Probability 1
CEU Budapest, fall semester 2017
Imre Péter Tóth
Midterm exam, 10.11.2017
Working time: 120 minutes $\approx \infty$
Every question is worth 10 points. Maximum total score: 30.

1. Today, Alice rolls a fair die, and she will be sad if the result is not 6 . Tomorrow she tries at most twice, and she will only be sad if neither are 6 . Every day she tries: on day n she rolls the die until she gets a 6 , but at most n times - and she will be sad if she doesn't manage to roll a 6 .
What is the probability that she will be sad on inifinitely many days?
2. Bob takes a long walk, making n steps. At each step, independently of the others, he falls with probability $\frac{3}{n}$. Let X_{n} be the number of falls. Find the weak limit of X_{n} as $n \rightarrow \infty$.
3. Is there a sequence of random variables X_{n} such that
a.) $X_{n} \Rightarrow 0,0 \leq X_{n} \leq 1$, but $\mathbb{E} X_{n} \rightarrow 1$?
b.) $X_{n} \rightarrow \infty$ almost surely, but $\mathbb{E} X_{n} \rightarrow 0$?

If not, why not? If yes, give an example!
4. We toss a fair coin infinitely many times. For $n=1,2,3, \ldots$ let $X_{n}=1$ if the nth and the $n+1$ st tosses are both heads, and 0 if not. Let $S_{n}=X_{1}+\cdots+X_{n}$. Show that $\sqrt{\frac{S_{n}}{n}} \Rightarrow \frac{1}{2}$.

