
Probability 1
CEU Budapest, fall semester 2017

Imre Péter Tóth
Homework sheet 4 – due on 07.11.2017 – and exercises for practice

4.1 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space
and suppose that Xn → X in probability as n→ ∞.

(a) If f : R → R is a continuous function, Yn = f(Xn) and Y = f(X), show that Yn → Y in
probability as n→ ∞.

(b) Show that if the Xn are almost surely uniformly bounded [that is: there exists a constant
M <∞ such that P(∀n ∈ N |Xn| ≤M) = 1], then limn→∞ EXn = EX .

(c) Show, through an example, that for the previous statement, the condition of boundedness
is needed.

4.2 Let the random variables X1, X2, . . . , Y1, Y2, . . . , X and Y be defined on the same probability
space and assume that Xn → X and Yn → Y in probability. Show that

(a) XnYn → XY in probability.

(b) If almost surely Yn 6= 0 and Y 6= 0, then Xn/Yn → X/Y in probability.

4.3 Prove that

lim
n→∞
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0
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0

. . .
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3
.

4.4 (homework) Let f : [0; 1] → R be a continuous function. Prove that

(a)

lim
n→∞
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. . .
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n
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.

(b)

lim
n→∞

∫
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. . .
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e

)

.

(Hint: interprete these integrals as expectations.)

4.5 Let the random variables X1, X2, . . . , Xn, . . . be defined on the same probability space and let
Yn := supm≥n |Xm|. Prove that the following two statements are equivalent:

(i) Xn → 0 almost surely as n→ ∞.

(ii) Yn → 0 in probability as n→ ∞.

4.6 Weak convergence and densities.

(a) Prove the following

Theorem 1 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Suppose that fn(x)

n→∞
−→ f(x) for every x ∈ R. Then µn ⇒ µ (weakly).
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(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively. Use
the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction, consider
G(x) := 1− F (x).

(b) Show examples of the following facts:

i. It can happen that the fn converge pointwise to some f , but the sequence µn is not
weakly convergent, because f is not a density.

ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.

iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.

4.7 Let X1, X2, . . . be independent and uniformly distributed on [0, 1]. LetMn = max{X1, . . . , Xn}
and let Yn = n(1−Mn). Find the weak limit of Yn. (Hint: Calculate the distribution functions.)

4.8 (homework) Let X1, X2, . . . be independent and exponentially distributed with parameter
λ = 1. Let Mn = max{X1, . . . , Xn} and let Yn =Mn − lnn. Find the weak limit of Yn. (Hint:
Calculate the distribution functions.)

4.9 Poisson approximation of the binomial distribution. Fix 0 < λ ∈ R. Show that if Xn has
binomial distribution with parameters (n, p) such that np → λ as n → ∞, then Xn converges
to Poi(λ) weakly.

4.10 (homework) Continuous limit of the geometric distribution. Let Xn be geometrically dis-
tributed with parameter pn = 1

n
and let Yn = 1

n
Xn. (So EYn = 1.) Find the weak limit of

Yn. (Hint: you can use the method of characteristic functions, but you can also calculate the
limiting distribution function directly.)

4.11 Let X be uniformly distributed on [−1; 1], and set Yn = nX .

a.) Calculate the characteristic function ψn of Yn.

b.) Calculate the pointwise limit lim
n→∞

ψn(t), if it exists.

c.) Does (the distribution of) Yn have a weak limit?

d.) How come?

4.12 Show that if Ψ is the characteristic function of some random variable X , then the complex
conjugate Ψ̄ is also the characteristic function of some random variable Y . (Hint: try to find
out what Y is.)

4.13 Durrett [1], Exercise 3.3.1 (Hint: try to find the appropriate random variables. Use the previous
exercise.)

4.14 Durrett [1], Exercise 3.3.3

4.15 Durrett [1], Exercise 3.3.9

4.16 Durrett [1], Exercise 3.3.10. Show also that independence is needed.

4.17 Durrett [1], Exercise 3.3.11
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4.18 LetX1, X2, . . . be i.i.d. random variables with density (w.r.t. Lebesgue measure) f(x) = 1

π
1

1+x2 .
(So they have the Cauchy distribution.) Find the weak limit (as n→ ∞) of the average

X1 + · · ·+Xn

n
.

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is
using characteristic functions. Calculating the characteristic function of the Cauchy distribution
is a little tricky, but you can look it up.
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