Probability 1

CEU Budapest, fall semester 2017

Imre Péter Tóth

Homework sheet 3 – due on 24.10.2017 – and exercises for practice

3.1 (homework) For real numbers a_1, a_2, a_3, \ldots define the infinite product $\prod_{k=1}^{\infty} a_k$ as

$$\prod_{k=1}^{\infty} a_k := \lim_{n \to \infty} \prod_{k=1}^{n} a_k,$$

whenever this limit exists.

Let p_1, p_2, p_3, \ldots satisfy $0 \le p_k < 1$ for all k. Show that $\prod_{k=1}^{\infty} (1 - p_k) > 0$ if and only if $\sum_{k=1}^{\infty} p_k < \infty$.

(Hint: estimate the logarithm of (1-p) with p.)

3.2 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every n, but

$$\lim_{n \to \infty} \frac{X_1 + \dots X_n}{n} = -1$$

almost surely.

- 3.3 (homework) Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n\text{-s}) = 0.$

Hint: If Y is nonnegative integer valued, then $\mathbb{E}Y = \sum_{k=0}^{\infty} k \mathbb{P}(Y = k) = \sum_{n=1}^{\infty} \mathbb{P}(Y \geq n)$. (Why?)

3.4 Prove that for *any* sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0$$
 almost surely.

- 3.5 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.
- 3.6 (homework) Let $X_1, X_2, ...$ be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that

1

- (a) $X_n \to 0$ in probability as $n \to \infty$
- (b) $X_n \to 0$ almost surely as $n \to \infty$.
- 3.7 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.8 Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^\infty \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^\infty \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite.