
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 10 – due on 29.06.2012 – and exercises for the class on 22.06.2012

10.1 DLR condition and conditional probability. Let µβ,β′

Λ (.|η) denote the grand canonical measure
of some system in the box Λ with the boundary condition η ∈ ΩΛc . Using this, define

γ
β,β′

Λ (.|η) := µ
β,β′

Λ (.|η ∩ Λc)⊗ δη∩Λc

for all η ∈ Ω as a product measure on Ω = ΩΛ × ΩΛc .

The Dobrushin-Lanford-Ruelle condition for a measure µ on Ω to be Gibbs is

µ = µ⊗ γ
β,β′

Λ for every bounded Λ,

where γ
β,β′

Λ is viewed as a probability kernel from Ω to Ω. Show that this is the same as
requiring that

µ1 = µ2 ⊗ µ
β,β′

Λ ,

where µ1 and µ2 are the two marginals of the measure µ on Ω = ΩΛ×ΩΛc , and µ
β,β′

Λ is viewed
as a probability kernel from ΩΛc to ΩΛ.

10.2 (homework) The partition function and the effect of ignoring the velocity. Consider a system

of interacting point particles in d dimensions with Hamiltonian H(q, p) =
∑

i

~p2i
2m

+
∑

i<j Φ(|qi−
qj |). Consider the canonical partition function Zcan(V,N, β) and the grand canonical partition
function Zgr(V, β, β ′) (or Zgr(V, β, z) if you like), which are integrals of some weight functions
on the phase space.

Now define the configurational partition functions by “ignoring the velocity”. That is, e.g.
Zcan

conf(V,N, β) is an integral on the configuration space only of the canonical weight function
with the kinetic energy omitted.

(a) Find the relation between the partition function and the configurational partition func-
tion, both in the canonical and the grand canonical setting.

(b) Calculate the density of the free gas with parameters β, z and m.

Solution:

(a) The integral defining the canonical partition function factorizes into a configurational
and a velocity integral:

Zcan(V,N, β) =
1

N !

∫

ΛN×Rd·N

e−βH(q,p) dq dp =

=
1

N !

∫

ΛN×Rd·N

e−β
∑

i

~p2i
2m e−β

∑

i<j Φ(|qi−qj |) dq dp =

=
1

N !

(
∫

ΛN

e−β
∑

i<j Φ(|qi−qj |) dq

)(
∫

Rd·N

e−β
∑

i

~p2i
2m dp

)

.

The velocity integral can be computed explicitly, and the rest is exactly the configura-
tional partition function:

∫

Rd·N

e−β
∑

i

~p2i
2m dp =

(
∫ ∞

−∞

e−β
p21x
2m dp1x

)d·N

=

√

2πm

β

d·N

,
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so

Zcan(V,N, β) =

√

2πm

β

d·N
1

N !

∫

ΛN

e−β
∑

i<j Φ(|qi−qj |) dq =

√

2πm

β

d·N

Zcan
conf(V,N, β).

In the grand canonical partition function we use z := e−β′

as the parameter, for con-
venience only. Now the grand canonical partition function can be expressed with the
canonical as

Zgr(V, β, z) =
∞
∑

N=0

zNZcan(V,N, β),

Z
gr
conf(V, β, z) =

∞
∑

N=0

zNZcan
conf(V,N, β).

Using the previous result,

Zgr(V, β, z) =
∞
∑

N=0

zN
√

2πm

β

d·N

Zcan
conf(V,N, β) =

=

∞
∑

N=0

(

z

√

2πm

β

d
)N

Zcan
conf(V,N, β) =

= Z
gr
conf

(

V, β, z

√

2πm

β

d
)

.

(b) In the free gas Φ = 0, so

Zcan
conf(V,N, β) =

1

N !

∫

ΛN

1 dq =
V N

N !

and

Z
gr
conf(V, β, z) =

∑

N=0

zN
V N

N !
= ezV ,

so
logZgr

conf(V, β, β
′) = zV = V e−β′

.

So the density of the “configuration free gas” is

ρconf :=
EconfN

V
= −

1

V

∂

∂β ′
logZgr

conf(V, β, β
′) =

1

V
V e−β′

= z.

In particular, this is independent of β. However, if we do not ignore the velocities, we
get

logZgr(V, β, z) = logZgr
conf

(

V, β, z

√

2πm

β

d
)

= V z

√

2πm

β

d

,

so

logZgr(V, β, β ′) = V

√

2πm

β

d

e−β′

,

which gives

ρ :=
EN

V
= −

1

V

∂

∂β ′
logZgr(V, β, β ′) =

1

V
V

√

2πm

β

d

e−β′

= z

√

2πm

β

d

.
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10.3 (homework) Is the grand canonical ensamble with boundary condition well defined? Show
that the grand canonical measure is well defined with any boundary condition in a system of
interacting point particles with a bounded finite range pair interaction. What can we say if
the pair interaction is only tempered and stable?

Solution: Forst of all, sorry for the error in the exercise, the statement is not true as written.
As you will see from the solution, we need to assume that the pair interaction is finite range
and stable – that is, there exists a B < ∞ such that

∑

1≤i≤j≤N

Φ(|qi − qj|) ≥ −BN for every N and q1, . . . , qN ∈ R
d.

Stability immediately implies that Φ is bounded from below by −2B (just consider stability
with N = 2.)

We need to show that the grand canonical partition function with boundary

Z(Λ, β, β ′|η) :=

∞
∑

N=1

1

N !

∫

ΛN×RNd

e−βHΛ(ω|η)−β′N dω =

=

∞
∑

N=1

e−β′N 1

N !

∫

ΛN×RNd

e
−β

(

∑N
i=1

~p2i
2m

+
∑

1≤i≤j≤N Φ(|qi−qj |)+
∑N

i=1

∑∞
j=1 Φ(|qi−ηj |)

)

dq dp

is finite for every boundary configuration η = {ηj}. The key observation is that a boundary
configuration is by definition locally finite, so there are only finitely many ηj for which Φ(|qi−
ηj |) can be nonzero – i.e. they are within the range of the interaction from some point of Λ.
So the “interaction with the boundary configuration” term

N
∑

i=1

∞
∑

j=1

Φ(|qi − ηj |)

is in fact a finite sum, and can be replaced by

N
∑

i=1

M
∑

j=1

Φ(|qi − ηj |),

where M is the above finite number of particles. This M of course depends on η, but that
doesn’t matter – we are looking only at a fixed η at a time. So since Φ is bounded from below
by −2B, the “interaction with the boundary configuration” term satisfies

N
∑

i=1

M
∑

j=1

Φ(|qi − ηj|) ≥ −2BMN.

For Z to be finite, we also need a bound on the “interactions within Λ” term

∑

1≤i≤j≤N

Φ(|qi − qj |).

This is the place where we need stability to get

∑

1≤i≤j≤N

Φ(|qi − qj|) ≥ −BN.
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(If we only used that Φ ≥ −2B as before, we would only get
∑

1≤i≤j≤N Φ(|qi−qj |) ≥ −BN(N−
1), which is not enough – the sum w.r.t. N in the definition of Z would not converge, at least
for β big. Sorry again.)

All in all, we have

Z(Λ, β, β ′|η) ≤
∞
∑

N=0

1

N !
e−β′Neβ(BN+2BMN)

∫

ΛN×RNd

e−β
∑N

i=1

~p2i
2m dq dp.

The remaining integral is just V N times the usual Gaussian velocity integral:

∫

ΛN×RNd

e−β
∑N

i=1

~p2i
2m dq dp = V N

∫

RNd

e−β
∑N

i=1

~p2i
2m dp = V N

√

2πm

β

Nd

.

Writing this back,

Z(Λ, β, β ′|η) ≤
∞
∑

N=0

1

N !

(

e−β′+β(B+2BM)V

√

2πm

β

)N

= exp

(

e−β′+β(B+2BM)V

√

2πm

β

)

< ∞.

Bonus question: What can we say if Φ is only tempered and stable? For a tempered
and stable Φ the above Z may very well be infinite even for a locally finite η. Indeed, if
Φ(r) ր 0 as r → ∞, but it is not finite range, then – no matter how fast it goes to zero –
one can construct a sequence rj → ∞ (which means that the set {rj} is locally finite) so that
∑∞

j=1Φ(rj) = −∞. Similarly, one can construct a locally finite configuration η = {ηj} (even
in 1 dimension) such that

∑∞
j=1Φ(|q1 − ηj|) = −∞ not only for a given q1, but also for an

entire neighbourhood of it, so already for N = 1 the factor e−βH(ω|η) is infinite for a positive
measure set of ω-s, and thus Z = ∞.

To avoid such a disaster, one can impose further restrictions on the boundary configurations
η allowed. In particular, one can demand that η satisfy a property stronger than being just
locally finite (also ruling out a fast growth of the density at infinity): Let η be such that there
exists a K = K(η) < ∞, for which

∞
∑

j=1

Φ(|q − ηj|) > −K for any q ∈ Λ. (1)

For such η, the above argument about the finiteness of Z goes through.

If Φ has some regularity, e.g. it’s eventually monotone and goes to zero not faster than expo-
nentially, then it’s enough to demand

∑∞
j=1Φ(|q− ηj |) > −∞ for a fixed q, say q = 0, and (1)

follows automatically for the other q ∈ Λ.

10.4 Consistency property. Show that γβ,β′

Λ′ = γ
β,β′

Λ′ ⊗ γ
β,β′

Λ for every bounded Λ ⊂ Λ′ ⊂ R
d.

10.5 Gibbs measures of the free gas. Find and describe every Gibbs measure of the free gas.

10.6 (homework) Ising model in one dimension. For the Ising model in one dimension, let the
phase space be ω = {−1, 1}N and the Hamiltonian be H : Ω → R be defined as

H(σ1, . . . , σN ) :=

N
∑

i=1

(Jσiσi+1 + hσi).

(We use the convention σN+1 := σ1, which corresponds to periodic boundary conditions.)

4



(a) Calculate the partition function

Z(N, β, h) :=
∑

σ∈Ω

e−βH(σ).

Hint: In the expression definig Z, discover a power of a 2 × 2 matrix. If you do it well,
this matrix will be symmetric. In the end, you only need to calculate the eigenvalues.

(b) Calcualte the entropy in the thermodynamic limit (understand the question well) and
show that it is a smooth function of h for every β > 0.

Solution:

(a) To “do it well”, we write H as a sum of terms that are symmetric in the pair (σi, σi +1)
(making use of the periodic boundary condition):

H(σ1, . . . , σN) :=

N
∑

i=1

(
h

2
σi + Jσiσi+1 +

h

2
σi+1).

Introduce the notation
Ps,t := e−β(h

2
s+Jst+h

2
t),

with which

Z(N, β, h) :=
∑

σ∈Ω

e−βH(σ) =
∑

σ1,...,σN∈{−1,1}

N
∏

i=1

Pσi,σi+1
=

∑

σ1∈{−1,1}

PN
σ1,σN+1

if we consider P as the 2× 2 matrix (indexed by {−1, 1})

P =

(

P−1,−1 P−1,1

P1,−1 P1,1

)

=

(

eβ(h−J) eβJ

eβJ eβ(−h−J)

)

.

So, since the periodic boundary condition means σ1 = σN+1,

Z(N, β, h) =
∑

s∈{−1,1}

PN
s,s = Tr(PN).

Denote the two (different real) eigenvalues of P by λ1 and λ2 so that |λ1| < |λ2|:

λ1 = e−βJ

(

cosh(βh)−

√

sinh2(βh) + e4βJ
)

,

λ1 = e−βJ

(

cosh(βh) +

√

sinh2(βh) + e4βJ
)

.

With these,
Z(N, β, h) = λN

1 + λN
2 .

(b) “understand the question well” means: scale with N appropriately before taking the
limit. In our case the “good” thermodynamic limiting quantity is the free energy per
particle (times −β) (also called pressure (times −β) in the context of the Ising model)

B(β, h) := lim
N→∞

1

N
logZ(N, β, h) = log lim

N→∞

N

√

λN
1 + λN

2 = log λ2,
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so

B(β, h) = −βJ + log

(

cosh(βh) +

√

sinh2(βh) + e4βJ
)

.

This is clearly analytic in both variables since it is a composition of functions that are
analytic (in the interiour of their domains) and the argument of both the square root
and the logarithm is alwasy positive.

The limiting entropy (per particle) is

s(β, h) = B(β, h)− β
∂

∂β
B(β, h)

(see Exercise 5.2), which inherits analiticity from B.
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