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Chaotic flows
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Continuous time. Physical/SRB measure.

M compact metric space

Xt : M→M smooth flow (ie, Xt+s = Xt ◦ Xs for s, t ∈ R)

There exists a unique invariant SRB measure μSRB:
Leb(B(μSRB)) > 0 where

B(μSRB) =

¨

x ∈M :
1

T

∫ T

0
φ(Xs(x)) ds→

∫

φdμSRB, ∀φ ∈ C(M)

«
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Mixing

After obtaining an interesting invariant probability
measure for a dynamical system, it is natural to study
the properties of this measure. Besides ergodicity there
are various degrees of mixing.

Given a flow Xt and an invariant ergodic probability
measure μ, we say that the system (Xt, μ) is mixing if
for any two measurable sets A,B

μ
�

A ∩ X−tB
�

−−→
t→∞

μ(A) · μ(B)

or equivalently
∫

φ ·
�

ψ ◦ Xt
�

dμ −−→
t→∞

∫

φdμ

∫

ψdμ

for any pair φ,ψ : M→ R of continuous functions.
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Correlation function

Considering φ and ψ ◦ Xt : M→ R as random variables
over the probability space (M,μ), this definition just
says that “the random variables φ and ψ ◦ Xt are
asymptotically independent” since the expected
value E

�

φ · (ψ ◦ Xt)
�

tends to the product E(φ) · E(ψ) when
t goes to infinity.

The correlation function

Ct(φ,ψ) =
�

�E
�

φ · (ψ ◦ Xt)
�

− E(φ) · E(ψ)
�

�

=
�

�

�

∫

φ ·
�

ψ ◦ Xt
�

dμ −
∫

φdμ

∫

ψdμ
�

�

�

satisfies Ct(φ,ψ) −−→
t→∞

0 in the case of mixing.
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Speed of mixing: decay of correlations.

Given observables φ,ψ : M→ R in a Banach space X
(which depends on the systems and is in general a
space of functions with some regularity, Hölder or Cr for
some r > 1...) the correlation function (for the SRB
measure) is given by

Ct(ψ,φ) =

�

�

�

�

∫

(φ ◦ Xt)ψ dμSRB −
∫

ψ dμSRB

∫

φ dμSRB

�

�

�

�

.

We classify decay of correlations into some classes
Exponential decay: ∃C,γ > 0 so that

Ct(ψ,φ) ≤ Ce−γt‖ψ‖‖φ‖

Super-polynomial decay: ∀β > 0∃Cβ > 0 s.t.

Ct(ψ,φ) ≤ Cβt−β‖ψ‖‖φ‖
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Some known results: Decay of correlations
super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields
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Some known results: Decay of correlations
super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields

Dolgopyat 98’ C5-Anosov flows whose stable and
unstable foliations are jointly non-integrable
have exponential decay

Dolgopyat 98’ Generic suspension flows over subshift
of finite type are exponentially mixing

Pollicott 99’ Equilibrium states of suspension semiflows
over subshift of finite type with "nice" roof
function have exponential decay
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Some known results: Decay of correlations
super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields

Field, Melbourne, Törok 07’ C2 open, C∞ dense set of
Axiom A flows with superpolynomial decay
of correlations

Ruelle 83’, Pollicott 85’ Examples with slow decay of
correlations.

Baladi, Vallée 05’ Exp. decay of corr. for C2 suspension
semiflows on surfaces with countable
Markov partitions and "good roof function"
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Some known results: Decay of correlations
super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields

Ávila, Goüezel, Yoccoz 06’ Exponential decay of
correlations for Teichmüller flow; criterium
for suspension semiflows over hyperbolic
base with (countable) Markov structure

Melbourne 09’ C2 open, C∞ dense set of geom. Lorenz
attractors have superpolynomial decay

A., Varandas 11’ C2-open set of geom. Lorenz
attractors with exponential decay
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Some known results: Decay of correlations

super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields

A., Melbourne, Varandas 15’ Super-polynomial decay
for C1 open set of C∞ geometric Lorenz
attractors and ASIP for time-1 map

A., Butterley, Varandas 16’ C1-open set C3 Axiom A
vector fields, dim. ≥ 3, with non-trivial
attractor with exponential decay

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Mixing Overview Geom. Lorenz Sketch Plan

Some known results: Decay of correlations

super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations &
non-integrability
C1 open set of C3

dim≥ 3 vector fields
geometric
Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields

A., Melbourne 16’ Exponential decay of correlations for
C1+α suspension semiflows on surfaces with
countable Markov partitions and "good roof
function"
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Lorenz equations

In 1963 Lorenz presented the following systems of
equations and payed close attention to certain
parameter values:

dx

dt
= σ(y− x) σ = 10

dy

dt
= rx− y− xz r = 28

dz

dt
= xy− bz b = 8/3

for which the systems seemed to be “sensitive to initial
conditions” or “chaotic”.
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The Lorenz system has an attractor

Only around the year 2000 was it established, by
[Tucker, “The Lorenz attractor exists”, C. R. Acad. Sci.
Paris, 1999], that the Lorenz system of equations
with the parameters indicated by Lorenz does
indeed have a transitive attractor with a SRB
measure.

This proof was and remains a computer assisted proof,
rather involved, delicate and quite technical, which
works for a specific family of parameters. It was tested
on very fast computers at the time and took several
days to complete the calculations.

Tucker in fact showed that the Lorenz attractor is
a geometric Lorenz attractor, and so is an
example of transitive singular-hyperbolic set
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Description of Geometric Lorenz attractors

Consider the linear system (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z),
thus

Xt(x0, y0, z0) = (eλ1tx0, e
λ2ty0, e

λ3tz0),

where λ2 < λ3 < 0 < −λ3 < λ1 in a ngbh. of (0,0,0).

σ

x=x=

λ

λ

λ

1

2 3

.

.

.

+
−

− +11

ΣΣ

S+

Γ

L

S

For τ = − 1
λ1

log |x| we get

Xτ(x, y,1) = (sgn(x), y|x|−λ2/λ1 , |x|−λ3/λ1)
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Invariant constracting foliation

We assume that the “triangles” L(S±) are compressed
in the y-direction and stretched on the other transverse
and rotated back preserving the line segments
S ∩ {x = x0}:

3

2

1

+

_ Γ

R

R

Σ

Σ

S

λ

λ

λ

This may be seen as a suspension flow over the
Poincaré return map R with roof function
τX(x, y) = − 1

λ1
log |x|+ c(x) where c(·) is bounded.
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One-dimensional quotient map

The Poincaré first return map R : S∗ → S is a
skew-product R(x, y) =

�

f (x), g(x, y)
�

for some functions
f : I \ {0}→ I and g : (I \ {0})× I→ I, where
I = [−1/2,1/2].

Q

P

f(x) x
..

Γ

S

.

.

+1/20-1/2

Moreover, the smoothness of f depends on the
smoothness of the contracting foliation and

f (x) ≈ |x|α and so |f ′(x)| ≈ α|x|α−1

|∂yg| ≈ |x|β ≤ λ < 1 and |∂yg(x, y)| · |Df (x)|−1 ≤ λ
which give singular-hyperbolicity for the attrator.
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Sectional-hyperbolicity

Tucker in fact showed that the Lorenz attractor is
a transitive singular-hyperbolic set.

We say that a compact invariant set Λ for a flow is
sectionally hyperbolic if the tangent bundle over Λ
admits a DXt-invariant and dominated splitting
TΛM = Es

Λ
⊕ Ec

Λ
, such that there are C,λ > 0 satisfying for

every x ∈ Λ and t > 0
Es is uniformly contracted: ‖DXt | Es

x
‖ ≤ Ce−λt;

Ec is 2-sectionally expanded: for every
bidimensional subspace Fx contained in Ec

x
we have

|det(DXt | Fx)| ≥ Ceλt; and
all equilibrium points, if any, are hyperbolic.
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Sectional-hyperbolicity and hyperbolicity

A sectional-hyperbolic compact invariant subset for a
three-dimensional vector field (where dimEs = 1 and
dimEc = 2) is also referred to as a singular-hyperbolic
set.

Sectional-hyperbolicity is an extension of the notion of
hyperbolicity.

Hyperbolic Lemma

Every compact singular-hyperbolic set without
singularities is an hyperbolic set, that is, Ec can be
written as [G]⊕ Eu, where [G] is the flow direction and Eu

is uniformly expanded:

∃C,λ > 0 : ‖(DXt | Eu
x

)−1‖ < Ce−λt.
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Dominated splitting. Robustness.

The continuous splitting TΛM = Es ⊕ Ec is dominated if
it is DXt-invariant, that is

DXtE
∗
x

= E∗
Xt(x)

,∀t ∈ R,∀x ∈ Λ,∗ = s, cu;

and there are K, λ > 0 such that

‖DXt | Ex‖ · ‖DX−t | Ec
Xt(x)
‖ < Ke−λt,∀ x ∈ Λ, t > 0.

Domination is a rather weak form of
hyperbolicity, but is a robust property. This means
that if a vector field Z admits an attracting set Λ, then
there we can find ϵ > 0 such that for all vector fields Y
such that ‖Y − Z‖C1 < ϵ there is an attracting set ΛY

close to Λ so that ΛY has a dominated splitting (with the
same dimensions of the subbundles).

This robustness property is also true for sectional
hyperbolicity.
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The stable (contracting) foliation

To construct the physical/SRB measure for a geometric
Lorenz attractor the smoothness of the
one-dimensional quotient map is important: it needs to
be a C1+α piecewise expanding map with finitely many
branches, for some α > 0.

This crucially depends on the regularity of the
contracting foliation over which the dynamics of the
return map is quotiented.

Moreover, the construction of geometric Lorenz
attractors provides that this contracting foliation
covers a full neighborhood U of the attractor.
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The attractor has zero volume

Moreover, the Lorenz equations define a vector field G
which is dissipative, that is, div(G) ≤ −δ < 0 for some
δ > 0.

Hence, the Lorenz attractor Λ = ∩t>0Xt(U) has zero
volume, where Xt is the flow generated by G.

However, this is a general result: a singular-hyperbolic
attractor has zero volume whenever the vector field is
of class C1+α [see Alves, A., Pacifico, Pinheiro, Dyn Sist
an Int J, 22(3), 249-267 (2007)].
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Strongly dissipative condition

We further assume that our geometric Lorenz flows are
strongly dissipative, i.e., the divergence of the vector
field G is strictly negative: there exists δ > 0 such that

(divG)(x) ≤ −δ, ∀x ∈ U,

and moreover the eigenvalues of the singularity at 0
satisfy the additional constraint

λu + λss < λs (λ1 + λ2 < λ3).

A consequence of domination, uniform contraction on
the stable direction and strong dissipativity, is the
existence of a Xt-invariant contracting foliation Fss,
defined in a neighborhood of Λ, which is C1+ϵ-smooth
and whose leaves are C1+ϵ curves with uniform size.

Lemma

The strong stable foliation Fss is C1+ϵ for some ϵ > 0.
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Sketch of proof of exponential decay

To obtain exponential decay for geometric Lorenz flow
the strategy is to show that this flow can be written as
a semiflow over C1+α expanding maps with C1 roof
functions satisfying a uniform non-integrability
condition. We now explain the terms,

Uniformly expanding maps:

Fix α ∈ (0,1]. Let {(cm, dm) : m ≥ 1} be a countable
partition mod 0 of Y = [0,1] and suppose that F : Y → Y
is C1+α on each subinterval (cm, dm) and extends to a
homeomorphism from [cm, dm] onto Y.

Let H = {h : Y → [cm, dm]} denote the family of inverse
branches of F, and let Hn denote the inverse branches
for Fn.
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Uniformly expanding maps and absolutely
continuous invariant probability measures

We say that F : Y → Y is a C1+α uniformly expanding
map if there exist constants C1 ≥ 1, ρ0 ∈ (0,1) s.t.
(i) |h′|∞ ≤ C1ρn

0 for all h ∈ Hn,

(ii) | log |h′| |α ≤ C1 for all h ∈ H,
where

| log |h′| |α = sup
x 6=y

�

� log |h′|(x)− log |h′|(y)
�

�

|x− y|α
.

Under these assumptions, it is standard that there
exists a unique F-invariant absolutely continuous
probability measure μ with α-Hölder density bounded
above and below.
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Expanding semiflows

Suppose that R : Y → R+ is C1 on partition elements
(cm, dm) with infR > 0. Define the suspension
YR = {(y,u) ∈ Y × R : 0 ≤ u ≤ R(y)}/ ∼ where
(y,R(y)) ∼ (Fy,0).

The suspension flow Ft : YR→ YR is given by
Ft(y,u) = (y,u + t) computed modulo identifications,
with ergodic invariant probability measure
μR = (μ × Leb)/ R̄ where R̄ =

∫

Y Rdμ.

We say that Ft is a C1+α expanding semiflow
provided
(iii) |(R ◦ h)′|∞ ≤ C1 for all h ∈ H.
(iv) There exists ϵ > 0 such that

∑

h∈H eϵ|R◦h|∞ |h′|∞ <∞.
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Uniform nonintegrability

Let Rn =
∑n−1

j=0 R ◦ Fj and define

ψh1,h2 = Rn ◦ h1 − Rn ◦ h2 : Y → R,

for h1, h2 ∈ Hn. We require
(UNI) There exists D > 0, and h1, h2 ∈ Hn0, for some

sufficiently large integer n0 ≥ 1, such that
inf |ψ′

h1,h2
| ≥ D.

The requirement “sufficiently large” can be made
explicit.
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Function spaces

Define Fα(YR) to consist of L∞ functions v : YR→ R such
that ‖v‖α = |v|∞ + |v|α <∞ where

|v|α = sup
(y,u) 6=(y′,u)

|v(y,u)− v(y′, u)|

|y− y′|α
.

Define Fα,k(YR) to consist of functions with
‖v‖α,k =

∑k
j=0 ‖∂

j
tv‖α <∞ where ∂t denotes

differentiation along the semiflow direction.
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Obtaining exponential decay

Given v,w ∈ Fα,1(YR) define the correlation function

ρv,w(t) =

∫

v w ◦ Ft dμR −
∫

v dμR

∫

wdμR.

Theorem [Baladi-Vallée ’05 (with C2 expanding map),
A.-Melbourne ’15 (with C1+α expanding map)]

Assume conditions (i)–(iv) and UNI. Then there exist
constants c,C > 0 s.t. for all t > 0

|ρv,w(t)| ≤ Ce−ct‖v‖α,2‖w‖α,2.
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Plan of the talks: stable bundle and foliation

Assume that Λ is an attracting set with a continuous
invariant partially hyperbolic splitting TΛ = Es ⊕ Ecu: we
have domination plus Es uniformly contracted. We get

a positively invariant ngbh. U0 of Λ and a
continuous family of cone fields Cs(a), Ccu(a) over
U0 satisfying backwards expansion of Cs(a) and
domination.
a continuous extension of the stable subspace
bundle Es over Λ to an invariant contracting bundle
Es over U0.
a flow invariant contracting stable manifold bundle
Ws over U0 consisting of C1 leaves tangent to Es,
which is a topological foliation of U0.

Then we study the smoothness of this foliation.
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Plan of the talks: smoothness of stable foliation

Show that bunching implies smoothness of the
stable foliation Ws, with the regularity being at
least Hölder, and the holonomies along this
foliation have the same regularity.

In addition to the previous assumptions, assume
sectional expansion on Ecu.

Then strong dissipativity implies regularity, as in
the previous item.

Assume, in addition, that Es has codimension 2.
Then the quotient one-dimensional map is C1+ϵ

(even though the stable foliation is only Hölder
regular).

Finally, assuming also sectional expansion on Ecu

Then the one-dimensional quotient map is a
piecewise C1+ϵ expanding map.
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Invariant stable bundle extension

Existence of an invariant extension of
the stable bundle to a full

neighborhood of the attracting set

We discuss existence and regularity properties of the
stable foliation associated with a partially hyperbolic
attracting set. Sectional expansion is not assumed.

Throughout, Λ is a partially hyperbolic attractor for a
vector field G ∈ Xr(M), r ≥ 1, with dominated invariant
splitting TΛM = Es ⊕ Ecu and Es uniformly contracted.
Write d = dimM = ds + dcu.
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Cone fields in a neighborhood of Λ

Let U0 ⊂ M be a forward invariant neighborhood of Λ
such that

⋂

t≥0 Xt(U0) = Λ.

Choose a continuous (not necessarily invariant)
extension TU0M = Es ⊕ Ecu of the splitting TΛM = Es ⊕ Ecu.
Given x ∈ U0 and a > 0 we define the cone fields

Cs
x

(a) = {v = vs + vcu ∈ Es
x
⊕ Ecu

x
: ‖vcu‖ ≤ a‖vs‖},

Ccu
x

(a) = {v = vs + vcu ∈ Es
x
⊕ Ecu

x
: ‖vs‖ ≤ a‖vcu‖}.
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Partial hyperbolic cone fields in U0

Proposition

Fix T so that λT = 1/150. For any a ∈ (0, 1
4 ] there is a

positively invariant neighborhood U0 of Λ, s.t. ∀x ∈ U0

(a) DX−t
�

Cs
Xtx

(b)
�

⊂ Cs
x

(b) and DXt
�

Ccu
x

(b)
�

⊂ Ccu
Xtx

(b), for
all b ≥ a, t ≥ T (backward invariance of stable cones
and forward invariance of center-unstable cones).

(b) ∃c > 0, λ̃ ∈ (0,1) s.t. ∀t > 0

‖DX−t(Xtx)v‖ ≥ cλ̃−t‖v‖, ∀v ∈ Cs
Xtx

(a);

‖DXt(x)v‖

‖v‖
≥ cλ̃−t

‖DXt(x)u‖

‖u‖
for

�

~0 6= v ∈ Ccu
x

(a)

u ∈ DX−t(Cs
Xtx

(a))
;

(backward expansion of stable cones and domination).

(Skip the proof of this proposition)
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Proof of the Proposition (extending cones)

If v lies in TxM where x ∈ U0, then we write
v = vs + vcu ∈ Es

x
⊕ Ecu

x
. If v ∈ C∗

x
(a), then

(1− a)‖v∗‖ ≤ ‖v‖ ≤ (1 + a)‖v∗‖ where throughout
∗ ∈ {s, cu}.

For x ∈ Λ, it follows from invariance of the splitting
Es ⊕ Ecu that (DXt(x)v)∗ = DXt(x)v∗ for all v ∈ TxM and
t ∈ R.

We fix the ngbh. U0 as follows. For each x ∈ Λ, we
choose a ngbh. Ux ⊂ M of x s.t. Ux is diffeomorphic to
Rd where d = dimM. Then TUxM is identified with
Ux × Rd. Given y1, y2 ∈ Ux, a vector v ∈ Rd corresponds
to vectors vyj ∈ TyjM via this identification.

By the smoothness of the flow, we can choose Ux so
small that ‖DXt(y1)vy1‖ ≤ 2‖DXt(y2)vy2‖ for all x ∈ Λ,
y1, y2 ∈ Ux, v ∈ Rd, t ∈ [−T,T].
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Fixing coordinate systems

By the continuity of the splitting Es ⊕ Ecu, for a > 0 fixed
we can ensure for all b ≥ a/8, t ∈ [−T,T], that
if DXt(y1)vy1 ∈ C∗

y1
(b), then DXt(y2)vy2 ∈ C∗

y2
(2b).

We now fix U0 to be a positively invariant neighborhood
of Λ contained in

⋃

x∈Λ Ux. By construction, for every
y ∈ U0, there exists x ∈ Λ such that
(i) DXt(x)vx ⊂ C∗

x
(b) =⇒ DXt(y)vy ⊂ C∗

y
(2b),

(ii) DXt(y)vy ⊂ C∗
y

(b) =⇒ DXt(x)vx ⊂ C∗
x

(2b), and

(iii) 1
2‖DXt(x)vx‖ ≤ ‖DXt(y)vy‖ ≤ 2‖DXt(x)vx‖,

for all v ∈ Rd, b ≥ a/8, t ∈ [−T,T].
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Proof of item (a) of the proposition

From domination on the initial splitting over Λ we get

‖(DXt(x)v)s‖ = ‖DXt(x)vs‖ ≤ ‖DXt|Es
x
‖‖vs‖

≤ λt‖DX−t|Ecu
Xtx
‖−1‖vs‖

= λt‖(DXt|Ecu
x

)−1‖−1‖vs‖

≤ λt‖(DXt(x)v)cu‖‖vcu‖−1‖vs‖,

for all x ∈ Λ, v ∈ TxM, t ≥ 0. In particular

DXt(C
cu
x

(b)) ⊂ Ccu
Xtx

(bλt), ∀x ∈ Λ, b > 0, t ≥ 0.
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From Λ to U0

Now let y ∈ U0, b ≥ a, v ∈ Ccu
y

(b). We can pass to a
nearby point x ∈ Λ with corresponding vector
vx ∈ Ccu

x
(2b) by (ii). Then DXt(x)vx ∈ Ccu

Xtx
(2bλt) for all

t ≥ 0. In particular, since λT = 1/150 ≤ 1/16,

DXT(x)vx ∈ Ccu
XTx

(b/8) and DXt(x)vx ∈ Ccu
Xtx

(2b), ∀t ≥ 0.

From (i) we get

DXT(Ccu
y

(b)) ⊂ Ccu
XTy

(b/4) ⊂ Ccu
XTy

(b) and

DXr(Ccu
y

(b)) ⊂ Ccu
Xry

(4b), ∀r ∈ [0, T], y ∈ U0.

By positive invariance of U0, it follows inductively that
DXkT(Ccu

y
(b)) ⊂ Ccu

XkTy
(b/4) ⊂ Ccu

XkTy
(b) for all y ∈ U0, k ∈ Z+.
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The general t ≥ T

For general t ≥ T, write t = kT + r where k ≥ 1 and
r ∈ [0, T). Again using positive invariance of U0 together
with cone invariance

DXt(C
cu
y

(b)) = DXkT ·DXr(Ccu
y

(b)) ⊂ DXkT(Ccu
Xry

(4b)) ⊂ Ccu
Xty

(b).

This completes the proof of forward invariance for the
center-unstable cone fiels, and the proof of the
backward invariance for the stable cone field is
completely analogous.

Hence we have proved item (a) in the statement of the
proposition.
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Proof of item (b) of the proposition

Keep the choices of T and U0 and recall that a ∈ (0, 1
4 ] is

fixed. First we backward contraction along the stable
cone field.

Suppose that x ∈ Λ and v ∈ Cs
XTx

(2a). By backward
invariance DX−T(XTx)v ∈ Cs

x
(2a), so using the

contraction on Es
Λ

‖DX−T(XTx)v‖ ≥ (1− 2a)‖(DX−T(XTx)v)s‖
= (1− 2a)‖(DXT(x))−1vs‖ ≥ (1− 2a)λ−T‖vs‖
≥ (1 + 2a)−1(1− 2a)λ−T‖v‖
≥ 50‖v‖ ≥ 8‖v‖.

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Cone fields Extended bundles

Backward contraction from Λ to U0

Now let y ∈ U0, v ∈ Cs
XTy

(a). As in part (a), we can pass
to a nearby point x ∈ Λ with corresponding vector
vx ∈ Cs

XTx
(2a) and so ‖DX−T(XTx)vx‖ ≥ 8‖vx‖. Using (iii)

together with positive invariance of U0, we have that
‖DX−T(XTy)v‖ ≥ 2‖v‖ for all v ∈ Cs

XTy
(a).

By positive invariance of U0 and backward invariance of
the stable cone field, it follows inductively that

‖DX−kT(XkTy)v‖ ≥ 2k‖v‖ for y ∈ U0, v ∈ Cs
XkTy

(a), k ≥ 0.

For t = kT + r where k ∈ Z+, r ∈ [0, T), let v ∈ Cs
Xty

(a).
Then DX−t(Xty)v = DX−r(Xry) DX−kT(Xty)v so it follows
from the previous estimates

‖DX−t(Xty)v‖ ≥ c‖DX−kT(XkT(Xry))v‖ ≥ c2k‖v‖,

where c = infr∈[0,T],y∈U0,v∈TyM,v 6=0 ‖DX−r(y)v‖/‖v‖ > 0.
This completes the proof of backward contraction.
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Proof of domination of the cone fields

From domination in Λ we get for x ∈ Λ, u,v ∈ TxM,

‖DXT(x)us‖

‖us‖
≤ ‖DXT |Es

x
‖ ≤ λT‖(DXT |Ecu

x
)−1‖−1 ≤ λT

‖DXT(x)vcu‖

‖vcu‖
.

Let u ∈ DX−T(Cs
XTx

(2a)), v ∈ Ccu
x

(2a). By cone invariance

‖DXT(x)vcu‖

‖vcu‖
≤

(1 + 2a)‖DXT(x)v‖

(1− 2a)‖v‖
, and

‖DXT(x)u‖

‖u‖
≤

(1 + 2a)‖DXT(x)us‖

(1− 2a)‖us‖
,

and so
‖DXT(x)u‖

‖u‖
≤ 9λT

‖DXT(x)v‖

‖v‖
≤

3

50

‖DXT(x)v‖

‖v‖
for all v ∈ Ccu

x
(2a), u ∈ DX−T(Cs

XTx
(2a)).
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Again from Λ to U0 and conclusion

Using (iii) it follows that

‖DXT(y)u‖

‖u‖
≤

24

25

‖DXT(y)v‖

‖v‖

for all y ∈ U0, v ∈ Ccu
y

(a), u ∈ DX−T(Cs
XTy

(a)).

For general t ≥ 0, we write t = kT + r, k ≥ 0, r ∈ [0, T)
and proceed as in the proof of item (a).

This completes the proof of the proposition on
cone invariance, backward contraction on stable
cones and domination for the cone fields in a
neighborhood U0 of the attracting set Λ.
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Invariant stable bundle extended to U0

Whereas the original splitting TΛM = Es ⊕ Ecu is
DXt-invariant, in general the extension Ecu of the
center-unstable direction cannot be assumed
invariant. However we have

Proposition

The continuous bundle Es over U0 can be chosen to be
DXt-invariant and uniformly contracting:
‖DXt | Es

x
‖ ≤ c−1λ̃t for all t ≥ 0, x ∈ U0, where c > 0,

λ̃ ∈ (0,1) are the constants in the previous Proposition.
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Impossible to extend the central bundle

Let us assume that the extension Ecu
U0

is invariant.

Lemma

Let Λ be a compact invariant set for a flow Xt of a C1

vector field X on M and assume Λ contains a Lorenz-like
singularity σ. Given a continuous DXt-invariant splitting
TUM = E⊕ F on a neighborhood U of σ such that E is
uniformly contracted, then there exists a ngbh. V of σ
s.t V ⊂ V ⊂ U and a point x0 ∈ V \ Λ satisfying X(x0) ∈ Fx.

However, for x0 ∈ V \ Λ close to the singularity, we have
for some t > 0 that xs = Xs(x0) ∈ U for all −t < s < 0, xs

is close to Wss(σ) \ {σ} and G(x−t) is almost parallel to
Ess
σ

.

This is a contradiction since the angle between Ess and
Ecu is bounded away from zero (see next picture).
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Behaviour in small neighborhood of σ

Eσ

c

E
ss
σ

σ

x
0

x−t

Figure : The flow direction contained in Ecu in a neighborhood
of σ implies that Ecu is not continuous at σ.

(Skip the proof of the Lemma)
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Proof of the Lemma

We denote by π(Ex) : TxM→ Ex the projection on Ex

parallel to Fx at TxM, and likewise π(Fx) : TxM→ Fx is the
projection on Fx parallel to Ex. We note that for x ∈ U

X(x) = π(Ex) · X(x) + π(Fx) · X(x)

and for t > 0 and x ∈ V such that X[0,t](x) ∈ U, by
linearity of DXt and DXt-invariance of the splitting E⊕ F

DXt · X(x) = DXt · π(Ex) · X(x) + DXt · π(Fx) · X(x)

= π(EXt(x)) ·DXt · X(x) + π(FXt(x)) ·DXt · X(x).

Assuming that π(Ex) ·X(x) 6= ~0 for all x ∈ V \Λ, we choose
a sequence of points xn ∈ V and of times tn > 0 such
that tn↗∞ as follows.
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Choice of the sequence of orbit segments in U

Eσ

c

E
ss
σ

σ

x

x
t n

n

y

z

Let xn ∈ V be a sequence converging to
z ∈Wss

loc
(σ) \ {σ} and tn↗ +∞ so that X[0,tn](xn) ⊂ U and

xtn = Xtn(xn) tends to y ∈Wu
loc

(σ) \ {σ}.
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Exploring the invariance and backward
expansion

Since π(Ex) · X(x) 6= ~0 we get

lim
n→+∞

DX−tn · X(xtn) = lim
n→+∞

X(xn) = X(z) but also

‖DX−tn · π(Extn
) · X(xtn)‖ ≥ ceλ̃tn‖π(Extn

) · X(xtn)‖ −−−−→
n→+∞

+∞,

because xtn → y and Es is a continuous bundle by
assumption.

This is possible only if the angle between Exn and Fxn

tends to zero when n→ +∞.
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Closing angles

Indeed, using the Riemannian metric on TxM, the angle
α(x) = α(Ex, Fx) between Ex and Fx is related to the
norm of π(Ex) as follows: ‖π(Ex)‖ = 1/ sin(α(x)). Thus

‖DX−tn · π(Extn
) · X(xtn)‖ = ‖π(Exn) ·DX−tn · X(xtn)‖

≤
1

sin(α(xn))
· ‖X(xn)‖, ∀n ≥ 1.

Hence, because ‖X(xn)‖ → ‖X(z)‖ 6= 0 we deduce that
α(xn)→ 0.

However, since E⊕ F is a continuous splitting in U, then
E⊕ F are bounded away from zero in V, which gives a
contradiction.

We conclude that in V there must exist a point x0
as in the statement of the lemma.
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Proof of the Proposition (invariant Es)

We begin with the original choice of continuous splitting
TU0M = Es ⊕ Ecu. Let a ∈ (0, 1

4 ] and choose T and U0 as in
the Proposition on cone invariance and domination.

For x ∈ U0, define (as usual in hyperbolic dynamics)

Fx =
⋂

t≥0
DX−t

�

Cs
Xtx

(a)
�

.

We show that {Fx} is the desired stable bundle. That is,
we show that for all t ≥ 0,
(i) x 7→ Fx is a continuous map from U0 to the

Grassmannian bundle G = {Gx, x ∈ U0} where Gx is
the space of ds-dimensional subspaces of TxM,

(ii) Fx = Es
x

for x ∈ Λ,
(iii) {Fx, x ∈ U0} is DXt-invariant and uniformly

contracting.
(Skip the proof of the Proposition)

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Cone fields Extended bundles

Nested family of cones and subspace contained
in the intersection

Now {DX−t(C
s
Xtx

(a)), t ≥ 0} is a nested family of closed
cones, and by backward invariance, the cones are
contained in Cs

x
(a) for t ≥ T. In particular, Fx ⊂ Cs

x
(a).

We can also regard {DX−t(C
s
Xtx

(a)), t ≥ 0} as a nested
family of closed subsets of Gx, so Fx is a closed subset
of Gx.

By compactness of Gx, the elements DX−tEs
Xtx
∈ Gx have

a convergent subsequence DX−tnE
s
Xtnx

with limit F̃x ∈ Gx.

Since DX−tEs
Xtx
∈ DX−t(C

s
Xtx

(a)) and Fx is closed, it

follows that F̃x ∈ Fx.
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Uniqueness of the subspace in the intersection

To summarise, we have shown that there exists a
ds-dimensional subspace F̃x such that F̃x ⊂ Fx and
F̃x = limn→∞DX−tnE

s
Xtnx

(in Gx). Without loss we may
suppose that tn ≥ T for all n.

Next we get Fx = F̃x. Choose vectors un ∈ Es
Xtnx

s.t.
‖DX−tn(Xtnx)un‖ = 1.

Suppose for contradiction that Fx 6= F̃x. Then Fx is a
nontrivial cone containing F̃x, and so there exists
v ∈ Ecu

x
nonzero such that wn = DX−tn(Xtnx)un + v ∈ Fx for

n sufficiently large. It follows from the definition of Fx

that DXtn(x)wn = un + DXtn(x)v ∈ Cs
Xtnx

(a). Hence

‖(DXtn(x)v)cu‖ ≤ a‖un + (DXtn(x)v)s‖.
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Uniqueness from domination

Since v ∈ Ecu
x

, it follows from forward invariance that
DXtn(x)v ∈ Ccu

x
(a) and hence we obtain

‖(DXtn(x)v)s‖ ≤ a‖(DXtn(x)v)cu‖ and
‖DXtn(x)v‖ ≤ (1 + a)‖(DXtn(x)v)cu‖.

Substituting into the last inequality yields
(1− a2)‖(DXtn(x)v)cu‖ ≤ a‖un‖ and then

‖DXtn(x)v‖ ≤ (1 + a)(1− a2)−1a‖un‖.

On the other hand, un ∈ Es
Xtnx

, v ∈ Ecu
x

, so by domination

‖DXtn(x)v‖

‖v‖
≥ cλ̃−tn

‖un‖

‖DX−tn(Xtnx)un‖
= cλ̃−tn‖un‖.

Letting n→∞ yields the desired contradiction, and so
Fx and F̃x coincide. In particular, Fx ∈ Gx for all x ∈ U0.
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Continuity of the family of subspaces

To prove continuity of the map x 7→ Fx, fix x ∈ U0 and let
U ⊂ G be a neighborhood of Fx.

There exists t0 ≥ 0 such that
⋂

t≤t0
DX−t(C

s
Xtx

(a)) ⊂ U .

By smoothness of the flow, Fy ⊂
⋂

t≤t0
DX−t(C

s
Xty

(a)) ⊂ U
for y sufficiently close to x.

This completes the proof of (i).

It is immediate from invariance of the bundle Es|Λ that
Es

x
⊂ Fx for all x ∈ Λ.

Since the dimensions are the same, Es
x

= Fx for all x ∈ Λ
establishing item (ii).
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Invariance and uniform contraction

For r ≥ 0,

DXrFx =
⋂

t≥0
DXr−t(Cs

Xt−r(Xrx)
(a)) =

⋂

t≥r

DXr−t(Cs
Xt−r(Xrx)

(a))

=
⋂

t≥0
DX−t(Cs

Xt(Xrx)
(a)) = FXrx,

so the bundle {Fx} is DXt-invariant.

Finally, if v ∈ Fx, t ≥ 0, then DXt(x)v ∈ Cs
Xtx

(a) so by
backward expansion on stable cones,
‖v‖ ≥ cλ̃−t‖DXt(x)v‖.

Hence ‖DXt | Fx‖ ≤ c−1λ̃t so item (iii) holds.

This completes de proof of the proposition on
existence of invariant extension of the stable
direction from Λ to a full neighborhood U0 of Λ in
the ambient space.
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Stable foliation in a neighborhood of Λ

Existence of a flow invariant
contracting stable manifold bundle
Ws over U0 consisting of C1 leaves

tangent to Es.

From now on, we suppose that the continuous
extension TU0M = Es ⊕ Ecu of TΛM = Es ⊕ Ecu is chosen so
that Es is invariant and uniformly contracted.
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Existence of stable foliation in U0

Let Dk denote the k-dimensional open unit disk and let
Embr(Dk,M) denote the set of Cr embeddings
ϕ : Dk →M endowed with the Cr distance.

Theorem
There is a positively invariant neighborhood U0 of Λ,
and a constant 0 < ν < 1 s.t.
(a) ∀x ∈ U0∃Ws

x
∈ Embr(Dds ,M) with x ∈Ws

x
s.t.

1 TxWs
x

= Es
x
.

2 Xt(Ws
x

) ⊂ Ws
Xtx

,∀t ≥ 0.
3 d(Xtx,Xty) ≤ νtd(x, y),∀y ∈Ws

x
, t ≥ 0.

(b) there is a continuous map γ : U0→ Emb0(Dds ,M)
such that γ(x)(0) = x and γ(x)(Dds) = Ws

x
.

(c) {Ws
x

: x ∈ U0} defines a topological foliation of U0.

(Skip the proof of the Theorem)
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Proof of existence of stable foliation on U0

We follow the exposition on Section 6.4(b) of the book
by Katok and Hasselblat, Introduction to the
Modern Theory of Dynamical Systems, C.U.P.,
1995.

Let T > 0, c > 0, λ̃ ∈ (0,1) be the constants in the
propositions on existence of cone fields and extension
of stable invariant directions to U0.

Increase T > 0 if necessary so that λ̂ = c−1λ̃T ∈ (0,1)
and define the diffeomorphism f = XT : U0→ U0.

For each x ∈ U0, we consider the exponential map
expx : TxM→M. This transforms a small enough
neighborhood of 0 diffeomorphically onto a
neighborhood of x, and Dexpx(0) = I.
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Setting of local adapted coordinates

Choose orthonormal bases on Rds, Rdcu and, for each
x ∈ U0, choose orthonormal bases on Es

x
and Ecu

x
.

Let Ps
x

: Rds → Es
x
, Pcu

x
: Rdcu → Ecu

x
be the corresponding

isometric isomorphisms.

Since U0 3 x 7→ Es
x
⊕ Ecu

x
is continuous, we can arrange

that x 7→ Ps
x

and x 7→ Pcu
x

are continuous families of
isomorphisms.

Define Px,n = Ps
fnx

+ Dfn(x)Pcu
x

: Rd → TfnxM, which is a
continuous family x 7→ Px,n of isomorphisms for each n.
In general Px,n is not an isometric isomorphism,
since Dfn · Ecu

x
is not necessarily orthogonal to Es

fnx
.

However, we have DfnEcu
x
⊂ Ccu

fnx
(a) for some a ∈ (0, 1

4 ],
so the angle between the subspaces Es

fnx
and

DfnEcu
x

is bounded away from zero.
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Hence there is a constant C1 ≥ 1 such that

1

C1
≤ ‖Px,n‖ ≤ C1, ∀x ∈ U0, n ≥ 0.

Next, Qx,n = expfnx ◦Px,n : Rd →M maps a neighborhood
of 0 in Rd diffeomorphically onto a neighborhood of fnx
and U0 3 x 7→ Qx,n is a continuous family of
diffeomorphisms for each n.

Let Dρ ⊂ Rd denote the ρ-neighborhood of 0. Using
boundedness of ‖Pn‖ and compactness of Λ, and
shrinking U0 if necessary, we can choose ρ > 0 so that
Qx,n : Dρ →M is a diffeomorphism onto its range for all
n. Moreover, there is a constant C2 ≥ 1 such that

C−1
2 ‖p‖ ≤ d(fnx,Qx,n(p)) ≤ C2‖p‖,

for all x ∈ U0, n ≥ 0, p ∈ Dρ.
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Local expression for the dynamics

Now define the family fx,n = Q−1
x,n+1 ◦ f ◦Qx,n : Dρ → Rd.

By construction, Dfx,n(0) is identified with Df (fnx) and
fx,n are uniformly Cr close to Dfx,n(0) on Dρ.

Hence for any δ > 0 there exists ρ > 0 and a family of
(surjective) Cr diffeomorphisms gx,n : Rd → Rd, n ≥ 0, s.t.
‖gx,n − Dfx,n(0)‖C1 < δ and gx,n = fx,n on Dρ. [For a proof
of this standard result see e.g. Lemma 6.2.7 in
Katok-Hasselblatt book cited above]

Proposition

For all n ≥ 0 we have ‖Dgx,n(0) | Rds‖ ≤ λ̂ and

‖Dgx,n(0) | Rds‖ · ‖Dgx,n(0)−1 | Rdcu‖ ≤ λ̂.
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Dynamics in local coordinates

T Mx

Ex
s

Ex
x

Es
fx

E
fx

f

f(x)

f(x)
T    M

M

  (x)ρ

c

c

x,0
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Dynamics in adapted coordinates

E

E

c

s

m

m

E
c

E
s
m+1

m+1

ρ ρ

g
gx,m−1
x,m

g
x,m+1
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Proof of the proposition

Choose a as in the previous Proposition ensuring the
existence of invariant cone fields in U0.

By construction, Dgx,n(0) = Dfx,n(0) is identified with
Df (fnx) and

‖Dgx,n(0) | Rds‖ = ‖Df | Es
fnx
‖ = ‖DXT | DX−TEs

XT fnx
‖,

‖Dgx,n(0)−1 | Rdcu‖ = ‖Df−1 | Dfn+1Ecu
x
‖

≤ ‖DX−T | DXT(Ccu
fnx

(a))‖,

where we have used invariance of Es and forward
invariance of Ccu(a).

The first estimate is immediate from the proposition on
existence and contraction of the extension of the stable
direction to U0.

The second estimate follows from the domination on
the cone fields, and concludes the proof.
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A modified Invariant Manifold Theorem

We require a slightly modified version of the
Hadamard-Perron Invariant Manifold Theorem from
Theorem 6.2.8, pp 242-257 in Katok-Hasselblatt book.

The only difference from the proof of Theorem 6.2.8 in
Katok-Hasselblatt is that the rates λn, μn may depend
on n.

However, the ratios λn/μn are controlled uniformly, and
it is easy to check that the proof in pp 242-257 of
Katok-Hasselblatt is valid in this slightly more general
setting with no change in the arguments.

We now state this result for future use.
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A Hadamard-Perron Invariant Manifold Theorem

Fix r ≥ 1, λmin > 0 and σ ∈ (0,1). Then there exists γ,
δ > 0 arbitrarily small so that: for each n let gn : Rd → Rd

be a Cr diffeo s.t.

gn(u,v) = (Anu + αn(u,v), Bnv + βn(u,v)), (u,v) ∈ Rds ⊕ Rdcu ,

for linear maps An : Rds → Rds , Bn : Rdcu → Rdcu and Cr

maps αn : Rd → Rds , βn : Rd → Rdcu with

αn(0,0) = 0, βm(0,0) = 0 and ‖αn‖C1 < δ, ‖βn‖C1 < δ.

Define λn = ‖An‖, μn = ‖B−1
n
‖−1 and suppose that

λn ≥ λmin and λn/μn ≤ σ.

Set λ′
n

= (1 + γ)(λn + δ(1 + γ)), μ′
n

=
μn

1+γ − δ and suppose
that λ′

n
< νn < μ′

n
for all n ∈ Z.
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Then there exists a unique family of
ds-dimensional C1 manifolds

Zn = {(x, φn(x)) : x ∈ Rds},

where φn : Rds → Rdcu satisfies for all n ∈ Z

φn(0,0) = 0, Dφn(0,0) = 0 and ‖Dφn‖C0 < γ,

and the following properties hold
1 gn(Zn) = Zn+1,
2 ‖gn(q)‖ ≤ λ′

n
‖q‖ for q ∈ Zn,

3 If ‖gn+k−1 ◦ · · · ◦ gn(q)‖ ≤ Cνn+k−1 . . . νn‖q‖ for all
k ≥ 0 and some C > 0, then q ∈ Zn.

If supn λn < 1 (i.e. we have uniform contraction),
then the manifolds Zn are Cr.
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Verifying the conditions of the theorem

Fix x ∈ U0. The sequence of diffeos gx,n : Rd → Rd is
defined for n ≥ 0.

For n < 0, we set gx,n = gx,0. The diffeos gx,n now have
the structure required in the theorem.

Take σ = λ̂ ∈ (0,1) and λmin = infx∈U0 ‖DXT | Es
x
‖ > 0. By

Proposition on adapted coordinates, the linear maps An,
Bn satisfy the constraints λmin ≤ λn ≤ σ and λn/μn ≤ σ.

Choose γ, δ > 0 so small that supn λ
′
n
< 1 and

supn λ
′
n
/μ′

n
< 1.

Choose νn ∈ (λ′
n
, μ′

n
) such that ν = supn νn < 1. Finally,

shrink ρ so that ‖αn‖C1 < δ, ‖βn‖C1 < δ.

This shows that the hypotheses of the theorem are
satisfied, with νn ≤ ν < 1 for all n.
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Using the conclusion of the theorem

Let Zx,n denote the family of ds-dimensional Cr

manifolds and set Ws
x

= Qx,0(Zx,0 ∩Dρ).

Repeating the construction for every x ∈ U0, we get a
family Fss = {Ws

x
, x ∈ U0} of ds-dimensional Cr

manifolds covering U0.

Lemma (Fss is the desired family of stable manifolds)

Let x, y ∈ U0. Then for all n ≥ 0
(a) d(x, y) < C−1

2 ρ,y ∈Ws
x

=⇒ d(fnx, fny) ≤ C2
2ν

nd(x, y).

(b) Let C > 0. If d(x, y) < C−1
2 C−1ρ and

d(fnx, fny) ≤ Cνnd(x, y) for all n ≥ 0, then y ∈Ws
x
.

(c) There exists ϵ > 0 such that if d(x, y) < ϵ and y ∈Ws
x

then fy ⊂ Ws
fx

.

(Skip the proof of the Lemma)
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Proof of the lemma

Let Fx,n = fx,n−1 ◦ · · · ◦ fx,0, Gx,n = gx,n−1 ◦ · · · ◦ gx,0. Note
that if Fx,n(q) ∈ Dρ for all 0 ≤ n ≤ N0, or if Gx,n(q) ∈ Dρ for
all 0 ≤ n ≤ N0, then Fx,n(q) = Gx,n(q) for all 0 ≤ n ≤ N0.

(a) Let y ∈Ws
x

with d(x, y) < C−1
2 ρ. Then

q = Q−1
x,0(y) ∈ Zx,0, so by (1-2) of the Inv. Manifold Thm.

‖Gx,n(q)‖ ≤ νn‖q‖ = νn‖Q−1
x,0(y)‖ ≤ νnC2d(x, y) < ρ,

for all n ≥ 0. Now fn = Qx,n ◦ Fx,n ◦Q−1
x,0, so

fny = Qx,n ◦ Fx,n(q) = Qx,n ◦Gx,n(q).

Hence

d(fnx, fny) = d(fnx,Qx,n◦Gx,n(q)) ≤ C2‖Gx,n(q)‖ ≤ C2
2ν

nd(x, y)

completing the proof of item (a).
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Characterizing the stable manifold

(b) Suppose that d(x, y) < C−1
2 C−1ρ and

d(fnx, fny) ≤ Cνnd(x, y), ∀n ≥ 0.

Let q = Q−1
x,0(y) so d(x, y) ≤ C2‖q‖.

Now Fx,n = Q−1
x,n
◦ fn ◦Qx,0, so

‖Fx,n(q)‖ = ‖Q−1
x,n
◦fn(y)‖ ≤ C2d(fnx, fny) ≤ C2Cνnd(x, y) < ρ.

Hence

‖Gx,n(q)‖ = ‖Fx,n(q)‖ ≤ C2Cνnd(x, y) ≤ C2
2Cνn‖q‖.

By item (3) of the Inv. Manif. Thm. q ∈ Zx,0 ∩Dρ and so
y = Qx,0(q) ⊂ Ws

x
.

This completes the proof of item (b).
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Forward invariance of the stable manifolds

(c) Let x′ = fx, y′ = fy and choose E ≥ 1 such that
d(x, y) ≤ Ed(x′, y′) for all x, y ∈ U0.

Suppose that y ∈Ws
x

and d(x, y) < C−5
2 E−1ρ. Then

certainly, d(x, y) < C−1
2 ρ, so by part (a),

d(fnx′, fny′) = d(fn+1x, fn+1y) ≤ C2
2ν

n+1d(x, y) ≤ C2
2Eνnd(x′, y′) = Cνnd(x′, y′),

where C = C2
2E.

Also, d(x′, y′) ≤ C2
2d(x, y) < C−3

2 E−1ρ = C−1
2 C−1ρ, so the

result follows from part (b).

This completes the proof of item (c) and of the lemma.
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The Cr embedded disks Ws
x

depend
continuously on x in the C0 topology

Lemma

There is a continuous map γ : U0→ Emb0(Dds ,M) such
that γ(x)(0) = x and γ(x)(Dds) = Ws

x
. Moreover, there

exists L ≥ 1 such that Lipγ(x) ≤ L for all x ∈ U0, where

Lipγ(x) = sup
u 6=u′

d
�

γ(x)(u), γ(x)(u′)
�

‖u− u′‖
.

(Skip the proof of the Lemma)
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Proof of the continuity lemma

Fix x ∈ U0 and recall that Ws
x

= Qx,0(Zx,0 ∩Dρ).

For y close to x, let Ay = Q−1
x,0(Ws

y
). Let

py = Q−1
x,0(y) = Q−1

x,0 ◦Qy,0(0) ∈ Ay.

In particular Ax = Zx,0 ∩Dρ and px = 0. Moreover, y 7→ py

is continuous.

Now TpyAy = DQ−1
x,0(y)TyWs

y
= DQ−1

x,0(y)Es
y
, so it follows

from smoothness of Qx,0 and continuity of Es that Ay

can be viewed as a graph over Dds ⊂ Rds for y close to x.

In particular, Ay = {(u,ϕy(u)) : u ∈ Dds} where
ϕy : Dds → Rdcu.

Hence Ws
y

= {Qx,0(u,ϕy(u)) : u ∈ Dds}. The family of
functions ϕy are Cr with uniform Lipschitz constant.
Since py ∈ Ay, there exists uy ∈ Dds such that
py = (uy, ϕy(uy)).
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Ayn as graph of ϕyn near Ax.

=graph(   )φyn

R
ds

R
dcu

u

Ax

A qnyn

pyn

0
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Define the family of embeddings γ : U0→ Embr(Dds
,M)

given by
γ(y)(u) = Qx,0(u,ϕy(u)).

We claim that y 7→ ϕy is continuous at x in the C0

topology, and hence the embedding γ is continuous at
x in the C0 topology.

Indeed, suppose that yn→ x. By Arzelà-Ascoli, we can
pass to a further subsequence such that
limn→∞ supu∈Dds ‖ϕyn(u)− ψ(u)‖ = 0 for some continuous
function ψ : Rds → Rdcu.

Since pyn → 0, for n large enough we have that
pyn ∈ D 1

2 C−5
2 ρ.
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Now fix u ∈ Dds. Shrinking the disk Dds, we can ensure
that qn = (u,ϕyn(u)) ∈ D 1

2 C−5
2 ρ for n sufficiently large.

Hence

d(Qx,0(qn), yn) ≤ d(Qx,0(qn), x) + d(x, yn) ≤ C−3
2 ρ ≤ C−1

2 ρ.

By construction, Qx,0(qn) ∈Ws
yn

, so by item (a) of the
existence lemma for the stable leaves

d(fk ◦Qx,0(qn), fkyn) ≤ C2
2ν

kd(Qx,0(qn), yn) for all k ≥ 0.

Letting n→∞, we obtain that

d(fk◦Qx,0(u,ψ(u)), fkx) ≤ C2
2ν

kd(Qx,0(u,ψ(u)), x) for all k ≥ 0.
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By item (b) of the existence lemma for the stable
leaves Qx,0(u,ψ(u)) ∈Ws

x
so (u,ψ(u)) ∈ Ax. It follows that

ψ(u) = ϕx(u).

Hence all subsequential limits of ϕy (as y→ x) coincide
with ϕx so limy→x ϕy = ϕx in the C0 topology as required.

This completes the proof of the continuity of the stable
manifolds with respect to the base point.
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The stable manifolds are a topological foliation

Lemma
The family of disks {Ws

x
: x ∈ U0} defines a topological

foliation.

To prove this, let x ∈ U0 and choose an embedded
dcu-dimensional disk Y ⊂ M containing x and transverse
to Ws

x
.

By continuity of Es, we can shrink Y so that Y is
transverse to Ws

y
at y for all y ∈ Y. Let ψ : Dcu→ Y be a

choice of embedding and define χ : Ds × Dcu→ U0 by
setting

χ(u,v) = γ(ψ(v))(u).

Note that χ maps horizontal lines {v = const.}
homeomorphically onto stable disks.
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Topological foliation chart

x2

x1

x1

x2

Y

s

s
W

W

s
D

χ

D
cu
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By the previous lemma (on continuity of U0 3 x 7→Ws
x
),

each of these embeddings is Lipschitz with uniform
Lipschitz constant L and using this together with
continuity d(χ(u,v), χ(u0, v0)) ≤

≤ d(γ(ψ(v))(u), γ(ψ(v))(u0)) + d(γ(ψ(v))(u0), γ(ψ(v0))(u0))

≤ L‖u− u0‖+ ‖γ(ψ(v))− γ(ψ(v0))‖C0 → 0,

as (u,v)→ (u0, v0), establishing continuity of χ.

Suppose that χ(u1, v1) = χ(u2, v2) with common value
y ∈ U0. Then y ∈Ws

x1
∩Ws

x2
where xj = ψ(vj).

We claim that x1 = x2 with common value x̂. In
particular v1 = v2.

But now γ(x̂)(u1) = γ(x̂)(u2) and so u1 = u2. It follows
that χ is injective and hence is a homeomorphism onto
a neighborhood of x as required for {Ws

x
}x∈U0 to be a

topological foliation.
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It remains to prove the claim.

Note that Ws
x2

can be viewed as a graph over Ws
x1

. Let
A = Ws

x1
∩Ws

x2
. We show that A is open and closed in

Ws
x1

. Since y ∈ A and Ws
x1

is connected, A = Ws
x1

and in
particular, x2 = x1 as required.

It is clear that A is closed in Ws
x1

. To prove that A is
open, suppose that z ∈ A. Since Ws

xj
are tangent to Es

xj

with uniform Lipschitz constant, there exists C > 0 such
that d(x1, x2) ≤ Cd(z, xj) for j = 1,2.

Let z′ ∈Ws
x1

be such that d(z, z′) ≤ (1/2C)d(x1, x2).

Note that this implies d(x1, x2) ≤ 2Cd(z′, x2).

We must show that z′ ∈ A.
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Now

d(fnz′, fnx2) ≤ d(fnz′, fnx1) + d(fnx1, f
nz) + d(fnz, fnx2)

≤ C2
2ν

n{d(z′, x1) + d(x1, z) + d(z, x2)}

≤ C2
2ν

n{d(z′, x2) + d(x2, x1)

+ d(x1, x2) + d(x2, z
′) + d(z′, z) + d(z, z′) + d(z′, x2)}

= C2
2ν

n{3d(z′, x2) + 2d(x1, x2) + 2d(z, z′)}

≤ C2
2ν

n{3d(z′, x2) + 4d(x1, x2)}

≤ (3 + 8C)C2
2ν

nd(z′, x2).

We can arrange that χ takes values in Bϵ(x) where ϵ is
as small as required.

By item (b) of the lemma on existence of stable
manifolds, z′ ∈Ws(x2) and hence z′ ∈ A completing the
proof.

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Existence Topological foliation Bunching Dissipativity

Flow invariance of the foliation

Corollary

There exists ϵ > 0 such that Xt(Ws
x
∩ Bϵ(x)) ⊂ Ws

Xtx
for all

t ≥ 0, x ∈ U0.

To prove this, choose n0 ≥ 1 such that C2
2ν

n0 < 1.

Shrinking ϵ, it follows from items (a)-(c) of the lemma
on existence of stable leaves, that
fn0(Ws

x
∩ Bϵ(x)) ⊂ Ws

fn0x ∩ Bϵ(fn0x) and, inductively, that
fkn0(Ws

x
∩ Bϵ(x)) ⊂ Ws

fkn0x
∩ Bϵ(fkn0x) for all k ≥ 0.

Next choose C ≥ 1 such that d(Xrx,Xry) ≤ Cd(x, y) for all
x, y ∈ U0, r ∈ [−n0T,n0T].

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Existence Topological foliation Bunching Dissipativity

Suppose that y ∈Ws
x

and let x′ = Xrx, y′ = Xry. By item
(a) of the lemma on existence of stable leaves, for y
sufficiently close to x and for all n ≥ 0

d(fnx′, fny′) = d(Xrfnx,Xrfny) ≤ Cd(fnx, fny)

≤ CC2
2ν

nd(x, y) ≤ C2C2
2ν

nd(x′, y′).

By item (b) of the same lemma, Xry ∈Ws
Xrx

for y
sufficiently close to x.

Hence there exists ϵ > 0 such that Xr(Ws
x
∩ Bϵ(x)) ⊂ Ws

Xrx
for all r ∈ [0, n0T], x ∈ U0.

The result for general t follows by writing t = kn0T + r
where k ≥ 0, r ∈ [0, n0T).

The proof is complete.
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Completing the proof of existence of the stable
foliation

Recall that f = XT. Choose C such that
supr∈[0,T] d(Xrx,Xry) ≤ Cd(x, y) for all x, y ∈ U. Write
t = nT + r, n ≥ 0, r ∈ [0, T).

By item (a) of the lemma on the existence of stable
leaves, if d(x, y) < C−1

2 ρ and y ∈Ws
x
, then

d(Xtx,Xty) = d(XnT+rx,XnT+ry) ≤ C2
2Cνnd(x, y) ≤ C′ν̃td(x, y),

where C′ = C2
2Cν−1 and ν̃ = ν1/T.

Passing to an adapted metric, we can arrange that
there are constants ϵ > 0, ν ∈ (0,1) such that if
d(x, y) < ϵ and y ∈Ws

x
, then d(Xtx,Xty) ≤ νtd(x, y) for all

t ≥ 0.
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From now on, we write Ws
x

instead of Ws
x
∩ Bϵ(x). With

this notation, the previous Corollary states that
Xt(Ws

x
) ⊂ Ws

Xtx
for all x ∈ U0, t ≥ 0.

This completes the proof of the Theorem on the
existence of a foliation everywhere tangent to the
extension {Es

x
}x∈U0 of the stable bundle to the whole of

U0.
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Regularity of the stable foliation: with bunching

We recall that Xt is the flow generated by a Cr vector
field G where r ≥ 2. Let q ∈ [0, r].

We suppose that there exists t > 0 so that the
following bunching condition holds:

‖DXt | Es
x
‖ · ‖DX−t | Ecu

Xtx
‖ · ‖DXt | Ecu

x
‖q < 1 for all x ∈ Λ.

Theorem
Let q ∈ [0, [r] ]. If the q-bunching condition holds for
some t > 0, then the bundle Es is Cq over U0. That is,
the map x 7→ Es

x
is a Cq map from a smaller

neighborhood U1 ⊂ U0 of Λ to G1 (the Grassmann of all
one-dimensional subspaces on TU1M).
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Consequences of smoothness of the stable
bundle

1 It is immediate from domination that a q-bunching
condition holds with q = 0. By smoothness of the
flow and compactness of Λ, a q-bunching condition
holds for some q > 0. Hence the stable bundle
Es is at least Hölder over U1.

2 When q ≥ 1 in the previous theorem, it follows by a
theorem of Frobenius that the family of stable
manifolds {Ws

x
}x∈U0 already obtained forms a Cq

foliation of U1, in the sense that the foliation
charts are Cq.
Moreover, the holonomy maps along the
stable leaves are Cq smooth.
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Holonomies

x1

x2

Y

s

s
W

W

s
D

χ

D
cu

Y
,

C
q

h

h(x )

h(x )

x2

x1

1

2
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Example of non-smooth bundle and holonomy

Let p be a fixed point of an Anosov diffeomorphism
f : T3→ T3 with the splitting TpT

3 = Es ⊕ Eu ⊕ Euu into 1d
non-trivial subspaces. We assume that f is locally
smooth linearizable at a neighborhood U of p and
(fixing an orientation)

0 < λ = ‖Dfp | Es‖ < 1 < μ = ‖Dfp | Eu‖ < σ = ‖Dfp | Eu‖.

We also assume that there exists
q = (1,0,0) ∈Wuu(p) ôWs(p) \ {p} in U such that
TqWu(p) 3 v = (vs, vc, vu) with (vc, vu) 6= (0,0).

We set qn = fnq = (λn,0,0),
vn = Dfn

q
· v = (λnvs, μnvc, σnvu) and, for a cross-section

D = {z = 1} ∩U in linearized coordinates, we set
rn = hqn and r = hp, where n ≥ 1 and h : {z = 0} ∩U→ D
is the holonomy along the leaves of the strong-unstable
foliation, tangent to the subbundle Eu.
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Example of unsmooth foliation/holonomy

h

r r

qn

n

σ

λ

µ

W (p)

W (p)

uu

s

n+1

rn+1

qp q

D
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Smooth holonomy leads to a contradiction

If Eu is C1, then h is C1, thus

hqn − hp = Dhp · (qn − q) + L(p,qn) with
‖L(p,qn)‖

‖qn − pn‖
−−−→
n→∞

0

and so limn
‖hqn−hp‖
‖qn−p‖ = ‖Dhp · e1‖ 6= 0. However, in the

linearized, if we write hqm = rm = (rs
m
, rc

m
,1) for some

m ≥ 1, then

hqn+m = rm+n = (λnrs
m
, μnrc

m
,1) with rc

m
6= 0, n ≥ 1.

Since hp = r = (0,0,1) and p = (0,0,0), we deduce that
if Eu (and so h) is smooth, then μn is comparable
to λn.

This contradiction shows that, in this example,
the bundle Eu cannot be smooth.

(Skip the proof of the theorem)
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Proof of the theorem

Choose t as in the q-bunching condition and set f = Xt.

Increasing t if necessary, we can ensure that

‖Df | Es
x
‖‖Df−1 | Ecu

fx
‖ ≤ ‖Df | Es

x
‖ · ‖Df−1 | Ecu

fx
‖ · ‖Df | TxM‖q < 1,

for all x ∈ U0. Let TU0M = Es ⊕ Ecu be the continuous
splitting with Es invariant already constructed.

Take TU0M = Fs ⊕ Fcu a Cr approximation of this splitting
and for each x ∈ U0, let L(Fs

x
, Fcu

x
) denote the space of

linear maps from Fs
x

to Fcu
x

, and let Dx denote the unit
disk in L(Fs

x
, Fcu

x
) (with the norm induced by the

Riemannian metric).

Define the corresponding disk bundle D0 = {Dx, x ∈ U0}.
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Invariant section over overflowing
diffeomorphism

Let U1 = f (U0) ⊂ U0 and set D1 = {Dx, x ∈ U1}.

Let h = f−1|U1 : U1→ U0. Since h(U1) = U0 ⊃ U1, the Cr

diffeomorphism h is overflowing in the sense of
Hirsch-Pugh-Shub, Invariant Manifolds, ’77.

Represent Dh(x) : TxM→ ThxM using the splitting Fs ⊕ Fcu

by writing

Dh(x) =

�

Ax Bx

Cx Dx

�

: Fs
x
× Fcu

x
→ Fs

hx
× Fcu

hx
, x ∈ U1.

We define the graph transform Γ : D1→ D0,

Γx(ℓ) = (Cx + Dxℓ)(Ax + Bxℓ)
−1, ℓ ∈ Dx, x ∈ U1.
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A Lemma and the Theorem

Lemma
The neighborhood U0 of Λ and the Cr splitting Fs ⊕ Fcu

can be chosen so that Γ : D1→ D0 is well-defined and
Lip(Γx) · ‖Dh−1|ThxM‖q < 1 for all x ∈ U1.

Now we use this result to prove the theorem.

Since Es
x

can be regarded as graph of an element
ω ∈ L(Fs

x
, Fcu

x
) with ‖ω‖ as close to zero as desired, we

can assume without loss of generality that ‖ω‖ ≤ 1, and
hence Es is identified with a continuous Df -invariant
section of D1.

Note that Dh(x) graph(ℓ) = graph(Γx(ℓ)) for ℓ ∈ Dx. Since
h = df−1, it follows that Es : U1→ D1 is a continuous
Γ-invariant section.
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From the lemma, the graph transform Γ : D1→ D0
defines a fiber contraction over the overflowing
diffeomorphism h : U1→ U0, and this fiber contraction is
q-sharp in the terminology of Hirsch-Pugh-Shub (HPS).

When q is an integer, we have verified the hypotheses
of the “Cr Section Theorem 3.5” from HPS (with q
playing the role of r, and vector bundles replaced by
disk bundles as in a Remark at p. 36 of HPS).

It follows that Es : U1→ D1 is the unique continuous
Γ-invariant section and moreover that this section is Cq.

This completes the proof in the case that q is an
integer.

The general case follows from Remark 2 in p. 38
of HPS.

(Skip the proof of the lemma)
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Proof of the q-sharp graph transform lemma

To prove the lemmma we start noting that by the
bunching assumption, we can choose λx ∈ (0,1) s.t.

‖Df | Es
x
‖ · ‖Df−1 | Ecu

fx
‖ < λx and λx ‖Df | TxM‖q < 1,

for all x ∈ U0. Since f is C1 and U0 is compact, there
exists δ ∈ (0,1) such that (λhx + 2δ)(1− δ)−2 < 1 and

(λhx + 2δ)(1− δ)−2‖Dh−1 | ThxM‖q < 1,

for all x ∈ U0.

Since Fs is close to the Df -invariant contracting bundle
Es, we can arrange that ‖Cx‖ ≤ 1 and ‖A−1

x
‖ ≤ 1 for all

x ∈ U1.

Also, Fcu is close to Ecu which is invariant when
restricted to Λ so we can arrange that ‖Bx‖ < δ.
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Moreover, A−1
x

is close to Df | Es
hx

and Dx is close to
Df−1 | Ecu

x
so we can ensure that ‖A−1

x
‖‖Dx‖ ≤ λhx for all

x ∈ U1.

Let ℓ, ℓ′ ∈ Dx. Note that ‖A−1
x

Bxℓ‖ ≤ δ, so
‖(I + A−1

x
Bxℓ)−1‖ ≤ (1− δ)−1. Similarly,

‖(I + A−1
x

Bxℓ′)−1‖ ≤ (1− δ)−1. Hence

‖(Ax + Bxℓ)
−1 − (Ax + Bxℓ

′)−1‖
= ‖(Ax + Bxℓ)

−1(Bx(ℓ′ − ℓ))(Ax + Bxℓ
′)−1‖

≤ ‖A−1
x
‖2δ(1− δ)−2‖ℓ′ − ℓ‖

≤ ‖A−1
x
‖δ(1− δ)−2‖ℓ′ − ℓ‖.
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Thus we arrive at

‖Γx(ℓ)− Γx(ℓ′)‖ ≤ ‖Dx(ℓ − ℓ′)‖‖(Ax + Bxℓ)
−1‖

+ ‖(Cx + Dxℓ
′)‖‖(Ax + Bxℓ)

−1 − (Ax + Bxℓ
′)−1‖

≤ ‖Ax‖−1‖Dx‖(1− δ)−1‖ℓ − ℓ′‖
+ (1 + ‖Dx‖)‖A−1

x
‖δ(1− δ)−2‖ℓ − ℓ′‖

≤ λhx(1− δ)−1‖ℓ − ℓ′‖+ 2δ(1− δ)−2‖ℓ − ℓ′‖,

and so
Lip(Γx) ≤ (λhx + 2δ)(1− δ)−2,

for all x ∈ U1.

In particular, Lip(Γx) < 1 so Γx(Dx) ⊂ Dhx, and hence Γ is
well-defined.

The statement of the lemma follows from this estimate
combined with

(λhx + 2δ)(1− δ)−2‖Dh−1 | ThxM‖q < 1.
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Strong dissipative condition

This is a verifiable condition for smoothness of stable
foliations and we can get an estimate for the degree of
smoothness of the stable foliation for the Lorenz
attractor.

Recall that ds = dimEs
x
. Given A = {aij} ∈ Rd×d, let

‖A‖2 = (
∑

ij a
2
ij

)1/2.

Definition
Let q > 1/ds. A partially hyperbolic attractor Λ is
q-strongly dissipative if
(a) For every equilibrium p ∈ Λ (if any), the eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λd of DG(p) satisfy
λ1 − λds+1 + qλd < 0.

(b) supx∈Λ

�

divG(x) + (dsq− 1)‖(DG)(x)‖2
	

< 0.
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Smooth stable foliation

Theorem
Let Λ be a sectional hyperbolic attractor. Suppose that
Λ is q-strongly dissipative for some q ∈ (1/ds, [r] ]. Then
there exists a neighborhood U0 of Λ such that the stable
manifolds {Ws

x
, x ∈ U0} define a Cq foliation of U0.

To prove this, for each t ∈ R, we define ηt : Λ→ R,

ηt(x) = log
n

‖DXt|Es
x
‖ · ‖DX−t|Ecu

Xtx
‖ · ‖DXt|Ecu

x
‖q
o

Note that {ηt, t ∈ R} is a continuous family of
continuous functions each of which is subadditive, that
is, ηs+t(x) ≤ ηs(x) + ηt(Xsx).
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Proof of smoothness condition

Let M denote the set of flow-invariant ergodic
probability measures on Λ.

We claim that for each m ∈M, the limit limt→∞
1
t η(x)

exists and is negative for m-almost every x ∈ Λ.

Proposition (Arbieto-Salgado, 2010)

Let {t 7→ ft : Λ→ R}t∈R be a continuous family of
continuous functions which is subadditive and suppose
that

∫

ef (x)dμ < 0 for every μ ∈MX, with
ef (x) := lim

t→+∞

1
t ft(x). Then there exist a T > 0 and a

constant λ < 0 such that for every x ∈ Λ and every t ≥ T:

ft(x) ≤ λt.

It then follows that there exists constants C,β > 0 such
that expηt(x) ≤ Ce−βt for all t > 0, x ∈ Λ.
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In particular, for t sufficiently large, expηt(x) < 1 for all
x ∈ Λ.

Hence the q-bunching condition is satisfied for such t
and the result follows from the previous theorem and
remarks.

It remains to verify the claim. For each m ∈M, we label
the Lyapunov exponents

λ1(m) ≤ λ2(m) ≤ · · · ≤ λd(m).

Since Λ is partially hyperbolic, the Lyapunov exponents
λj(m), j = 1, . . . , ds are associated with Es and are
negative, while the remaining exponents are associated
with Ecu.
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For m-a.e. x ∈ Λ we have

lim
t→∞

1

t
log ‖DXt|Es

x
‖ = λ1(m),

lim
t→∞

1

t
log ‖DX−t|Ecu

Xtx
‖ = −λds+1(m),

lim
t→∞

1

t
log ‖DXt|Ecu

x
‖ = lim

t→∞

1

t
log ‖DXt | TxM‖ = λd(m).

Hence, m-almost everywhere,

lim
t→∞

1

t
ηt(x) = λ1(m)− λds+1(m) + qλd(m).

If m is a Dirac delta at an equilibrium p ∈ Λ, then it
is immediate from item (a) of the definition of
strong dissipativity that limt→∞

1
t ηt(p) < 0.
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If m is not supported on an equilibrium, then there is a
zero Lyapunov exponent in the flow direction.
Sectional expansion ensures that λds+1(m) = 0 and
λj(m) > 0 for j = ds + 2, . . . , d. Hence, m-almost
everywhere,

lim
t→∞

1

t
ηt(x) = λ1(m) + qλd(m) ≤

1

ds

ds
∑

j=1

λj(m) + qλd(m)

=
1

ds

�
ds
∑

j=1

λj(m) + dsqλd(m)
�

≤
1

ds

�
d
∑

j=1

λj(m) + (dsq− 1)λd(m)
�

=
1

ds
lim
t→∞

1

t

�

log |detDXt(x)|+ (dsq− 1) log ‖DXt(x)‖
�

≤
1

ds
lim
t→∞

1

t

∫ t

0

�

divDG(Xsx) + (dsq− 1)‖DG(Xsx)‖2
�

ds

≤ d−1
s

sup
x∈Λ

�

divDG(x) + (dsq− 1)‖DG(x)‖2
	

.
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By item (b) of the definition of strong
dissipativity, we again have that limt→∞

1
t ηt(x) < 0

for m-almost every x ∈ Λ.

This completes the proof of the claim and the
theorem follows.
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C1+ϵ stable foliation for dissipative
singular-hyperbolic attracting sets

Using the strong dissipativity and bunching
results we estimate the degree of
smoothness of the stable foliation for the
Lorenz attractor in the classical parameters
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C1+ϵ stable foliation for dissipative
singular-hyperbolic attracting sets

Note that if supΛ divG < 0, then condition (b) holds for
q = d−1

s
+ ϵ for ϵ sufficiently small.

When dimM = 3, we have ds = 1 and hence we deduce
that in the dissipative case singular-hyperbolic
attracting sets have a uniformly contracting (stable)
foliation on a full neighborhood of the set and which is
C1+ϵ-smooth, that is, it admits C1+α foliated charts and
the holonomies along the stable leaves are also C1+ϵ for
some ϵ > 0.

In the case of the Lorenz attractor in the classical
parameters, we can estimate de value of 1 + ϵ as
follows.
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C1+ϵ-smooth stable foliation for the Lorenz
attractor

The classical Lorenz equations

dx

dt
= σ(y− x) σ = 10

dy

dt
= rx− y− xz r = 28

dz

dt
= xy− bz b = 8/3

define a smooth vector field G such that

divG ≡ − 41
3 , λ1 ≈ −22.83, λ2 = − 8

3 , λ3 ≈ 11.83,

are the divergence and the eigenvalues of DG at the
unique singularity at the origin, respectively.
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Estimate for the degree of smoothness

Thus, since after the work of W. Tucker (2000) the
classical Lorenz attractor is a geometric Lorenz
attractor, we have that it is (1 + ϵ)-strongly dissipative
for ϵ > 0 sufficiently small.

Hence, the stable foliation is C1+ϵ for the classical
Lorenz attractor, for some ϵ > 0. In fact, we can prove

Corollary

The stable foliation for the classical Lorenz attractor is
at least C1.264.
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Proof of the estimate

Note that By definition, q-strong dissipativity holds for
any q < min{q1, q2} where

q1 =
λ2 − λ1

λ3
≈ 1.704,

q2 = 1−
divG

supΛ ‖DG‖2
= 1 +

41

3

1

supΛ ‖DG‖2
.

Now

‖DG(x)‖22 = 201 +
64

9
+ 2x2

1 + x2
2 + (x3− 28)2 ≈ 208.11 + V,

where
V = 2x2

1 + x2
2 + (x3 − 28)2.
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Estimate on the size of attracting set

To estimate supΛ ‖DG‖2 there are various explicit
estimates on the Lorenz basin of attraction.

One of the best and easier to state estimates can be
found in Giacomini-Neukirch (1997) [“Integrals of
motion and the shape of the attractor for the Lorenz
model.” Phys. Lett. A], which shows that a trapping
region is given by ellipsoids of the form

c− 28

10
x2

1 + x2
2 + (x3 − 28)2 = R,

provided R ≥ c2b2

4(b−1)
where b = 8/3.

Taking c = 48 we obtain c2b2

4(b−1)
= 2457.6 and then we

can explicitly calculate V ≤ 2457.6, and so q2 > 1.264
as stated.
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Hölder-C1 condition on the stable holonomies

In general, even without bunching or strong dissipative
condition, for singular-hyperbolic (three-dimensional)
flows, using the low codimension of the stable leaves
inside cross-sections, the holonomy along stable
manifolds is differentiable and its derivaties are
Hölder continuous.

Moreover, using this Hölder-C1 property of stable
holonomies, we can also show that the Poincaré
return time function to a cross-section is
Hölder-continuous.

This is used in a crucial way to study the ergodic theory
of singular-hyperbolic attractors: to prove the existence
of physical/SRB measure for the flow on these
attractors and study its statistical properties. However
the proof of these properties was only sketched in the
literature.
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C1+α stable holonomies and C1+α quotient map
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Partial hyperbolic attracting set with
codimension 2 stable direction

Let G be a flow on a manifold M which is partially
hyperbolic on a compact invariant attracting set
Λ and the stable direction has codimension 2, that
is, there exists a DXt-invariant and continuous splitting
TΛM = Es

Λ
⊕ Ec

Λ
such that there are C,λ > 0 satisfying for

every x ∈ Λ and t > 0
Es is uniformly contracted: ‖DXt | Es

x
‖ ≤ Ce−λt;

Ec
Λ

dominates Es
Λ
: ‖DXt | Ex‖ · ‖DX−t | Ec

Xt(x)
‖ < Ke−λt.

if ds = dimEs
Λ
, dc = dimEc

Λ
and d = dimM = ds + dc,

then dc = 2 and ds = d− 2.
We assume from now on that Λ =

⋂

t>0 Xt(U0) for an
open neighborhood U0 of Λ in M.
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Extensions of the stable bundle and
central-unstable cone field.

We also assume that the splitting has been
extended to a continuous decomposition of
TU0M = Es ⊕ Ec where Es is DXt-invariant for t > 0 and
there exists a continuous family (Ccu

x
)x∈U0 of central

unstable cones so that Ec
x
⊂ Cu

x
and Es

x
∩ Ccu

x
= {~0} for all

x ∈ U0.

Now let Σ ⊂ U0 be a cross-section to the flow, that is,
a C2 embedded compact disk transverse to G at every
point x ∈ Σ. Set τ0 = inf{|t| : Xtx ∈ Σ, t 6= 0}, which is
strictly positive by compactness of Σ.

For x ∈ Σ we define Ws
x

(Σ) to be the connected
component of Σ ∩

�⋃

|t|≤τ0/2 Xt(Ws
x

)
�

which contains x.
This is the stable foliation on the cross-section.
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Codimension one stable foliation on Σ

Note that because Es is always Hölder-continuous on U0
then Ws

X
is a C1+ϵ immersed smooth submanifold of U0,

for some ϵ > 0.

In addition, since Σ and
�⋃

|t|≤τ0/2 Xt(Ws
x

)
�

are
codimension one submanifolds of class C1+ϵ of U0 which
are, moreover, transverse by construction, then its
intersection Ws

x
(Σ) is a codimension one

submanifold of Σ. These leaves form a
codimension one foliation F s

Σ
of Σ.

Let γ0, γ1 be a pair of smooth curves contained in
Σ given by γi : [0,1]→ Σ, i = 0,1 whose tangent space
is everywhere contained in the center-unstable
cone: for some small a > 0

γ′
i
(t) ∈ Ccu

γi(t)
(a) ∩ Tγi(t)Σ, for all t ∈ [0,1], i = 0,1.
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Hölder-C1 stable holonomy on cross-sections

We further assume that γi crosses Σ, that is,
γi([0,1]) ôWs

x
(Σ) = γi([0,1]) ∩Ws

x
(Σ) is a single point for

all x ∈ Σ, i = 0,1.

Hence there exists a map h : γ0→ γ1 associating to
each γ0(t) the unique (transversal) intersection point of
Ws

γ0(t)
(Σ) with γ1; this is the holonomy map of Fs(Σ)

from γ0 to γ1.

Theorem
The holonomy h is differentiable and its derivative is
Hölder.

To prove this we need to consider the holonomies
of the stable foliation Fs of the flow.
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Holonomies on the cross-section and on U0

π1

Σ

γ

γ

γ

0

1

0
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ε

1

h

H ξ

γ

Figure : The cross-section Σ to the flow together with the
curves γi and surfaces γϵi , i = 0,1, the holonomy H (along the
stable leaves of the flow) restricted to γ0 and the holonomy
h (along the stable leaves on the cross-section) after
composing with the projection π1.
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Consequence of the Theorem

A consequence of the theorem on Hölder-C1

smoothness of the stable holonomy on cross-sections is
that if we consider the quotient map of a Poincaré
map to the cross-section Σ over the stable
foliation F s(Σ), then this quotient map becomes a
C1+ϵ one-dimensional map for some ϵ > 0.

This is the crucial feature that enables us to use
the ergodic theory of one-dimensional dynamics
to study the ergodic theory of these attracting
sets without assuming bunching or dissipative
conditions.

(Skip the proof of the theorem)

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Estimates Hölder-C1 holonomies Piecewise expansion Robust transitivity

The stable holonomy for the flow on U0

We consider the surfaces γϵ
i

=
⋃

t∈[−ϵ,ϵ] X
t(γi), i = 0,1 (at

least of class C2 since both γ0 and Xt belong to this
class) for some fixed 0 < ϵ < τ0/2.

These are transverse to the stable foliation Fs of the
flow, by construction.

We can then consider the holonomy H : γϵ0→ γϵ1 given
for each z ∈ γϵ0 by the unique (transversal) intersection
of Ws

z
with γϵ1.
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Proof of the Theorem

We write h as a composition of the restriction
h̃ = H |γ0 : γ0→ ξ1 = H(γ0) ⊂ γϵ1 with πi : γϵ

i
→ γi, i = 0,1,

which is the natural projection along flow lines. That is
h = π1 ◦ h̃ where we set

π1(z) = γ1(s) ⇐⇒ ∃|t| < ϵ : Xt(γ1(s)) = z.

for some s ∈ [0,1].

Then we can write the image ξ1 = h̃(γ0) as the
following graph in γϵ1 over γ1:

ξ1 = {Xξ(γ1(s))(γ1(s)) : s ∈ [0,1]}

for a map ξ : γ1→ R.
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Holonomies on the cross-section and on U0
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Figure : The cross-section Σ to the flow together with the
curves γi and surfaces γϵi , i = 0,1, the holonomy H (along the
stable leaves of the flow) restricted to γ0 and the holonomy
h (along the stable leaves on the cross-section) after
composing with the projection π1.
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Remember that h̃ is given by the restriction H | γ0.

Now Hölder continuity of the holonomy maps H along
strong-stable laminations is a general feature of C1+α

partially hyperbolic dynamics for any α > 0; see
Pugh-Shub-Wilkinson “Hölder foliations“. Duke
Math. J. ’97.

Hence ξ : γ1→ R is Hölder-continuous because
[0,1] 3 s 7→ ξ1(s) = Xξ(γ1(s))(γ1(s)) is a Hölder continuous
curve in γϵ1 and (t, s) 7→ Xt(γ1(s)) is a C1 parametrization
of the surface γϵ1 ⊃ ξ1.

Moreover, in this setting, these holonomies are also
absolutely continuous with respect to the
induced smooth measures mi on γϵ

i
, i = 0,1 from

the Riemannian volume on M; see Pesin-Sinai “Gibbs
measures for partially hyperbolic attractors” ETDS ’82
or Pugh-Shub “Ergodic Attractors” TAMS ’89. This
means that H∗(m0)�m1.
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Hölder Jacobians

This also means that H admits a Jacobian, that is, there
exists JH : γϵ0→ [0,+∞) such that m1(H(A)) =

∫

A JHdm0
for all Borel subsets A of γϵ0.

In addition, this Jacobian is a Hölder-continuous
map; see e.g. Theorem 8.6.13, p 255 in Barreira-Pesin
“Nonuniform hyperbolicity” CUP ’07.

Let us denote by λi the measure induced on γi by the
area measure mi from γϵ

i
, i = 0,1.

Altogether this ensures that h : γ0→ γ1 is absolutely
continuous in the sense that h∗(λ0)� λ1 and its
Jacobian is also Hölder-continuous, which implies that
the Radon-Nikodym derivative d(h∗λ0)

dλ1
can be seen as

λ1-a.e. equal to h′, and so h becomes a Hölder-C1 map!
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Holonomy has derivative which is Hölder

Indeed, given any open interval (a,b) ⊂ [0,1] we define
λi(γi(a,b)) = mi(π

−1
i γi(a,b)), i = 0,1 and so

λ1
�

h(γ0(a,b))
�

= λ1
�

π1h̃(γ0(a,b))
�

= λ1
�

π1H(π−1
0 γo(a,b))

�

= m1
�

H(π−1
0 γ0(a,b))

�

=

∫

π−1
0 γ0(a,b)

JHdm0 =

∫

γ0(a,b)

JHd((π0)∗m0)

=

∫

γ0(a,b)

JHdλ0

we see that the Jacobian of h can be seen as the
restriction of JH to the image of γ0.
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Absolute continuity and a.e. differentiability

Finally, absolutely continuous maps as h are
differentiable λ0-a.e., that is h′ exists λ0-a.e. and,
moreover, are primitives of the derivative. So we
have

λ1
�

h(γ0(a,b))
�

=

∫

γ0(a,b)

|h′|dλ0

for all 0 ≤ a < b ≤ 1.

Since we also know that |h′ ◦ γ0| = JH ◦ γ0, λ0-a.e. and JH
is Hölder-continuous, then we can extend h′ to a
Hölder-continuous function [0,1]→ R which is the
derivative of h.

This concludes the proof of the Hölder-C1 smoothness
of holonomies in this settting.
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Piecewise expansion for the quotient map

If we also assume that Ec is seccionally
expanding, then we can find a collection of
cross-sections to the flow and a Poincaré
return map which admits a one-dimensional
quotient map over the stable foliation that is
a C1+ϵ piecewise expanding map.
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Cross-sections and Poincaré maps

Given two cross-sections Σ, eΣ to the flow, let us assume
that there exists x ∈ int(Σ) and τ > 0 so that
Xτ(x) ∈ int(eΣ) (we write int(Σ) for the interior of Σ as a
manifold with boundary).

The Tubular Flow Theorem ensures that there exists an
open neighborhood Ux of x in Σ and a uniquely defined
smooth Poincaré map

f : Ux ⊂ Σ→ eΣ, r(x) = Xr(x)(x) (1)

for a suitable Poincaré return time function r : Ux → R+

with r(x) = τ, in such a way that f |Ux becomes a
diffeomorphism onto an open neighborhood Vfx = f (Ux)
of fx in eΣ and as smooth as the vector field G.
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Holonomies on cu-curves

Note that, in general, f needs not correspond to the
first time the orbits of Ux ⊂ Σ encounter eΣ, nor it is
defined everywhere in Σ.

Note that the return time function r : Σ→ (0,+∞)
belongs to the same differentiability class as the flow,
since the cross-sections Σ, eΣ are smooth embedded
disks on M.

Let us assume that Σ, eΣ are endowed with cu-curves
γ0,Ýγ0 which cross each cross-section and also Ux and
Vfx, respectively.

We denote p : Ux → γ0, p′ : Vfx →Ýγ0 the projections
along the stable foliation Fs

Σ
and Fs

eΣ
on each

neighborhood.
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Locally quotienting over the stable foliation

The open ngbh. Ux where f is defined projects onto
V = p(Ux) which is an open neighborhood of p(x) in γ0.
Since stable leaves are invariant, we can define

y ∈ V 7→ f̄ (y) = p′
�

f (p−1(y) ∩Ux)
�

∈Ýγ0.

From previous results, this is a composition of a C1+α

map with the Poincaré map, and thus f̄ is a C1+α map,
for some 0 < α < 1.

If we have that
f is defined on all points of Σ, and that
f sends leaves of Fs

Σ
into the interior of leaves

of Fs
eΣ
;

then, taking the cu-curves γ0,Ýγ0 crossing Σ, eΣ,
respectively, the previous procedure defines a quotient
map f̄ : γ0→Ýγ0 which is a C1+α map.
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Partial hyperbolicity of Poincaré maps

The splitting Es ⊕ Ecu over U0 induces a continuous
splitting Es(Σ)⊕ Ecu(Σ) of the tangent bundle TΣ (and
analogously for eΣ)

Es
y

(Σ) = Ecs
y
∩ TyΣ and Ecu

y
(Σ) = Ecu

y
∩ TyΣ, y ∈ Σ

where Ecs
y

= Es
y
⊕ EG

y
and EG

y
is the direction of the flow at

y.

The DXt-invariance of the splitting Es ⊕ Ecu on Λ and the
invariance of Es on U0 ensures that

Df · Es
x

(Σ) = Es
fx

(Σ) for all x ∈ Σ, and
Df · Ecu

x
(Σ) = Ecu

fx
(Σ) for all x ∈ Λ ∩Σ.
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Partial hyperbolic Poincaré map

The next result shows that, if TΛM = Es
Λ
⊕ Ec

Λ
is a partial

hyperbolic splitting and the Poincaré time r(x) is
sufficiently large, then Es(Σ)⊕ Ecu(Σ) defines a partially
hyperbolic splitting for the transformation f on the
cross-sections.

Proposition

Let f : Σ→ eΣ be a Poincaré map with Poincaré time r.
For every given 0 < λ < 1 there exists
T1 = T1(Σ, eΣ, λ) > 0 such that if inf r > T1, then
‖Df | Es

x
(Σ)‖ < λ, and

‖Df | Es
x

(Σ)‖ ·






�

Df | Ecu
x

(Σ)
�−1



 < λ

for all x ∈ Σ.
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Proof of the proposition

Note that for v ∈ TxΣ we have

Df (x)v = D(Xr(x)(x))v = DXr(x) · v +
�

Dr(x) · v)G(fx) ∈ TfxeΣ

which is the same as

Df (x)v = π
eΣ(fx) ·

�

DXr(x) · v
�

where π
eΣ(fx) : TfxM→ TfxeΣ is the projection

corresponding to the splitting TfxM = TfxΣ⊕
�

R ·G(fx)
�

.

Since π
eΣ(z) has uniformly bounded norm for z ∈ eΣ by

compactness and transversality, then the statement of
the proposition is a straightforward consequence of
partial hyperbolicity, as long as r is big enough.
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Standard parametrization for cross-sections

In this way we can always achieve an arbitrarily large
contraction rate along the stable direction at any given
pair of cross-sections, as long as we take λ sufficiently
close to zero and, consequently, a big enough threshold
time T1.

Given a cross-section Σ there is no loss of generality in
assuming that it is the image of the square I2 by a C1+α

diffeomorphism h, for some 0 < α < 1, which sends
vertical lines inside leaves of Fs(Σ), where I = [−1,1] .
We denote by int(Σ) the image of int(I2) = (−1,1)2

under the above-mentioned diffeomorphism, which we
call the interior of Σ.

We also say that ∂I× I ' ∂uΣ is the unstable-boundary of
Σ and that I× ∂I ' ∂sΣ is the stable-boundary of Σ.
Notice that ∂sΣ is formed by two curves inside the
stable foliation.

We also assume that each cross-section Σ is contained
in U0, so that every x ∈ Σ is such that ω(x) ⊂ Λ. For
convenience, from now on we assume that
cross-sections are of this kind.
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Generalized Lorenz singularity

A generalized Lorenz singularity is an equilibrium σ of G
such that the spectrum of DG(σ) has two largest real
eigenvalues satisfying λ2 < 0 < λ3 and the rest of the
spectrum is contained in {z ∈ C : ℜ(z) < λ2}.

Hence such singularities have a strong-unstable
one-dimensional manifold Wu

σ
, a strong-stable

(d− 2)-dimensional manifold Wss
σ

and a stable
(d− 1)-dimensional manifold Ws

σ
.

However, the derivative DG(σ) of the flow at σ is not
necessarily area expanding along the directions
corresponding to the eigenvalues λ2, λ3, as is the case
of a Lorenz-like singularity.
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Cross-sections near a Lorenz-like equilibrium

x1

x2

x3

σ

Σo−σ Σo+σ

Σi+σ

Σi−σ

w z

R(z)R(w)

`−

`+

W ss
loc(σ)

W u
loc(σ)
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Global Poincaré map

Theorem

Let G be a C2 vector field on a d-dimensional compact
manifold having a partial hyperbolic attracting set Λ,
with TΛM = Es

Λ
⊕ Ec

Λ
and dimEs

Λ
= d− 2, and containing

generalized Lorenz singularities.

For S(Λ) = {σ ∈ Λ : G(σ) = ~0} we assume that
Wss

σ
∩ Λ = {σ} for all σ ∈ S(Λ).

Then there exists α > 0 and a finite family Ξ of
cross-sections and a global (n-th return) Poincaré map
R : Ξ0→ Ξ, R(x) = Xτ(x)(x) such that
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Global Poincaré map (continued)

Theorem (continued)
1 the domain Ξ0 = Ξ \ Γ contains the cross-sections

with a family Γ of finitely many smooth arcs
removed and τ : Ξ0→ [τ0,+∞) is a smooth function
bounded away from zero by some uniform constant
τ0 > 0.

2 We can choose coordinates on Ξ so that the map R
can be written as F : Q̃→ Q, F(x, y) = (f (x), g(x, y)),
where Q = I× I and Q̃ = Q \ Γ0, with Γ0 = C× I and
C = {c1, . . . , cn} ⊂ I a finite set of points.

3 The map f : I \ C→ I is piecewise C1+α with n + 1
strictly monotonous branches defined on the
connected components of I \ C.
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Global Poincaré map (terminates!)

Theorem (continued again)

(4) The map g : Q̃→ I preserves and uniformly
contracts the vertical foliation F = {{x} × I}x∈I of Q:
∃0 < λ < 1 s.t. dist(g(x, y1), g(x, y2)) ≤ λ · |y1 − y2|,
∀y1, y2 ∈ I.

If we assume, in addition, that Ecu
Λ

is sectionally
expanding, then we can replace item (3) above by
(5) The map f : I \ C→ I is piecewise expanding C1+α

with n + 1 strictly monotonous branches defined on
the connected components of I \ C and satisfies
|Df | > 2 wherever defined.
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Flow-boxes near equilibria

Since the equilibria σ in our setting are all Lorenz-like,
using the linearization given by the Hartman-Grobman
Theorem or, in the absence of resonances, the smooth
linearization results provided by e.g. Sternberg, orbits
of the flow in a small neighborhood U of the equilibrium
are solutions of a linear vector field modulo a
continuous/smooth change of coordinates.

Then for δ > 0 we choose cross-sections
Σo± at points y± in different components of
Wu

loc
(σ) \ {σ}

Σi± at points x± in different components of
Ws

loc
(σ) \Wss

loc
(σ)

and Poincaré first hitting time maps
R± : Σi± \ ℓ± → Σo− ∪Σo+, where ℓ± = Σi± ∩Ws

loc
(σ),

satisfying
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Cross-sections near singularities

1 every orbit in the attractor passing through a small
neighborhood of the equilibrium σ intersects some
of the incoming cross-sections Σi±;

2 R± maps each connected component of Σi± \ ℓ±
diffeomorphically inside a different outgoing
cross-section Σo± , preserving the corresponding
stable foliations.

These cross-sections may be chosen to be planar
relative to some linearizing system of coordinates near
σ, e.g., for a ϵ > 0

Σi,± = {(x1, x2,±1) : |x1| ≤ ϵ, |x2| ≤ ϵ} and

Σo,± = {(±1, x2, x3) : |x2| ≤ ϵ, |x3| ≤ ϵ},

where the x1-axis is the unstable manifold near σ = ~0,
the x2-axis is the strong-stable manifold and the x3-axis
is the weak-stable manifold of the equilibrium.
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Cross-sections near a Lorenz-like equilibrium

x1

x2

x3

σ

Σo−σ Σo+σ

Σi+σ

Σi−σ

w z

R(z)R(w)

`−

`+

W ss
loc(σ)

W u
loc(σ)
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Covering of Λ by flow boxes

Around each singularity σ ∈ S(Λ) there exists a flow-box
covering a neighborhood Uσ of σ and at each regular
point x ∈ Λ there exists a cross-section Σx to the vector
field.

Define for any cross-section Σ the δ-subsection

Σδ = {x ∈ Σ : d(x, ∂sΣ) > δ}.

Take flow boxes near singularties with ingoing and
outgoing subcross-sections Σi±,δ

σ
,Σo±,δ

σ
covering a

corresponding neighborhood Uδ
σ

of σ ∈ S(Λ) and, for
each Σx in Λ \ ∪σ∈S(Λ)Uδ

σ
take a cross-section Σx to the

vector field and its subsection Σδ
x
.
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Using a tubular neighborhood construction, we linearise
the flow in an open set Uδ

Σ
= X(−ϵ0,ϵ0)(int(Σδ

x
)) for a small

ϵ0 > 0, containing the interior of the cross-section Σδ
x
.

This provides an open cover of the compact set Λ by
flow-boxes near the singularities and tubular
neighborhoods around regular points.

We let Ξδ = {Uδ
Σi
, Uδ

σk
: i = 1, . . . , l; k = 1, . . . , s} be a finite

cover of Λ, where s ≥ 1 is the number of singularities in
Λ, and we set T2 > 0 to be an upper bound for the time
it takes any point z ∈ UΣi to leave this tubular
neighborhood under the flow, for any i = 1, . . . , l.
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The global Poincaré return map

Let T3 = max{T2, T1(Σ, eΣ, λ),Σ, eΣ ∈ Ξδ} and consider the
value T > T3 so that

diam
�

XT(Ws
x

(Σ))
�

≤ cλT diam(Ws
z
(Σ) <

δ

100
, for all Σ ∈ Ξ

(note that here we consider Σ ∈ Ξ instead of Σ ∈ Ξδ).
Then define

R(z) = Xτ(XT(z)

�

XT(z)
�

where τ(w) = inf{t > 0 : Xt(w) ∈ Ξδ}.

Note that τ is not defined at points w ∈ U0 which do not
return to Ξδ, which is only possible if XT(w) ∈Ws

loc
(σ) for

some σ ∈ S(Λ), since the flow-boxes through the
sections of Ξδ provide an open cover for the attracting
set Λ.
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The adapted Poincaré map

Let Ξδ
0 ⊂ Ξδ be the set of points such that R is

well-defined. By the choice of T we have that for every
x ∈ Ξδ

0 there exist Σ, eΣ ∈ Ξ such that

R
�

Ws
x

(Σ)
�

⊂ eΣδ/2.

This means that all points in Ws
x

(Σ) do return to eΣδ/2,
then we have proved

Proposition

There exists a cover of Λ by flow-boxes through
cross-sections near regular points Ξ and a Poincaré
return map R : Ξ0 ⊂ Ξ→ Ξ such that for all x ∈ Ξ0 there
are Σ, eΣ ∈ Ξ such that R

�

Ws
x

(Σ)
�

⊂ eΣδ/2 and so
R
�

Ws
x

(Σ)
�

⊂ int
�

Ws
Rx

(eΣ)
�

.

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Estimates Hölder-C1 holonomies Piecewise expansion Robust transitivity

Finitely many strips in the domain of R

Now we focus of Ξ0. Let ∂sΞ denote the union of all the
leaves forming the stable boundary of every
cross-section in Ξ.

Lemma
The set of discontinuous points of R together with
points where R is not defined in Ξ \ ∂sΞ is contained in
the set of points x ∈ Ξ \ ∂sΞ so that

1 either R(x) is defined and belongs to ∂sΞ;
2 or there is some time 0 < t ≤ T such that

Xt(x) ∈Ws
loc

(σ) for some σ ∈ S(Λ).
Moreover this set is contained in a finite number of
stable leaves of the cross-sections Σ ∈ Ξ.
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The global one-dimensional quotient map f

Let Γ be the finite set of stable leaves of Ξ provided by
the previous lemma together with ∂sΞ. Then the
complement Ξ \ Γ ⊂ Ξ0 of this set is formed by finitely
many open strips where R is smooth.

We choose a C2 cu-curve γΣ transverse to F s
Σ

in each
Σ ∈ Ξ. Then the projection pΣ along leaves of F s

Σ
onto

γΣ is a C1+α map, for some α > 0, since this is also the
holonomy between cu-curves crossing F s

Σ
. We set

J =
⋃

Σ,eΣ∈Ξ

int
�

{x ∈ Σ : Rx ∈ eΣ}
�

∩ γΣ

which is diffeomorphic to a finite union of
non-degenerate open intervals I1, . . . , In+1 by a C1+α

diffeomorphism, and pΣ | p−1
Σ

(J) becomes a C1+α

submersion.
V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Estimates Hölder-C1 holonomies Piecewise expansion Robust transitivity

After rescalling we make the identification
I =

�

∪n+1
i=1 Ii

�

∪C, where C is a finite set of points in I which
are boundaries of the open intervals I1, . . . , In+1 in I.

Note that since Ξ is finite we can choose γΣ so that pΣ

has bounded derivative: there exists β0 > 1 such that

1

β0
≤
�

�DpΣ | γ
�

� ≤ β0 for every cu-curve γ inside any Σ ∈ Ξ.
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Since the Poincaré map R : Ξ0→ Ξ takes stable leaves of
F s

Σ
inside stable leaves of the same foliation, is

hyperbolic and, in addition a cu-curve γ ⊂ Σ is taken by
R into a cu-curve R(γ) in the image cross-section, the
map

f : I \ C→ I given by I \ C 3 z 7→ p
eΣ

�

R
�

Ws
z
(Σ) ∩ eΣ

�

�

for Σ, eΣ ∈ Ξ is C1+α for points in the interior of Ii,
i = 1, . . . , n + 1.

Moreover, it also satisfies

�

�Df | =
�

�D
�

p
eΣ ◦R ◦ γΣ

��

� ≥
1

β0
·




D(R ◦ γΣ)




 > 0

since R(γ) is a cu-curve if γ is a cu-curve.

This completes the proof of items (1-4) of the Theorem.
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The singular-hyperbolic case

We assume now the extra condition that Ec is
seccionally expanded. In this setting, the singularities
S(Λ) become Lorenz-like singularities.

Given a cross-section Σ, a positive number ρ, and a
point x ∈ Σ, we define the unstable cone of width ρ at x
by

Cu
ρ

(x) = {v = vs + vu : vs ∈ Es
Σ

(x), vu ∈ Ecu
Σ

(x) and ‖vs‖ ≤ ρ‖vu‖}.

Let ρ > 0 be any small constant.
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Hyperbolicity of Poincaré maps

Proposition

Let R : Σ→ eΣ be a Poincaré map as before with Poincaré
time t(·). Then DRx

�

Es
x

(Σ)
�

= Es
Rx

(eΣ) at every x ∈ Σ and
DRx

�

Ecu
x

(Σ)
�

= Ecu
Rx

(eΣ)) at every x ∈ Λ ∩Σ. In addition, for
every given 0 < λ < 1 there exists T3 = T3(Σ, eΣ, λ) > 0
such that, if t(·) > T3 at every point, then

‖DR | Es
x

(Σ)‖ < λ and ‖DR | Ecu
x

(Σ)‖ > 1/λ,∀x ∈ Σ ∩ Λ.

Moreover, any x ∈ Σ, we have DR(x)(Cu
ρ

(x)) ⊂ Cu
ρ/2(Rx)

and

‖DRx(v)‖ ≥
5

6
λ−1 · ‖v‖ for all v ∈ Cu

ρ
(x).
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Sketch of the proof of the proposition

The proof of this result is based on the observation that
the volume expansion along the bidimensional bundle
Ec

Λ
translated into expansion in the Ecu(Σ) direction

since the vector field in invariant and non-expanding
transversely to Σ.

Then, for small ρ > 0, the vectors in Cu
ρ

(x) can be
written as the direct sum of a vector in Ecu

x
, which is

expanded at a rate λ−1, with a vector in Ecs
x

, which is
contracted at a rate λ.

Hence, for small ρ, the center-unstable component
dominates the stable component and the length of the
vector is increased at a rate close to λ−1.
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Completing the proof of the theorem

In this way we can always achieve an arbitrarily large
expansion rate along the directions of the unstable
cone as long as we take λ sufficiently close to zero and,
consequently, a big enough threshold time T3.

Using this in the construction of Ξ choosing T in such a
way that besides the conditions in the previous
subsection, it also satisfies T > T3, we obtain

|Df | ≥ sinÞ
�

Fs
eΣ

(R ◦ γΣ), γ
eΣ

�

· ‖DR ◦ γΣ · γ′Σ‖ > ω,

as long as we take the threshold time T large enough,
since the angle between the cu-curves γ0,Ýγ0 and the
stable foliation on the cross-sections are bounded away
from zero.

This completes the proof of the Theorem.
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Finally, we have reached...

THE END.

THANKS!
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Unstable cone-fields on cross-section and
singular hyperbolicity

We present a proof of a claim made by Tucker in
Section 2.4 of

W. Tucker. A rigorous ODE solver and Smale’s
14th problem. Found. Comput. Math. 2
(2002) 53–117.

which to the best of the authors knowledge is
missing in the literature.
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What Tucker proved via a computer algorithm

In the above cited paper Tucker proved, through the
successful run of a computer algorithm, that there
exists:

a compact set N contained in the cross-section
Σ = {z = 27} of the flow G of the Lorenz equations
for which:

the first Poincaré return map R : N \ Γ→ N is
well-defined away from the curve Γ ⊂ N, given by
the intersection of the local stable manifold of the
singularity with N;
moreover, it is proved also that R(N \ Γ) ⊂ N, so that
in N there exists an attracting set ΛN =

⋂

n≥0 Rn(N).
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The unstable cone field in the return region

In addition, there exists a cone field {Cu
x
}x∈N ⊂ TNΣ s.t.

DRxC
u
x
⊂ Cu

Rx
, x ∈ N

(forward invariance) and also satisfies

Proposition (Proposition 5.1 from Tucker)

There exists F ⊂ N s.t. F ⊃ Γ and contains a fundamental
domain of R (i.e. every R-orbit has some element in F)

1 each x0 ∈ F whose positive orbit eventually leaves F
satisfies for every return xn ∈ F

min{‖DRn
x0
· v‖/‖v‖ : v ∈ Cu

x0
} ≥ 2;

2 each x0 ∈ F whose positive orbit is contained in F
satisfies min{‖DRn

x0
· v‖/‖v‖ : v ∈ Cu

x0
} ≥ 2n/2 for all

n ≥ 1.
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Consequences

It follows from the algorithms developed and studied by
Tucker that these are robust properties of the flow (i.e.
they hold true also for all vector fields sufficiently C1

close to G) and are enough to prove transitivity for the
return map.

Lemma (Transitivity lemma)

For each x ∈ N and y ∈ ΛN and open neighborhoods V of
x and W of y in N, there is m ≥ 1 s.t. RmV ∩W 6= ∅.

Recall that the maximal invariant subset Λ =
⋂

t>0 Xt(U)
for some positively invariant neighborhood U satisfies
Λ ∩N = ΛN is the maximal invariant subset at the
cross-section.

Hence the above lemma implies the robust
transitivity of Λ. We present a proof in what
follows.
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Robust transitivity and singular-hyperbolicity

Robust transitivity implies that Λ is a
singular-hyperbolic attractor following

C. A. Morales, M. J. Pacifico and E. R. Pujals. Robust
transitive singular sets for 3-flows are partially
hyperbolic attractors or repellers. Ann. of Math. (2)
160 (2004) 375–432.

From what has already been proved we get

Claim (Section 2.4 of Tucker’s paper)

R admits an invariant contracting C1+α foliation.
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Existence of physical/SRB measure

Hölder-C1 smoothness is crucial to obtain the
existence of a physical/SRB measure for Λ: this
ensures that the one-dimensional quotient map is a
piecewise expansive C1+ϵ map for some ϵ > 0.

Then we can apply results from the ergodic
theory of piecewise expanding maps of the
interval, ensuring the existence of a unique
absolutely continuous invariant measure ν for
this map.

From this, through standard constructions of ergodic
theory, a physical measure μ for the flow can be
induced from the a.c.i.m. ν for the one-dimensional
quotient map.

(Skip the proof of the transitivity lemma)
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Proof of transitivity for the Poincaré return map

Let N \ Γ = N+ ∪N− be the components of N away from
Γ; see next figure.

There exist ω± the limit points of images R(xn) when
xn→ Γ with xn ∈ Γ± , due to the dynamics of the flow
near the singularity at the origin.

Then we can define for ϵ > 0 and k ∈ Z+ the
neighborhood of Γ in N

Γk
ϵ

= {x ∈ N+ : Rk(x) ∈ Bϵ(R
k−1(ω+))}

∪ {x ∈ N− : Rk(x) ∈ Bϵ(R
k−1(ω−))}.
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Figure : An approximation of ΛN (the two curved “lines”) with
the most contracting directions for one iterate of R. The
(almost) straight line cutting across the two branches of ΛN is
Γ, the intersection of the stable manifold of the origin and
the return plane. The bounding box is [−6,6]2 × {27}.
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Before the proof: two remarks

The previous Proposition from Tucker ensures the
existence of K > 0 and σ > 1 such that

‖DRn
x
· v‖ ≥ Kσn‖v‖

for all n ≥ 1, v ∈ Cu
x

and x ∈ N such that Rkx /∈ Γ for
k = 0, . . . , n.
The expansion rate provided by the same
Proposition ensures that every curve ξ : [0,1]→ N
such that ξ′(s) ∈ Cu

ξ(s)
(a Cu-curve in what

follows) admits N = N(ξ) ∈ Z+ so that Rnξ crosses
N and also Γ1

ϵ
for all n ≥ N.
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Proof of the transitivity lemma

Let y ∈ ΛN and x ∈ N be given and fix neighborhoods V
of x and W of y in N.

Fix also a Cu-curve ξ : [0,1]→ V containing x.

From the previous remarks, consider n > 0 such that a
neighborhood V0 ⊂ V of x satisfies that Rn(V0 ∩ ξ)
contains a curve ζ which crosses N and in particular
crosses Γ1

ϵ
.

Let ϵ > 0 be small enough so that B3ϵ(y) ⊂ W.

We split the argument in two cases, as follows.
Case A For z ∈ Bϵ(y) ∩ ΛN and zk ∈ ΛN so that

Rkzk = z, then zk ∈ N \ Γk
ϵ
,∀k ≥ 1.

V. Araujo Smooth stable foliation vs exp. decay



Setting Stable bundle Foliation Smoothness Estimates Hölder-C1 holonomies Piecewise expansion Robust transitivity

Case A

The assumption ensures that Wk = R−kW ⊂ N \ Γk
ϵ

is
diffeomorphic to W for k = 1, . . . , ℓ for some maximal
ℓ ≥ 1.

Note that ℓ can be made arbitrarily big by reducing the
size of the neighborhood W.

Let η : [0,1]→W be a Cs-curve, that is, a regular curve
such that η′(s) ∈ Cs

η(s)
= Tη(s)Σ \ Cu

η(s) for all 0 ≤ s ≤ 1.

The forward invariance of the cone field Cu implies the
backward invariance of the interior of its complement
Cs, which is also a cone field.

Hence ηk = R−kη is also a Cs-curve.
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R forward contracts area uniformly

Since divG ≤ −c < 0 for a constant c > 0 there is C > 0
and 0 < λ < 1 s.t. |detDRj| ≤ Cλj for j ≥ 0.

Indeed, since N ⊂ Σ is a cross-section to the flow G, if
x ∈ N and R(x) ∈ N is given by Xτ(x)(x), where τ(x) is the
Poincaré return time to N, then

e−cτ(x) = |detDXτ(x)x| = |detDRx|
sinÞ(G(Rx), TRxΣ)

sinÞ(G(x), TxΣ)

≥ C|detDRx|.

Since τ(x) ≥ τ0 > 0 for all x ∈ N by compactness, the
uniform contraction of area of R is clear.
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ηk is forward contracted at a uniform rate

By the backward invariance of the stable cones, there
exists θ > 0 for which Þ(η′

k
(s), v) ≥ θ for all

s ∈ [0,1], v ∈ Cu
ηk(s)

and 1 ≤ k ≤ ℓ. We deduce

|detDRk
ηk(s)
| =
‖DRk

ηk(s)
η′

k
(s)‖ · ‖DRk

ηk(s)
v‖ sinÞ(η′(s),DRk

ηk(s)
v)

‖η′k(s)‖ · ‖v‖ sinÞ(η′k(s), v)

≥
‖DRk

ηk(s)
η′

k
(s)‖

‖η′k(s)‖
· Kσk · sinθ

and so ‖η′(s)‖ = ‖DRk
ηk(s)

η′
k

(s)‖ ≤ C
K sinθ

�λ
σ

�k‖η′
k

(s)‖ is
uniformly forward contracted.
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A stable backward invariant cone field

The length of ηk grows exponentially with k and, since
ηk is a Cs-curve, then ηk crosses N transversely to
the unstable cone field.
In particular, Cs,Cu behave as hyperbolic cone fields

besides forward invariance of CU we have
DR−1

x
Cs

x
⊂ Cs

R−1x
, x ∈ R(N);

from the previous estimates we get

backward expansion: ‖DR−k
x
· u‖ ≥ K sinθ

C

�σ
λ

�k‖u‖ for
all k ≥ 1, u ∈ Cs

x
and x ∈ Rk(N \ Γ);

domination:
‖DRk

x
v‖

‖v‖ ≥ Kσk ‖DRk
x
u‖

‖u‖ for all k ≥ 1, for all

non-zero vectors v ∈ Cu
x
, u ∈ DR−k

x
· Cs

Rkx
and x ∈ N

such that Rix /∈ Γ for i = 0, . . . , k − 1.
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Conclusion in Case A

Hence, letting W be a smaller neighborhood if needed,
we may assume without loss of generality that ηℓ
crosses ζ transversely in a single point {zℓ} = ηℓ ô ζ
(observe that ηℓ cannot “bend” in N since it is tangent
to the cone field Cs).

Finally note that Rℓzk ∈W ∩Rn+ℓV and we have
completed the proof of the transitivity Lemma in this
case (Case A).

Now for the final case.
Case B There exists y′ ∈ Bϵ(y), k ≥ 1 and y′

k
∈ ΛN

such that Rky′
k

= y′ and y′
k
∈ Γk

ϵ
.
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The final Case B

Since Γk
ϵ
⊂ Γ1

ϵ
, we can find x′ ∈ V0 ∩ ξ such that Rnx′ ∈ Γk

ϵ
.

Hence we obtain that

Rn+kx′, Rky′
k
∈ Bϵ(R

k−1ω±)

which means in particular that Rn+kx′ ∈ B2ϵ(y′).

By the choice of ϵ, we see that Rn+kx′ ∈ B3ϵ(y) ⊂ W and
so W ∩Rn+kV 6= ∅.

This concludes the proof of the transitivity Lemma also
in this case.
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