
Probability 1
CEU Budapest, fall semester 2018

Imre Péter Tóth
Homework sheet 3 – due on 25.10.2018

3.1 The characteristic function of a random variable X is the function Ψ : R → C defined
as Ψ(t) := EeitX , which, of course, depends on the distribution of X only. Calculate the
characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ
on {0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν
on {1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) The Poisson distribution with parameter λ – that is, the distribution η on {0, 1, 2 . . . }
with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) The exponential distribution with parameter λ – that is, the distribution on R with
density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

3.2 Calculate the characteristic function of the normal distribution N (m, σ2). (Remember the
definition from the old times: N (m, σ2) is the distribution on R with density (w.r.t. Lebesgue
measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can
and should use the fact that

∫ ∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

3.3 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a
set of x-es with µ-measure zero.) Assume furthermore that the fn admit a common integrable
dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following
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Theorem 2 (differentiability of the characteristic function) Let X be a real valued
random variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment
of X exists and is finite (i.e. E(|X|n) < ∞), then ψ is n times continuously differentiable
and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

Write the proof in detail for n = 1. Don’t forget about proving continuous differentiability
– meaning that you also have to check that the derivative is continuous.

3.4 For real numbers a1, a2, a3, . . . define the infinite product
∞
∏

k=1

ak as

∞
∏

k=1

ak := lim
n→∞

n
∏

k=1

ak,

whenever this limit exists.

Let p1, p2, p3, . . . satisfy 0 ≤ pk < 1 for all k. Show that
∞
∏

k=1

(1 − pk) > 0 if and only if

∞
∑

k=1

pk <∞.

(Hint: estimate the logarithm of (1− p) with p.)

3.5 Let X1, X2, . . . , Xn be i.i.d. random variables with EX1 = 0 and E(X4
1 ) < ∞ and set

Sn = X1 + · · ·+Xn. Show that there is a C <∞ such that E(S4
n) ≤ Cn2.

3.6 (homework) Let X1, X2, . . . be independent random variables such that

P(Xn = n2 − 1) =
1

n2
, P(Xn = −1) = 1− 1

n2
.

Show that EXn = 0 for every n, but

lim
n→∞

X1 + · · ·+Xn

n
= −1

almost surely.

3.7 Let X1, X2, . . . , Xn be i.i.d. random variables. Prove that the following two statements are
equivalent:

(i) E|Xi| <∞.

(ii) P(|Xn| > n for infinitely many n-s) = 0.

Hint: If Y is nonnegative integer valued, then EY =
∑∞

k=0 kP(Y = k) =
∑∞

n=1 P(Y ≥ n).
(Why?)

3.8 Prove that for any sequence X1, X2, . . . of random variables (real valued, defined on the
same probability space) there exists a sequence c1, c2, . . . of numbers such that

Xn

cn
→ 0 almost surely.

3.9 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability
space. Prove that the following two statements are equivalent:

(i) Xn → X in probability as n→ ∞.
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(ii) From every subsequence {nk}∞k=1 a sub-subsequence {nkj}∞j=1 can be chosen such that
Xnkj

→ X almost surely as j → ∞.

3.10 Let X1, X2, . . . be independent such that Xn has Bernoulli(pn) distribution. Determine
what property the sequence pn has to satisfy so that

(a) Xn → 0 in probability as n→ ∞
(b) Xn → 0 almost surely as n→ ∞.

3.11 Let X1, X2, . . . be independent random variables. Show that P(supnXn < ∞) = 1 if and
only if there is some A ∈ R for which

∑∞
n=1 P(Xn > A) <∞.

3.12 Let X1, X2, . . . be independent exponentially distributed random variables such that Xn has
parameter λn. Let Sn :=

∑n

i=1Xi. Show that if
∑∞

n=1
1
λn

= ∞, then Sn → ∞ almost

surely, but if
∑∞

n=1
1
λn
< ∞, then Sn → S almost surely, where S is some random variable

which is almost surely finite. (Hint: the second part is easy. For the first part, a possible
solution is to let xi be such that P(Xi ≥ xi) =

1
2
, Yi := xi1{Xi≥xi}, Zi := xi − Yi and use that

Sn ≥ ∑n

i=1 Yi.)

3.13 (homework) Let X1, X2, . . . be i.i.d. random variables with distribution Bernoulli(p) for
some p ∈ (0; 1) but p 6= 1

2
. Let Y :=

∑∞
n=1 2

−nXn. (The sum is absolutely convergent.)
Show that the distribution ν of Y is continuous (meaning that the distribution function is
continuous, which is the same as ν({x}) = 0 for any x ∈ R), but singular w.r.t. Lebesgue
measure (meaning that there is a set A ⊂ R such that Leb(A) = 0 and ν(R \ A) = 0).

(Hint: Think of these random numbers as sequences of 0s and 1s in binary form. What will
be the proportion of 0s and 1s?)

3.14 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space
and suppose that Xn → X in probability as n→ ∞.

(a) If f : R → R is a continuous function, Yn = f(Xn) and Y = f(X), show that Yn → Y
in probability as n→ ∞.

(b) Show that if the Xn are almost surely uniformly bounded [that is: there exists a constant
M <∞ such that P(∀n ∈ N |Xn| ≤M) = 1], then limn→∞EXn = EX .

(c) Show, through an example, that for the previous statement, the condition of boundedness
is needed.

3.15 (homework) Let the random variables X1, X2, . . . , Y1, Y2, . . . , X and Y be defined on the
same probability space and assume that Xn → X and Yn → Y in probability. Show that

(a) XnYn → XY in probability.

(b) If almost surely Yn 6= 0 and Y 6= 0, then Xn/Yn → X/Y in probability.

3.16 (homework) Let the random variables X1, X2, . . . , Xn, . . . be defined on the same probabil-
ity space and let Yn := supm≥n |Xm|. Prove that the following two statements are equivalent:

(i) Xn → 0 almost surely as n→ ∞.

(ii) Yn → 0 in probability as n→ ∞.
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