Probability 1
CEU Budapest, fall semester 2018
Imre Péter Tóth
Midterm exam, 31.10.2018
Working time: 120 minutes $\approx \infty$
Every question is worth 10 points. Maximum total score: 30.

1. Do there exist random variables Y, X_{1}, X_{2}, \ldots such that $X_{n} \rightarrow Y$ almost surely and
a.) $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}^{2} \neq \mathbb{E} Y^{2}$?
b.) $\lim _{n \rightarrow \infty} \mathbb{E} \frac{1}{1+X_{n}^{2}} \neq \mathbb{E} \frac{1}{1+Y^{2}}$?
c.) $\lim _{n \rightarrow \infty} \mathbb{E}\left(\operatorname{sign}\left(X_{n}\right)\right) \neq \mathbb{E}(\operatorname{sign}(Y))$?
(All the expectations and limits should exist. sign denotes the sign function: $\operatorname{sign}(x)=1$, if $x>0 ; \operatorname{sign}(x)=0$, if $x=0 ; \operatorname{sign}(x)=-1$, if $x<0$.)
If not, why not? If yes, give an explicit example (meaning: a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and functions $\left.Y, X_{1}, X_{2}, \cdots: \Omega \rightarrow \mathbb{R}\right)$!
2. A frog, which is getting tired, moves along a line in the following way: At time $n=0$ it starts from the origin. In the nth step (for $n=1,2, \ldots$), with probability $\frac{1}{2 n}$ it jumps length $\frac{1}{n}$ to the left; with probability $\frac{1}{2 n}$ it jumps length $\frac{2}{n}$ to the right, and with the remaining probability $1-\frac{1}{n}$ it stays where it was. Let Z be the position of the frog after infinitely many jumps.
a.) What is $\mathbb{E} Z$?
b.) Does Z make sense?
3. Let $p_{1}, p_{2}, \cdots \in[0,1]$, let X_{1}, X_{2}, \ldots be independent random variables with $X_{n} \sim B\left(p_{n}\right)$ and let $Y_{n}=\frac{1}{p_{n}} X_{n}$. Let

$$
Z=\lim _{n \rightarrow \infty} \frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n}
$$

(almost sure limit). How much is $\mathbb{E} Z$? (Does the limit exist?)
a.) When $p_{n}=2^{-n}$?
b.) When $p_{n}=\frac{1}{n}$?
4. We take a big empty bag.

- 1 minute before midnight, we put 10 balls into the bag (numbered $1,2, \ldots, 10$). Then we draw a ball from the bag at random, and throw it away.
- $\frac{1}{2}$ minute before midnight, we put 10 more balls into the bag (numbered $11,12, \ldots, 20$). Then we draw a ball from the bag at random, and throw it away.
- $\frac{1}{4}$ minute before midnight, we put 10 more balls into the bag (numbered $21,22, \ldots, 30$). Then we draw a ball from the bag at random, and throw it away.
- ... and so on:
- $\frac{1}{2^{n}}$ minute before midnight, we put 10 more balls into the bag (numbered $10 n+1,10 n+$ $2, \ldots, 10 n+10)$. Then we draw a ball from the bag at random, and throw it away.

Let X be the number of balls in the bag at midnight - that is:

$$
X=\#\{k \in \mathbb{N} \mid \text { ball number } k \text { is in the bag at midnight }\} .
$$

What is $\mathbb{E} X$?

