Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 6 – due on 3.12.2018

- 6.1 Consider the probability space $\Omega = \{a, b, c\}$ equipped with the uniform measure as \mathbb{P} (so $\mathbb{P}(\{a\}) = \mathbb{P}(\{b\}) = \mathbb{P}(\{c\}) = \frac{1}{3}$). Let the random variable $X : \Omega \to \mathbb{R}$ be such that X(a) = X(b) = 0, X(c) = 1.
 - a.) Let D_1 be the partition $\{\{a\}, \{b, c\}\}$. Find the conditional expectation $\mathbb{E}(X|D_1)$ (which is the same as $\mathbb{E}(X|G_1)$, where the σ -algebra G_1 is $G_1 = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$.)
 - b.) Let D_2 be the partition $\{\{a, b\}, \{c\}\}$. Find the conditional expectation $\mathbb{E}(X|D_2)$ (which is the same as $\mathbb{E}(X|G_2)$, where the σ -algebra G_2 is $G_2 = \{\emptyset, \{a, b\}, \{c\}, \Omega\}$.)
- 6.2 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ -algebra

 $\mathcal{G} = \{ B \times [0,1] \mid B \subset [0,1] \text{ is a Borel set} \}.$

Let $X : \Omega \to \mathbb{R}$ be the random variable X(x, y) = x(x + y). Calculate $\mathbb{E}(X|\mathcal{G})$.

6.3 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ -algebra

 $\mathcal{G} = \{[0,1] \times B \mid B \subset [0,1] \text{ is a Borel set}\}.$

Let $X : \Omega \to \mathbb{R}$ be the random variable $X(x, y) = x^2 + y^2$. Calculate $\mathbb{E}(X|\mathcal{G})$.

- 6.4 Let ξ and η be independent random variables uniformly distributed on (0, 1). Let $X = \xi \eta$ and $Y = \xi / \eta$. Calcualte $\mathbb{E}(X|Y)$.
- 6.5 Durrett [1], Exercise 5.1.1
- 6.6 Durrett [1], Exercise 5.1.3
- 6.7 Durrett [1], Exercise 5.1.4
- 6.8 (homework) Durrett [1], Exercise 5.1.6
- 6.9 Durrett [1], Exercise 5.2.1
- 6.10 Durrett [1], Exercise 5.2.3
- 6.11 Durrett [1], Exercise 5.2.4
- 6.12 (homework) Let X_n be a martingale w.r.t. the filtration \mathcal{F}_n on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau : \Omega \to \mathbb{N}$ be a *stopping time*, meaning

$$\{\tau = k\} := \{\omega \in \Omega \mid \tau(\omega) = k\} \in \mathcal{F}_k \text{ for every } k.$$

Using the notation $a \wedge b := \min\{a, b\}$, we introduce the process

$$Y_n := X_{\tau \wedge n} = \begin{cases} X_n & \text{if } n < \tau, \\ X_\tau & \text{if } n \ge \tau. \end{cases}$$

Show that Y_n is also a martingale w.r.t. \mathcal{F}_n . (Hint: Y_n is the fortune of a gambler with a certain strategy.)

- 6.13 (homework) Let $a, b \in \mathbb{Z}$ with a < 0 < b. Let S_n be a simple symmetric random walk with $S_0 = 0$ and let τ be the first hitting time for $\{a, b\}$. Apply the optional stopping theorem to the martingale S_n to find the hitting probabilities $p_a = \mathbb{P}(S_\tau = a)$ and $p_b = \mathbb{P}(S_\tau = b)$.
- 6.14 Let $p \in (0, 1)$ be fixed, and let q = 1 p. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} the following way:

The initial position is $X_0 = 0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point a = -10 or the point b = +30, which are *sticky*: if the frog reaches one of them, it stays there forever.

Let X_n denote the position of the frog after n steps (for n = 0, 1, 2, ...).

- a.) Show that $Y_n := \left(\frac{q}{p}\right)^{X_n}$ is a martingale (w.r.t. the natural filtration).
- b.) Show that Y_n converges almost surely to some limiting random variable Y_{∞} . What are the possible values of Y_{∞} ?
- c.) How much is $\mathbb{E}Y_{\infty}$ and why?
- d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point a = -10.
- 6.15 Let $0 \leq p \leq 1$ and q = 1 p. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = q$ and $\mathbb{P}(X_i = 1) = p$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple asymmetric random walk starting from $S_0 = 0$. (Symmetric if $p = \frac{1}{2}$.) Show that $M_n := S_n n(p q)$ is a martingale (w.r.t. the natural filtration).

For $p \neq q$, use this to find the expectation of the time when the frog of Exercise 14 gets stuck.

- 6.16 Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = \mathbb{P}(X_i = 1) = \frac{1}{2}$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple symmetric random walk starting from $S_0 = 0$.
 - a.) Show that $S_n^2 n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that -it' not any harder.
 - b.) Use this and the result of Exercise 13 to find the expectation of the stopping time when the walk first reaches either -10 or 30.
 - c.) How about the expectation of the stopping time when the walk first reaches 30?

6.17 Let \mathcal{F}_n be a filtration and X any random variable with $\mathbb{E}|X| < \infty$. Let $X_n = \mathbb{E}(X|\mathcal{F}_n)$.

- a.) Show that X_n is a martingale w.r.t. \mathcal{F}_n .
- b.) Show that X_n converges almost surely to some limit X_{∞} .
- c.) Give a specific example when $X_{\infty} \neq X$.
- d.) Give a specific example when $X_{\infty} = X$.

References

[1] Durrett, R. *Probability: Theory and Examples.* **4th** edition, Cambridge University Press (2010)