Mathematical Statistical Physics - LMU München, summer semester 2012
 Hartmut Ruhl, Imre Péter Tóth
 Homework sheet 1 - solutions

1.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=$ $\{A: A \subset \Omega\}$ is the power set of Ω) is called a σ-algebra over Ω if
(i) $\emptyset \in \mathcal{F}$
(ii) if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
(iii) if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.

Solution:

If $B_{1}, B_{2}, \cdots \in \mathcal{F}$ then $A_{i}:=\Omega \backslash A_{i} \in \mathcal{F}$ as well, for $i=1,2, \ldots$ due to (1ii), and thus $C:=\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ by (1iii). Finally, $\Omega \backslash C \in \mathcal{F}$ by (1ii), but $\Omega \backslash C=\cap_{i=1}^{\infty} B_{i}$ by the basics of set algebra, so we have shown that \mathcal{F} is closed under countable intersection. For finite union, notice that if $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$, then we can choose $A_{n+1}=A_{n+2}=\cdots=\emptyset \in \mathcal{F}$ by (1i), to get $\left(\cup_{i=1}^{n} A_{i}\right)=\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ by (1iii). So \mathcal{F} is shown to be closed under finite union. Closedness under finite intersection can be seen similarly.
1.2 (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array}\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distirbution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in B)$ of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.

Solution:

(a) i. The possible values are 0 and 1 , their probabilities are $\mathbb{P}(\xi=0)=1-p$ and $\mathbb{P}(\xi=$ 1) $=p$.
ii. $\mu(B)=\mathbb{P}(\xi \in B)= \begin{cases}1, & \text { if } 0 \in B \text { and } 1 \in B, \\ 1-p, & \text { if } 0 \in B \text { but } 1 \notin B, \\ p, & \text { if } 1 \in B \text { but } 0 \notin B, \\ 0, & \text { if } 0 \notin B \text { and } 1 \notin B .\end{cases}$
iii. $\mathbb{E} \xi=0 \cdot \mathbb{P}(\xi=0)+1 \cdot \mathbb{P}(\xi=1)=0 \cdot(1-p)+1 \cdot p=p$.
(b) i. The possible values are $0,1,2, \ldots, n$, their probabilities are

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1,2, \ldots, n
$$

ii. If we denote the distribution of X by μ, then

$$
\mathbb{E} X=\int_{\mathbb{R}} x \mathrm{~d} \mu(x)=\sum_{k=0}^{n} k \cdot \mu(\{k\})=\sum_{k=0}^{n} k \cdot \mathbb{P}(X=k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

To calculate this sum, one of the many ways is to consider the two-variable function

$$
f(u, v):=\sum_{k=0}^{n} k\binom{n}{k} u^{k} v^{n-k}
$$

Then what we want to know is $\mathbb{E} X=f(p, 1-p)$, but of course we are even more happy if we can calculate $f(u, v)$ for every (u, v). Now we notice that

$$
f(u, v)=u \frac{\partial}{\partial u} g(u, v) \text { where } g(u, v)=\sum_{k=0}^{n}\binom{n}{k} u^{k} v^{n-k} .
$$

This is now easy: by the binomial theorem $g(u, v)=(u+v)^{n}$, so

$$
f(u, v)=u \frac{\partial}{\partial u}(u+v)^{n}=n u(u+v)^{n-1}
$$

and

$$
\mathbb{E} X=f(p, 1-p)=n p(p+1-p)^{n}=n p
$$

iii. This is much easier:

$$
\mathbb{E} X=\mathbb{E}\left(\sum_{i=1}^{n} \xi_{i}\right)=\sum_{i=1}^{n} \mathbb{E} \xi_{i}=\sum_{i=1}^{n} p=n p
$$

1.3 The Fatou lemma is the following

Theorem $1 \operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots a sequence of measureabale functions $f_{n}: \Omega \rightarrow \mathbb{R}$, which are nonneagtive, e.g. $f_{n}(x) \geq 0$ for every $n=1,2, \ldots$ and every $x \in \Omega$. Then

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \mu(x) \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)
$$

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing $\Omega=\mathbb{R}, \mu$ as the Lebesgue measure on \mathbb{R}, and constructing a sequence of nonnegative $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for which $f_{n}(x) \xrightarrow{n \rightarrow \infty} 0$ for every $x \in \mathbb{R}$, but $\int_{\mathbb{R}} f_{n}(x) \mathrm{d} x \geq 1$ for all n.
Solution: The standard counterexample is

$$
f_{n}(x):= \begin{cases}1, & \text { if } n \leq x \leq n+1 \\ 0, & \text { if not. }\end{cases}
$$

The phenomenon behind the counteraxample - as often - is that exchangeability of integral and limit can fail if mass "escapes to infinity".
1.4 The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1. That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails } \\
2, \text { if the } n \text {-th toss is heads }
\end{array},\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.

Solution:

(a) Similarly to a decimal expansion, the ternary expansion of a real number $x \in[0,1]$ is essentially unique: every x can be written in the form $x=0 . a_{1} a_{2} a_{3} \ldots$ in only one, or possibly two ways. (There are actually two ways for some rational numbers, since e.g. $0.1022222 \dot{2}=0.1100000 \dot{0}$.) However, every individual sequence $a_{1}, a_{2}, a_{3}, \ldots$ has probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0$, so every x is given weight at most twice zero which is still zero.
(b) The distribution of X cannot be absolutely continuous w.r.t. Lebesgue measure, since it gives positive measure to $C(\mathbb{P}(X \in C)=1)$, which has Lebesgue measure zero $(\operatorname{Leb}(C)=$ $0)$. To see that the Lebesgue measure of C is indeed zero, notice that the set in the n-t level of the construction of C,

$$
C_{n}:=\left\{\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}, a_{k} \in\{0,2\} \text { for } k=1,2, \ldots, n \text { but } a_{k} \in\{0,1,2\} \text { for } k \geq n+1\right\}
$$

has Lebesgue measure

$$
\operatorname{Leb}\left(C_{n}\right)=\left(\frac{2}{3}\right)^{n}
$$

Now $C \subset C_{n}$ for every $n \in \mathbb{N}$, so

$$
\operatorname{Leb}(C) \leq \operatorname{Leb}\left(C_{n}\right)=\left(\frac{2}{3}\right)^{n} \text { for every } n
$$

which implies that $\operatorname{Leb}(C)=0$.
(Actually, this means not only that the distribution μ of X is not absolutely continuous w.r.t. Lebesgue measure, but that the two measures are singular w.r.t each other, which means that \mathbb{R} can be decomposed into two disjoint subsets (namely C and $\mathbb{R} \backslash C$,) such that one is "unseen" by one measure $(\operatorname{Leb}(C)=0)$, while the other is "unseen" by the other measure $(\mu(\mathbb{R} \backslash C)=0)$.)

