Probability 1
CEU Budapest, fall semester 2018
Imre Péter Tóth

A few midterm exercises from earlier years

1. Fix $0<\lambda \in \mathbb{R}$ and let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with a common $\operatorname{Exp}(\lambda)$ distribution. Let $a_{n}=c \ln n$ (for $n=1,2, \ldots$) with some $0<c \in \mathbb{R}$. What is the probability that $X_{n}>a_{n}$ occurs for infinitely many n-s?
2. Let X_{1}, X_{2}, \ldots be independent random variables with different Bernoulli distributions: $X_{n} \sim$ $B\left(p_{n}\right)$ with some sequence of probabilities $p_{1}, p_{2}, \ldots \in(0,1)$. Consider the cases below. Does the sequence X_{n} converge weakly? Does it converge in probability? Does it converge almost surely? If yes, what is the limit?
a.) $p_{n}=\frac{1}{n}$
b.) $p_{n}=\frac{1}{n^{2}}$
c.) $p_{n}=\frac{1}{2}+\frac{1}{n^{2}}$
3. For a nonnegative integer valued random variable X, let $p_{k}=\mathbb{P}(X=k)$. Then the generating function of X is given by

$$
g(z):=\sum_{k=0}^{\infty} p_{k} z^{k}
$$

for every $z \in \mathbb{R}$ where this power series is convergent. Show that
a.) g exists for any $z \in[0,1]$, for any X.
b.) If $\mathbb{E} X<\infty$, then g is differentiable from the left at $z=1$ and $g^{\prime}(1)=\mathbb{E} X$.
c.) (Bonus:) If $\mathbb{E} X=\infty$, then $g^{\prime}(1)=\infty$ in the appropriate sense.
4. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega=[0,1], \mathcal{F}$ the Borel σ-algebra and \mathbb{P} the Lebesgue measure on $[0,1]$ (restricted to \mathcal{F}). Show an explicit example of a sequence X_{n} of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $X_{n} \rightarrow 0$ almost surely but $\mathbb{E} X_{n} \rightarrow \infty$.
5. Let X_{1}, X_{2}, \ldots be independent, $X_{n} \sim B\left(p_{n}\right)$ with $p_{n} \in[0,1]$. Let $Y=\sum_{n=1}^{\infty} X_{n}$.
a.) Show that if $\sum_{n=1}^{\infty} p_{n}<\infty$, then $Y<\infty$ almost surely.
b.) Show that if $\sum_{n=1}^{\infty} p_{n}=\infty$, then $Y=\infty$ almost surely.
6. Let X_{1}, X_{2}, \ldots be random variables on the same probability space, $X_{n} \sim \operatorname{Exp}\left(\lambda_{n}\right)$ with $\lambda_{n}>0$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $\sum_{n=1}^{\infty} X_{n}<\infty$ almost surely.
7. Today, Alice rolls a fair die, and she will be sad if the result is not 6 . Tomorrow she tries at most twice, and she will only be sad if neither are 6 . Every day she tries: on day n she rolls the die until she gets a 6, but at most n times - and she will be sad if she doesn't manage to roll a 6 .
What is the probability that she will be sad on inifinitely many days?

