Probability 1
CEU Budapest, fall semester 2018
Imre Péter Tóth
Homework sheet 1 - due on 01.10.2018
1.1 (homework) Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of $\left.\Omega\right)$ is called $a \sigma$-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.
1.2 (homework) Continuity of the measure
a.) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
b.) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
1.3 (homework) Let $\Omega=\{(i, j) \mid i, j, \in \mathbb{N}, 1 \leq i \leq 6\}$ be the set of all 36 possible outcomes in an experiment where we roll a bule and a red die: the result of the experiment is a pair of numbers between 1 and 6 , the first number being the number rolled on the blue die, and the second number being the number rolled on the red one.
Let $f: \Omega \rightarrow \mathbb{R}$ be given by $f((i, j)):=i+j$, so f is the sum of the two numbers rolled. Clearly, the range of f is $Y:=\{2,3, \ldots, 12\}$. Let \mathcal{G} be the discrete σ-algebra on Y and let

$$
\mathcal{F}:=\left\{f^{-1}(B) \mid B \in \mathcal{G}\right\}
$$

so $\mathcal{F} \subset 2^{\Omega}$.
a.) Show that \mathcal{F} is a σ-algebra over Ω.
b.) Describe the σ-algebra \mathcal{F} : which are the sets that belong to it? Give examples of subsets of Ω that are not in \mathcal{F}.

