Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 4 – due on 12.11.2018

- 4.1 Show that if $X_n \Rightarrow X$ and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f(X_n) \Rightarrow f(X)$.
- 4.2 Let $F : \mathbb{R} \to [0,1]$ be a probability distribution function, and let Y be a random variable which is uniformly distributed in [0,1]. Let $X = \sup\{x|F(x) < Y\}$. Show that the distribution function of X is exactly F.
- 4.3 (homework) For a distribution function $F : \mathbb{R} \to [0,1]$, define its generalized inverse $F^{-1} : [0,1] \to \mathbb{R}$ as $F^{-1}(y) := \sup\{x \in \mathbb{R} | F(x) < y\}$. Let F, F_1, F_2, \ldots be distribution functions such that $F_n \Rightarrow F$. Let $\Omega = [0,1]$, let \mathbb{P} be Lebesgue measure on Ω , and define de random variables $X(\omega) := F^{-1}(\omega), X_n(\omega) := F_n^{-1}(\omega)$ for $\omega \in \Omega$. Show that $X_n \to X$ almost surely.
- 4.4 (homework) Durrett [1], Exercise 3.2.6
- 4.5 Durrett [1], Exercise 3.2.9
- 4.6 Durrett [1], Exercise 3.2.12
- 4.7 Durrett [1], Exercise 3.2.14
- 4.8 Durrett [1], Exercise 3.2.15
- 4.9 (homework) Weak convergence and densities.
 - (a) Prove the following

Theorem 1 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
 - iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.
- 4.10 (homework) Let X_1, X_2, \ldots be independent and uniformly distributed on [0, 1]. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = n(1 M_n)$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)
- 4.11 Let X_1, X_2, \ldots be independent and exponentially distributed with parameter $\lambda = 1$. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = M_n \ln n$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)
- 4.12 Let $S = \mathbb{Z}$ and let the random variables $X, X_1, X_2, \dots \in S$.

- a.) Show that $X_n \Rightarrow X$ if and only if $\mathbb{P}(X_n = k) \to \mathbb{P}(X = k)$ as $n \to \infty$ for every $k \in S$.
- b.) It this also true for some arbitrary countable $S \subset \mathbb{R}$?

References

[1] Durrett, R. *Probability: Theory and Examples.* **4th** edition, Cambridge University Press (2010)