Probability 1

CEU Budapest, fall semester 2018
Imre Péter Tóth
Homework sheet 6 - due on 3.12.2018
6.1 Consider the probability space $\Omega=\{a, b, c\}$ equipped with the uniform measure as \mathbb{P} (so $\left.\mathbb{P}(\{a\})=\mathbb{P}(\{b\})=\mathbb{P}(\{c\})=\frac{1}{3}\right)$. Let the random variable $X: \Omega \rightarrow \mathbb{R}$ be such that $X(a)=X(b)=0, X(c)=1$.
a.) Let D_{1} be the partition $\{\{a\},\{b, c\}\}$. Find the conditional expectation $\mathbb{E}\left(X \mid D_{1}\right)$ (which is the same as $\mathbb{E}\left(X \mid G_{1}\right)$, where the σ-algebra G_{1} is $G_{1}=\{\emptyset,\{a\},\{b, c\}, \Omega\}$.)
b.) Let D_{2} be the partition $\{\{a, b\},\{c\}\}$. Find the conditional expectation $\mathbb{E}\left(X \mid D_{2}\right)$ (which is the same as $\mathbb{E}\left(X \mid G_{2}\right)$, where the σ-algebra G_{2} is $G_{2}=\{\emptyset,\{a, b\},\{c\}, \Omega\}$.)
6.2 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega=[0,1] \times[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ-algebra

$$
\mathcal{G}=\{B \times[0,1] \mid B \subset[0,1] \text { is a Borel set }\} .
$$

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable $X(x, y)=x(x+y)$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
6.3 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega=[0,1] \times[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ-algebra

$$
\mathcal{G}=\{[0,1] \times B \mid B \subset[0,1] \text { is a Borel set }\} .
$$

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable $X(x, y)=x^{2}+y^{2}$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
6.4 Let ξ and η be independent random variables uniformly distributed on $(0,1)$. Let $X=\xi \eta$ and $Y=\xi / \eta$. Calcualte $\mathbb{E}(X \mid Y)$.
6.5 Durrett [1], Exercise 5.1.1
6.6 Durrett [1], Exercise 5.1.3
6.7 Durrett [1], Exercise 5.1.4
6.8 (homework) Durrett [1], Exercise 5.1.6
6.9 Durrett [1], Exercise 5.2.1
6.10 Durrett [1], Exercise 5.2.3
6.11 Durrett [1], Exercise 5.2.4
6.12 (homework) Let X_{n} be a martingale w.r.t. the filtration \mathcal{F}_{n} on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau: \Omega \rightarrow \mathbb{N}$ be a stopping time, meaning

$$
\{\tau=k\}:=\{\omega \in \Omega \mid \tau(\omega)=k\} \in \mathcal{F}_{k} \quad \text { for every } k
$$

Using the notation $a \wedge b:=\min \{a, b\}$, we introduce the process

$$
Y_{n}:=X_{\tau \wedge n}= \begin{cases}X_{n} & \text { if } n<\tau \\ X_{\tau} & \text { if } n \geq \tau\end{cases}
$$

Show that Y_{n} is also a martingale w.r.t. \mathcal{F}_{n}. (Hint: Y_{n} is the fortune of a gambler with a certain strategy.)
6.13 (homework) Let $a, b \in \mathbb{Z}$ with $a<0<b$. Let S_{n} be a simple symmetric random walk with $S_{0}=0$ and let τ be the first hitting time for $\{a, b\}$. Apply the optional stopping theorem to the martingale S_{n} to find the hitting probabilities $p_{a}=\mathbb{P}\left(S_{\tau}=a\right)$ and $p_{b}=\mathbb{P}\left(S_{\tau}=b\right)$.
6.14 Let $p \in(0,1)$ be fixed, and let $q=1-p$. A frog performs a (discrete time) random walk on the 1 -dimensional lattice \mathbb{Z} the following way:

The initial position is $X_{0}=0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point $a=-10$ or the point $b=+30$, which are sticky: if the frog reaches one of them, it stays there forever.
Let X_{n} denote the position of the frog after n steps (for $n=0,1,2, \ldots$).
a.) Show that $Y_{n}:=\left(\frac{q}{p}\right)^{X_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Show that Y_{n} converges almost surely to some limiting random variable Y_{∞}. What are the possible values of Y_{∞} ?
c.) How much is $\mathbb{E} Y_{\infty}$ and why?
d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point $a=-10$.
6.15 Let $0 \leq p \leq 1$ and $q=1-p$. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=q$ and $\mathbb{P}\left(X_{i}=1\right)=p$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So S_{n} is a simple asymmetric random walk starting from $S_{0}=0$. (Symmetric if $p=\frac{1}{2}$.) Show that $M_{n}:=S_{n}-n(p-q)$ is a martingale (w.r.t. the natural filtration).
For $p \neq q$, use this to find the expectation of the time when the frog of Exercise 14 gets stuck.
6.16 Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=\mathbb{P}\left(X_{i}=1\right)=\frac{1}{2}$. For $n=0,1, \ldots$ let $S_{n}=$ $X_{1}+\cdots+X_{n}$. So S_{n} is a simple symmetric random walk starting from $S_{0}=0$.
a.) Show that $S_{n}^{2}-n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that - it' not any harder.
b.) Use this and the result of Exercise 13 to find the expectation of the stopping time when the walk first reaches either -10 or 30 .
c.) How about the expectation of the stopping time when the walk first reaches 30 ?
6.17 Let \mathcal{F}_{n} be a filtration and X any random varibale with $\mathbb{E}|X|<\infty$. Let $X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$.
a.) Show that X_{n} is a martingale w.r.t. \mathcal{F}_{n}.
b.) Show that X_{n} converges almost surely to some limit X_{∞}.
c.) Give a specific example when $X_{\infty} \neq X$.
d.) Give a specific example when $X_{\infty}=X$.

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

