$\begin{array}{c} \mbox{Probability 1} \\ \mbox{CEU Budapest, fall semester 2018} \\ \mbox{Imre Péter Tóth} \\ \mbox{Midterm exam, 31.10.2018} \\ \mbox{Working time: 120 minutes} \approx \infty \\ \mbox{Every question is worth 10 points. Maximum total score: 30.} \end{array}$

- 1. Do there exist random variables Y, X_1, X_2, \ldots such that $X_n \to Y$ almost surely and
 - a.) $\lim_{n\to\infty} \mathbb{E}X_n^2 \neq \mathbb{E}Y^2$?
 - b.) $\lim_{n\to\infty} \mathbb{E}\frac{1}{1+X_n^2} \neq \mathbb{E}\frac{1}{1+Y^2}$?
 - c.) $\lim_{n\to\infty} \mathbb{E}(\operatorname{sign}(X_n)) \neq \mathbb{E}(\operatorname{sign}(Y))?$

(All the expectations and limits should exist. sign denotes the sign function: sign(x) = 1, if x > 0; sign(x) = 0, if x = 0; sign(x) = -1, if x < 0.)

If not, why not? If yes, give an explicit example (meaning: a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and functions $Y, X_1, X_2, \dots : \Omega \to \mathbb{R}$)!

- 2. A frog, which is getting tired, moves along a line in the following way: At time n = 0 it starts from the origin. In the *n*th step (for n = 1, 2, ...), with probability $\frac{1}{2n}$ it jumps length $\frac{1}{n}$ to the left; with probability $\frac{1}{2n}$ it jumps length $\frac{2}{n}$ to the right, and with the remaining probability $1 \frac{1}{n}$ it stays where it was. Let Z be the position of the frog after infinitely many jumps.
 - a.) What is $\mathbb{E}Z$?
 - b.) Does Z make sense?
- 3. Let $p_1, p_2, \dots \in [0, 1]$, let X_1, X_2, \dots be independent random variables with $X_n \sim B(p_n)$ and let $Y_n = \frac{1}{p_n} X_n$. Let

$$Z = \lim_{n \to \infty} \frac{Y_1 + Y_2 + \dots + Y_n}{n}$$

(almost sure limit). How much is $\mathbb{E}Z$? (Does the limit exist?)

- a.) When $p_n = 2^{-n}$?
- b.) When $p_n = \frac{1}{n}$?
- 4. We take a big empty bag.
 - 1 minute before midnight, we put 10 balls into the bag (numbered 1, 2, ..., 10). Then we draw a ball from the bag at random, and throw it away.
 - $\frac{1}{2}$ minute before midnight, we put 10 more balls into the bag (numbered 11, 12, ..., 20). Then we draw a ball from the bag at random, and throw it away.
 - $\frac{1}{4}$ minute before midnight, we put 10 more balls into the bag (numbered 21, 22, ..., 30). Then we draw a ball from the bag at random, and throw it away.
 - ... and so on:
 - $\frac{1}{2^n}$ minute before midnight, we put 10 more balls into the bag (numbered $10n+1, 10n+2, \ldots, 10n+10$). Then we draw a ball from the bag at random, and throw it away.

Let X be the number of balls in the bag at midnight – that is:

 $X = \#\{k \in \mathbb{N} \mid \text{ball number } k \text{ is in the bag at midnight}\}.$

What is $\mathbb{E}X$?