
Probability 1
CEU Budapest, fall semester 2018

Imre Péter Tóth
Homework sheet 2 – due on 15.10.2018

2.1 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every (Borel) subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by the old “probability 1” definition, using its
distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

2.2 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n

.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an
3n

, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

2.3 (homework) In the probability space (Ω,F ,P) let Ω = [0, 1], let F be the Borel σ-algebra
and let P be the Lebesgue measure (restricted to F). Let the random variable X : Ω → R

be defined as

X(ω) :=

{

lnω, if ω 6= 0

0, if ω = 0
.

1



(a) Show that X is measurable as a function X : Ω → R when Ω is equipped with the Borel
σ-algebra F and R is also equipped with its Borel σ-algebra B. (Remark: This exercise
is only for those interested in every mathematical detail. It is not at all as important
as it may seem. You are also welcome to just believe that X is measurable.)

(b) Let µ be the distribution of X , which means that µ is the measure on (R,B) defined
by

µ(A) := P({ω ∈ Ω |X(ω) ∈ A}) for all A ∈ B.
(In other words, µ is the push-forward of the measure P to R by X .)

“Describe” the measure µ by calculating F (x) := µ((−∞, x]) for every x ∈ R. Also
calculate µ([a, b]) for every interval [a, b] ⊂ R (with a ≤ b).

(This function F : R → [0, 1] is called the (cumulative) distribution function of the
measure µ, or also the (cumulative) distribution function of the random variable X.)

2.4 Let χ be the counting measure on N. Calculate
∫

N
f dχ if f : N → R is given by

a.) f(k) := 1
2k

b.) f(k) := 1
k

c.) f(k) := (−1)k

k

2.5 Let χ be the counting measure on R and µ be Lebesgue measure on R.

a.) Show that µ is absolutely contuinuous w.r.t. χ: µ ≪ χ.

b.) Show that µ does not have a density f w.r.t. χ: there is no such f that µ(B) =
∫

B
f dχ

would hold for every (Borel) B ⊂ R.

c.) What’s wrong with the Ranod-Nikodym theorem?

2.6 Let χ be the counting measure on N and let the measure µ be absolutely continuous with
respect to χ, with density f(k) := qkp, where p ∈ (0, 1) and q = 1 − p. Define X : N → R

as X(k) := k.

a.) Calculate
∫

N
X dµ.

b.) Calculate
∫

N
X2 dµ.

2.7 (homework) Let µ be a measure on R which has density f(x) := x2 with respect to
Lebesgue measure. Let ν be a measure on R which has density g(x) :=

√
x with respect to

µ. Calculate ν([1, 3]).

2.8 (homework) Let the random variable X have density

f(x) =

{

2e−2x if x > 0

0 if not
,

with respect to Lebesgue measure on R.

a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.

b.) Let Y := X2. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and
find its density.

2.9 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
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that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that. Help: What is the probability that the elevator
stops on the first floor?)

2.10 We take a huge bag. 1 minute before midnight we put 10 balls (numbered 1 . . . 10) into the
bag. Then we draw a ball from the bag at random, and throw it away. 1

2
minute before

midnight we put another 10 balls (numbered 11 . . . 20) into the bag. Then we draw a ball
from the bag at random, and throw it away. 1

4
minute before midnight we put another 10

balls (numbered 21 . . . 30) into the bag. Then we draw a ball from the bag at random, and
throw it away. And so on, infinitely many times: 1

2n
minute before midnight we put 10 balls

(numbered (10n + 1) . . . (10n + 10)) into the bag. Then we draw a ball from the bag at
random, and throw it away.

a.) What is the probability that ball number 1 will be in the bag at midnight? (Hint: we
will see later that limN→∞

∏

N

n=0

(

1− 1
9n+10

)

= 0.)

b.) What is the probability that ball number 11 will be in the bag at midnight?

c.) Show that, at midnight, with probability 1, the bag will be empty. (What?!?!)

2.11 The Fatou lemma is the following

Theorem 1 Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale
functions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and
every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing Ω = R, µ
as the Lebesgue measure on R, and constructing a sequence of nonnegative fn : R → R for
which fn(x)

n→∞−−−→ 0 for every x ∈ R, but
∫

R
fn(x) dx ≥ 1 for all n.

2.12 (homework) Exchangeability of integral and limit. Consider the sequences of functions
fn : [0, 1] → R and gn : [0, 1] → R concerning their pointwise limits and the limits of
their integrals. Do there exist integrable functions f : [0, 1] → R and g : [0, 1] → R,
such that fn(x) → f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is

lim
n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and mono-

tone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems
ensure about these specific examples? (For the Fatou lemma, see the lecture notes or Exer-
cise 11.)

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l

2k
≤ x < l+1

2k
,

0 otherwise.
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2.13 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?
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