Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 1 – due on 01.10.2018

1.1 (homework) Define a σ -algebra as follows:

Definition 1 For a nonempty set Ω , a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega} := \{A : A \subset \Omega\}$ is the power set of Ω) is called a σ -algebra over Ω if

- $\bullet \ \emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^C := \Omega \setminus A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_1, A_2, \dots \in \mathcal{F}$, then $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ -algebra is closed under countable intersection, and under finite union and intersection.

1.2 (homework) Continuity of the measure

a.) Prove the following:

Theorem 1 (Continuity of the measure)

- i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_1, A_2, \ldots is an increasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \subset A_{i+1}$ for all i), then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_1, A_2, \ldots is a decreasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \supset A_{i+1}$ for all i) and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- b.) Show that in the second statement the condition $\mu(A_1) < \infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
- 1.3 (homework) Let $\Omega = \{(i, j) | i, j \in \mathbb{N}, 1 \le i \le 6\}$ be the set of all 36 possible outcomes in an experiment where we roll a bule and a red die: the result of the experiment is a pair of numbers between 1 and 6, the first number being the number rolled on the blue die, and the second number being the number rolled on the red one.

Let $f : \Omega \to \mathbb{R}$ be given by f((i, j)) := i + j, so f is the sum of the two numbers rolled. Clearly, the range of f is $Y := \{2, 3, ..., 12\}$. Let \mathcal{G} be the discrete σ -algebra on Y and let

$$\mathcal{F} := \{ f^{-1}(B) \mid B \in \mathcal{G} \},\$$

so $\mathcal{F} \subset 2^{\Omega}$.

- a.) Show that \mathcal{F} is a σ -algebra over Ω .
- b.) Describe the σ -algebra \mathcal{F} : which are the sets that belong to it? Give examples of subsets of Ω that are not in \mathcal{F} .