fx in £ and as smooth as the vector field G.
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Holonomies on cu-curves

Note that, in general, f needs not correspond to the
first time the orbits of Ux € ¥ encounter &, nor it is
defined everywhere in x.

Note that the return time function r: X — (0, +00)
belongs to the same differentiability class as the flow,
since the cross-sections ¥, ¥ are smooth embedded
disks on M.

Let us assume that ¥, & are endowed with cu-curves
Yo, Yo which cross each cross-section and also Uy and
Vi, respectively.

We denote p : Ux — Yo, p’ : Vix = Yo the projections
along the stable foliation 35 and ff; on each
neighborhood.
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Locally quotienting over the stable foliation

The open ngbh. Ux where f is defined projects onto
V = p(Ux) which is an open neighborhood of p(x) in yo.
Since stable leaves are invariant, we can define

y €V f(y) =p'(f(p~(y) N Ux)) € ¥o.

From previous results, this is a composition of a Cclta
map with the Poincaré map, and thus f is a C1t* map,
forsome 0 < a < 1.

If we have that
@ f is defined on all points of ¥, and that
o f sends leaves of 77 into the interior of leaves
of CF%;
then, taking the cu-curves yg, Yo crossing ¥, &,
respectively, the previous procedure defines a quotient
map f : Yo — Yo which is a C1+% map.
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Partial hyperbolicity of Poincaré maps

The splitting E° @ EY over Up induces a continuous
splitting E°(x) ® E“(X) of the tangent bundle T (and
analogously for 1)

S __ [ECs cu _ FCu
Ey(Z)_Ey NnT,~ and Ey (Z)_Ey NTyY,yex

where E€S = Ef/ ® E}Cj and Ef is the direction of the flow at
y.
The DX-invariance of the splitting E* @ EY on A and the
invariance of E> on Ug ensures that
@ Df-E5(X)=E3 (X) forall xe %, and
X fx
@ Df-EY(X)=EY(X) forall xe ANnEX.
X fx
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Partial hyperbolic Poincaré map

The next result shows that, if TA\AM = Ef\ ® Ej—'\ is a partial
hyperbolic splitting and the Poincaré time r(x) is
sufficiently large, then E*(X) ® E<Y(X) defines a partially
hyperbolic splitting for the transformation f on the
cross-sections.

Proposition

Let f: ¥ — 5 be a Poincaré map with Poincaré time r.
For every given 0 < A <1 there exists
T1 =T1(%, X, A) > 0 such that if infr > T7, then

@ [IDf | E3(X)ll <A, and
-1
o [IDf | ES(E)II- ||(DF | ES4(E)) || < A
forall xe x.
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Proof of the proposition

Note that for v € T, X we have
DFf(X)V = D(Xr(x)(X))V = DXrx) - v + (Dr(x) - v)G(fx) € Tres
which is the same as
Df(x)v = mg(fx) - (DXr(x) - V)

where ms(fx) : TM — T is the projection
corresponding to the splitting ToxM = T X & (R - G(x)).

Since ms(z) has uniformly bounded norm for z € ¥ by
compactness and transversality, then the statement of
the proposition is a straightforward consequence of
partial hyperbolicity, as long as r is big enough.
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Standard parametrization for cross-sections

In this way we can always achieve an arbitrarily large
contraction rate along the stable direction at any given
pair of cross-sections, as long as we take A sufficiently
close to zero and, consequently, a big enough threshold
time T;.

Given a cross-section X there is no loss of generality in
assuming that it is the image of the square /2 by a C1+<
diffeomorphism h, for some 0 < a < 1, which sends
vertical lines inside leaves of 3°(X), where I =[—1, 1] .
We denote by int(X) the image of int(/?) = (—1, 1)?
under the above-mentioned diffeomorphism, which we
call the interior of %.

We also say that a/ x | ~ 9% is the unstable-boundary of
Y and that/ x al ~ 9°X is the stable-boundary of %.
Notice that 9°X is formed by two curves inside the
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Generalized Lorenz singularity

A generalized Lorenz singularity is an equilibrium o of G
such that the spectrum of DG(0) has two largest real
eigenvalues satisfying A, < 0 < A3 and the rest of the
spectrum is contained in {z€ C: R(z) < Az}.

Hence such singularities have a strong-unstable
one-dimensional manifold Wg, a strong-stable
(d — 2)-dimensional manifold W*° and a stable
(d— 1)-dimensional manifold W;.

However, the derivative DG(0) of the flow at o is not
necessarily area expanding along the directions
corresponding to the eigenvalues A3, A3, as is the case
of a Lorenz-like singularity.

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

Cross-sections near a Lorenz-like equilibrium

w z i+
o Wik(o)
\

R(w) R(z)

VVIQ(L)C(O') g T
Egﬁ o+

a 7
)
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Global Poincaré map

Theorem

Let G be a C? vector field on a d-dimensional compact
manifold having a partial hyperbolic attracting set A,
with T\AM = E3 ® E{ and dimE? = d — 2, and containing
generalized Lorenz singularities.

For S(A) = {0 € A: G(0) =0} we assume that

Wgs NA={o} forall o € S(\).

Then there exists a > 0 and a finite family = of

cross-sections and a global (n-th return) Poincaré map
R :=o — =, R(X) = X(x)(X) such that
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Global Poincaré map (continued)

Theorem (continued)

© the domain = = =\ T contains the cross-sections
with a family I of finitely many smooth arcs
removed and T:=p — [Tp, +90) is @ smooth function
bounded away from zero by some uniform constant
To > 0.

© We can choose coordinates on = so that the map R
can be written as F: Q — Q, F(x, y) = (f(x), g(x, y)),
where Q =Ix1land Q = Q\ Iy, with g =€ x | and
C={cy,...,cn} c I afinite set of points.

© Themap f:1\C—1/is piecewise C1+* with n+1
strictly monotonous branches defined on the
connected components of /'\ €.
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Global Poincaré map (terminates!)

Theorem (continued again)

(4) The map g: Q — I preserves and uniformly
contracts the vertical foliation ¥ = {{x} x [} x¢ of Q:
30 <A <1s.t. dist(g(x,y1), 9(x, ¥2)) < A-ly1—Vy2l,
Vyiy2 €l.

If we assume, in addition, that ETY is sectionally

expanding, then we can replace item (3) above by

(5) The map f:/\ € — [ is piecewise expanding C1+¢
with n+ 1 strictly monotonous branches defined on
the connected components of '\ € and satisfies
|Df| > 2 wherever defined.
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Flow-boxes near equilibria

Since the equilibria o in our setting are all Lorenz-like,
using the linearization given by the Hartman-Grobman
Theorem or, in the absence of resonances, the smooth
linearization results provided by e.g. Sternberg, orbits
of the flow in a small neighborhood U of the equilibrium
are solutions of a linear vector field modulo a
continuous/smooth change of coordinates.

Then for 6 > 0 we choose cross-sections
@ Y°* at points y* in different components of

wi (o)\{o}

loc
@ Y'* at points x* in different components of
Wioc (@) \ Wi (0)
and Poincare first hitting time maps
R* : T\ [* - To7 U T, where [* =¥= nW; (0),
satisfying
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Cross-sections near singularities

©Q every orbit in the attractor passing through a small
neighborhood of the equilibrium o intersects some
of the incoming cross-sections ¥'/*;
© R* maps each connected component of ¥/* \ f*
diffeomorphically inside a different outgoing
cross-section ¥°%, preserving the corresponding
stable foliations.
These cross-sections may be chosen to be planar
relative to some linearizing system of coordinates near
o,eqg.,forae>0

yiE {(x1, X2, £1) : |x1| <€ |x21 <€} and
yOF = {(£1,x2,X3) : |x2| < & |x3| < €},

where the x;-axis is the unstable manifold near o =0,
the x;-axis is the strong-stable manifold and the x3-axis

is the weak-stable manifold of the equilibrium.
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Cross-sections near a Lorenz-like equilibrium

w z i+
o Wik(o)
\
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Egﬁ o+
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)
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Covering of A by flow boxes

Around each singularity o € S(A) there exists a flow-box
covering a neighborhood U, of 0 and at each regular

point x € A there exists a cross-section ¥y to the vector
field.

Define for any cross-section ¥ the §-subsection
¥ = {x€X:d(x,°c) > 6}.

Take flow boxes near singularties with ingoing and
outgoing subcross-sections Zg""‘, Zg*"s covering a
corresponding neighborhood Ug of o € S(A) and, for
each Xy in A\ erS(/\)Uf, take a cross-section X, to the
vector field and its subsection Zf(.
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Using a tubular neighborhood construction, we linearise
the flow in an open set U2 = X(—¢,,¢,)(int(£?)) for a small
€0 > 0, containing the interior of the cross-section )If(.

This provides an open cover of the compact set A by
flow-boxes near the singularities and tubular
neighborhoods around regular points.

Welet =2 ={UZ, U :i=1,...,I;k=1,...,s} be a finite
cover of A, where s > 1 is the number of singularities in
A, and we set T, > 0 to be an upper bound for the time
it takes any point z € Uy, to leave this tubular
neighborhood under the flow, forany i=1,...,1.
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The global Poincaré return map

Let T3 = max{T2, T1(%, £, A), £, £ € =%} and consider the
value T > T3 so that

6
diam (X7(W5(2))) < cAT diam(W5 () < —, forall Ye=
(X7 ( o ) (W3(%) 100

(note that here we consider ¥ € = instead of ¥ € =9).
Then define

R(2) = X<t (2)(X7(2))

where T(w) = inf{t > 0: X¢(w) € =°}.

Note that T is not defined at points w € Up which do not
return to =%, which is only possible if Xr(w) € wy (o) for
some o € S(A), since the flow-boxes through the
sections of =% provide an open cover for the attracting
set A.
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The adapted Poincaré map

Let =% ¢ =% be the set of points such that R is
well-defined. By the choice of T we have that for every
x € = there exist T, ¥ € = such that

R(W3(X)) c £2.

This means that all points in W5(x) do return to %2,
then we have proved

Proposition

There exists a cover of A by flow-boxes through
cross-sections near regular points = and a Poincaré
return map R: =Zp € = — = such that for all x € =g there
are ¥, ¥ € = such that R(WS(x)) c £%2 and so

R(WS(X)) c int(Ws (%)).

V.
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Finitely many strips in the domain of R

Now we focus of =g. Let 3°= denote the union of all the
leaves forming the stable boundary of every
cross-section in =.

Lemma
The set of discontinuous points of R together with
points where R is not defined in =\ 9°= is contained in
the set of points x € =\ 9°= so that

Q either R(x) is defined and belongs to 8°=;

© or there is some time 0 < t < T such that

Xt(x) € Wy (o) for some o € S(A).

Moreover this set is contained in a finite number of

stable leaves of the cross-sections ¥ € =.
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The global one-dimensional quotient map f

Let I be the finite set of stable leaves of = provided by
the previous lemma together with 9°=. Then the
complement Z\ I € Zp of this set is formed by finitely
many open strips where R is smooth.

We choose a C2 cu-curve s transverse to &ré in each
¥ € =. Then the projection py along leaves of 73 onto

Ys is a C1*+® map, for some a > 0, since this is also the
holonomy between cu-curves crossing J2. We set

J=|J int({xex:RxeL})nys
¥, Ye=

which is diffeomorphic to a finite union of

non-degenerate open intervals I, ...,In+1 by a Cclta
diffeomorphism, and psx | p;*(/) becomes a C1*+
submersion.
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After rescalling we make the identification
1= (Ut )ue, where € is a finite set of points in / which
are boundaries of the open intervals I, ..., Ip+1 in I

Note that since = is finite we can choose yy so that ps
has bounded derivative: there exists Bo > 1 such that

1
B_ < |Dpz | Y| < Bo for every cu-curve 7y inside any ¥ € =.
0
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Since the Poincaré map R : =p — = takes stable leaves of
ffé inside stable leaves of the same foliation, is
hyperbolic and, in addition a cu-curve y C 1 is taken by
R into a cu-curve R(Y) in the image cross-section, the
map

f.I\€—1I given by I\Gaz-—»pg(R(Wj(Z)nf))

for ¥, ¥ € = is C1+2 for points in the interior of /;,
i=1,...,n+1.

Moreover, it also satisfies
1
PfI=[D(ps o Ro¥x)| 2 o+ DR o ¥x)] > 0

since R(y) is a cu-curve if y is a cu-curve.

This completes the proof of items (1-4) of the Theorem.

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

The singular-hyperbolic case

We assume now the extra condition that E€ is
seccionally expanded. In this setting, the singularities
S(A) become Lorenz-like singularities.

Given a cross-section X, a positive number p, and a
point x € ¥, we define the unstable cone of width p at x
by

Cg(x) ={v=v?+v':v* eE;(x), v! € EZ(x) and [Iv®|| < plIv¥l}

Let p > 0 be any small constant.
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Hyperbolicity of Poincaré maps

Proposition

Let R: ¥ — ¥ be a Poincaré map as before with Poincaré
time t(-). Then DRXN(Ef((Z)) —E5 (Y) at every x € ¥ and
DRx(ES“(¥)) = ESY (%)) at every x e AnX. In addition, for

every given 0 < A < 1 there exists T3 = T3(%, i,)\) >0
such that, if t(-) > T3 at every point, then

IDRIES(E) <A and [IDR|E(S)| > 1/A, ¥x € ENA.

Moreover, any x € ¥, we have DR(x)(Cg(x)) C Cg/z(Rx)
and

5
||DRX(v)||zg/\_1-||v|| forall veCy(x).

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

Sketch of the proof of the proposition

The proof of this result is based on the observation that
the volume expansion along the bidimensional bundle
Ef translated into expansion in the £°Y(X) direction
since the vector field in invariant and non-expanding
transversely to ¥.

Then, for small p > 0, the vectors in Cg(x) can be
written as the direct sum of a vector in E)C(“, which is
expanded at a rate A~1, with a vector in E°, which is
contracted at a rate A.

Hence, for small p, the center-unstable component
dominates the stable component and the length of the
vector is increased at a rate close to A7L.
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Completing the proof of the theorem

In this way we can always achieve an arbitrarily large
expansion rate along the directions of the unstable
cone as long as we take A sufficiently close to zero and,
consequently, a big enough threshold time T3.

Using this in the construction of = choosing T in such a
way that besides the conditions in the previous
subsection, it also satisfies T > T3, we obtain

IDf| = sin<(FL(RoYs), ¥£) - IDRo¥s - Vil > w,

as long as we take the threshold time T large enough,
since the angle between the cu-curves yo, Yo and the
stable foliation on the cross-sections are bounded away
from zero.

This completes the proof of the Theorem.
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THE END.

THANKS!
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Unstable cone-fields on cross-section and

singular hyperbolicity

We present a proof of a claim made by Tucker in
Section 2.4 of

@ W. Tucker. A rigorous ODE solver and Smale’s
14th problem. Found. Comput. Math. 2
(2002) 53-117.

which to the best of the authors knowledge is
missing in the literature.

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

What Tucker proved via a computer algorithm

In the above cited paper Tucker proved, through the
successful run of a computer algorithm, that there
exists:

@ a compact set N contained in the cross-section
Y = {z =27} of the flow G of the Lorenz equations
for which:

e the first Poincaré return map R: N\T — N is
well-defined away from the curve I' C N, given by
the intersection of the local stable manifold of the
singularity with N;

@ moreover, it is proved also that RIN\T) c N, so that
in N there exists an attracting set Ay =[50 R"(N).
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The unstable cone field in the return region

In addition, there exists a cone field {Gg}xe,\, C TyX s.t.
u u
DRXGX C GRX, XeN
(forward invariance) and also satisfies

Proposition (Proposition 5.1 from Tucker)

There exists F c N s.t. F > I and contains a fundamental
domain of R (i.e. every R-orbit has some element in F)

© each xo € F whose positive orbit eventually leaves F
satisfies for every return x, € F

min{|IDR? - vIl/|IVI| : v € ¥ } > 2;

@ each xo € F whose positive orbit is contained in F
satisfies min{|IDR}_-vl/|Ivll:v €€y } > 22 for all
n=>1.
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Consequences

It follows from the algorithms developed and studied by
Tucker that these are robust properties of the flow (i.e.
they hold true also for all vector fields sufficiently C?!
close to G) and are enough to prove transitivity for the
return map.

Lemma (Transitivity lemma)

For each x € N and y € Ay and open neighborhoods V of
xand WofyinN, thereism>1s.t R"TVnW £@.

Recall that the maximal invariant subset A =, Xt(U)
for some positively invariant neighborhood U satisfies
AN N = Ay is the maximal invariant subset at the
cross-section.

Hence the above lemma implies the robust
transitivity of A. We present a proof in what

() W\
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Robust transitivity and singular-hyperbolicity

Robust transitivity implies that A is a
singular-hyperbolic attractor following
@ C. A. Morales, M. J. Pacifico and E. R. Pujals. Robust
transitive singular sets for 3-flows are partially
hyperbolic attractors or repellers. Ann. of Math. (2)
160 (2004) 375-432.

From what has already been proved we get

Claim (Section 2.4 of Tucker’s paper)

R admits an invariant contracting C1*+< foliation.
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Existence of physical/SRB measure

Holder-C! smoothness is crucial to obtain the
existence of a physical/SRB measure for A: this
ensures that the one-dimensional quotient map is a
piecewise expansive C1*€ map for some € > 0.

Then we can apply results from the ergodic
theory of piecewise expanding maps of the
interval, ensuring the existence of a unique
absolutely continuous invariant measure v for
this map.

From this, through standard constructions of ergodic
theory, a physical measure u for the flow can be
induced from the a.c.i.m. v for the one-dimensional
quotient map.

V. Araujo Smooth stable foliation vs exp. decay



Smoothness Estimates Holder-C! holonomies Piecewise expa

Proof of transitivity for the Poincaré return map

Let N\T =N*UN~ be the components of N away from
I; see next figure.

There exist w* the limit points of images R(x,) when
Xn — I with x, € %, due to the dynamics of the flow

near the singularity at the origin.

Then we can define for e > 0 and k € Z* the
neighborhood of I in N

K= {xeN":R¥(x) € B:(R 1 (w™))}
U {x €N~ : R (x) € Bs(R“*(w™))}-
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Figure : An approximation of Ay (the two curved “lines”) with
the most contracting directions for one iterate of R. The
(almost) straight line cutting across the two branches of Ay is
I, the intersection of the stable manifold of the origin and
the return plane. The bounding box is [—6, 6]2 x {27}.
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Before the proof: two remarks

@ The previous Proposition from Tucker ensures the
existence of K > 0 and 0 > 1 such that

IDR? - vl = Ko™ [IvI|

foralln>1,vecYand x € N such that Rkx ¢ T for
k=0,...,n.

@ The expansion rate provided by the same
Proposition ensures that every curve §:[0,1] = N
such that &’(s) € Gg(s) (a CY-curve in what
follows) admits N = N(§) € Z* so that R"§ crosses
N and also I'} for all n > N.
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Proof of the transitivity lemma

Let y € Ay and x € N be given and fix neighborhoods V
of xand W of y in N.

Fix also a ¢Y-curve § : [0, 1] = V containing x.

From the previous remarks, consider n > 0 such that a
neighborhood Vy c V of x satisfies that R"(Vo N &)
contains a curve ¢ which crosses N and in particular
crosses I'}.

Let € > 0 be small enough so that Bz¢(y) c W.

We split the argument in two cases, as follows.

Case A For ze B¢(y)nAn and zx € Ay so that
Rkz =z, then zx e N\ r’;, Vk > 1.
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Case A

The assumption ensures that Wy = R™¥W c N\ T¥ is
diffeomorphic to W for k=1, ...,/ for some maximal
£>1.

Note that / can be made arbitrarily big by reducing the
size of the neighborhood W.
Let n:[0, 1] = W be a €*-curve, that is, a regular curve

such that n’(s) € €} ) = Ta(s) X\ Chs) forall 0 <s<1.

The forward invariance of the cone field ¢Y implies the

backward invariance of the interior of its complement
¢*, which is also a cone field.

Hence nx = R~kn is also a €s-curve.
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R forward contracts area uniformly

Since divG < —c < 0 for a constant ¢ > O thereisC=>0
and 0 <A <1s.t. |detDR/| < CMN forj>0.

Indeed, since N C ¥ is a cross-section to the flow G, if
x € N and R(x) € N is given by X™¥)(x), where T(x) is the
Poincaré return time to N, then

sin<«(G(Rx), TrxX)
e—CT() — | det DX™(x)x| = | det DRx|—
sinx(G(x), TxX)

> C|detDRy].

Since T(x) = 19 > 0 for all x € N by compactness, the
uniform contraction of area of R is clear.
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Nk is forward contracted at a uniform rate

By the backward invariance of the stable cones, there
exists 8 > 0 for which «(n(s), v) = 6 for all
se€[0,1],ve ng(s) and 1 <k </. We deduce
K ) k ; k
- IDRL, MO IIDRE viIsinx(n’(s), DRy V)
K(s) Nk SN - lIvIisin(ni(s), v)
k ’
_ IDR (Sl

lIng ()

IdetDRk

Kok -sino

and 0 [In'(s)ll = IDRK 1 ()1l < g (3) (o)l s
uniformly forward contracted
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A stable backward invariant cone field

The length of ng grows exponentially with kK and, since
Nk is a ¢*-curve, then ni crosses N transversely to
the unstable cone field.

In particular, €%, €Y behave as hyperbolic cone fields

@ besides forward invariance of ¢V we have
DR 1es c €3i,, X €R(N);
° from the previous estimates we get
e backward expansion: |[DRZK - ul| > Kshé(e ¥ lull for
allk>=1,uecs andxeRk(N\r)

IDRX V| IDRX ul|
2 Kakw for all k > 1, for all

non-zero vectors v € 6“ ue DR‘k . 65 Ky and xeN
such that Rix ¢ T fori= k 1.

e domination:
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Conclusion in Case A

Hence, letting W be a smaller neighborhood if needed,
we may assume without loss of generality that n,
crosses ¢ transversely in a single point {z} =n,h g
(observe that n; cannot “bend” in N since it is tangent
to the cone field ¢°).

Finally note that Rz, € W nR™!V and we have
completed the proof of the transitivity Lemma in this
case (Case A).
Now for the final case.
Case B There exists y’ € B¢(y), k=1 and y, € Ay
such that Rky; =y’ and y, eT¥.
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The final Case B

Since F’E< c F;, we can find x’ € Von € such that R"x’ € F’é.

Hence we obtain that
Rn+kX/, Rkyll< = BE(Rk—lw:I:)

which means in particular that R"kx’ € By (y’).

By the choice of &, we see that R"*kx’ € B3¢(y) c W and
so WNRMkV £ @.

This concludes the proof of the transitivity Lemma also
in this case.
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