Probability 1
CEU Budapest, fall semester 2017
Imre Péter To6th
Homework sheet 1 — solutions

1. Define a o-algebra as follows:

Definition 1 For a nonempty set Q, a family F of subsets of w (i.e. F C 2%, where
20 :={A: A CQ} is the power set of Q) is called a o-algebra over Q) if

e e F
o if A€ F, then A := Q\ A € F (that is, F is closed under complement taking)
o if A1, Ay, --- € F, then (U2, A;) € F (that is, F is closed under countable union).

Show from this definition that a o-algebra is closed under countable intersection, and under
finite union and intersection.

2. Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If (2, F, p) is a measure space and Ay, Ao, ... is an increasing sequence of mea-
surable sets (i.e. A; € F and A; C A;qq for alli), then (U2, A;) = lim; o0 p1(A4;)
(and both sides of the equation make sense).

ii. If (Q, F, p) is a measure space, Ay, Ao, ... is a decreasing sequence of measurable
sets (i.e. A; € F and A; D Ajqq for all i) and p(Ay) < oo, then p(N2,A;) =
lim; oo pt(A;) (and both sides of the equation make sense).

(b) Show that in the second statement the condition p(A;) < oo is needed, by constructing
a counterexample for the statement when this condition does not hold.

3. (homework)

(a) We toss a biased coin, on which the probability of heads is some 0 < p < 1. Define
the random variable ¢ as the indicator function of tossing heads, that is

¢ 0, if tails
" 11, if heads

i. Describe the distribution of ¢ (called the Bernoulli distribution with parameter
p) in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight
P(¢ € B) of every (Borel) subset B of R.

iii. Calculate the expectation of €.

(b) We toss the previous biased coin n times, and denote by X the number of heads
tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n,p)) by listing possible values and their probabilities.
ii. Calculate the expectation of X by the old “probability 1”7 definition, using its
distribution,
iii. and also by noticing that X = & + & + - - - + &,, where §; is the indicator of the
i-th toss being heads, and using linearity of the expectation.
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Solution:

(a) i The possible values are 0 and 1, their probabilities are P(§ = 0) = 1 — p and

P =1)=p.
1, if0 e Band 1€ B,
1-— if B 1¢ B
i u(B)=Pep)={ P HOEBbulED
P, if 1 € Bbut 0¢ B,
0, if0¢ Band1¢ B.

iii. EE=0-PE=0)+1-P=1)=0-(1—-p)+1-p=np.
(b) i. The possible values are 0,1,2,...,n, their probabilities are

P(X = k) = (Z)pm )k k=0,1,2,...,n.

ii. If we denote the distribution of X by u, then

EX = [[wduta) = 3 ke ul) = 3 kPO = 1) = S k( )1 -
R k=0 k=0 k=0

To calculate this sum, one of the many ways is to consider the two-variable

function .
n
U, v) = k uFom 7k,
=3 ()

Then what we want to know is EX = f(p, 1 — p), but of course we are even more
happy if we can calculate f(u,v) for every (u,v). Now we notice that

k

k=0

flu,v) =u %g(u,v) where g(u,v) = i (n) uFon k.

This is now easy: by the binomial theorem g(u,v) = (u + v)", so

flu,v) = u %(U +0)" = nu(u +v)"

and
EX = f(p,1—-p) =np(p+1—p)" = np.

iii. This is much easier:
BX — (Y6 - 3B~ Y
i=1 i=1 i=1

4. (homework) Usefulness of the linearity of the expectation. A building has 10 floors, not
including the ground floor. On the ground floor, 10 people get into the elevator, and every
one of them chooses a destination at random, uniformly out of the 10 floors, independently
of the others. Let X denote the number of floors on which the elevator stops — i.e. the
number of floors that were chosen by at least one person. Calculate the expectation of X.
(Hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation without that. Help: What is the probability that the elevator stops on the

first floor?)
Solution: For i =1,2,...,10 let Y; = 1 if the elevator stops on floor i, and let Y; = 0 if

not. So X =Yj + -+ Yo, which means that EX = EY] +- - -+ EYj, (although the Y; are
not at all independent). These Y; are just Bernoulli distributed with the same parameter

p =P(Y1 = 1) = P(stops on first floor).
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The probability of nobody going to the first floor is (1%)10, because the 10 people choose
independently, and each of them pick another floor with probability %. So

9 10
:1— —_—
p=1-(5)

and of course EY; = p for every ¢. This gives

9 10
EX = 10p = 10 [1 - (1—0) ] ~ 6.51

. (homework) We take a huge bag. 1 minute before midnight we put 10 balls (numbered
1...10) into the bag. Then we draw a ball from the bag at random, and throw it away. %

minute before midnight we put another 10 balls (numbered 11...20) into the bag. Then
we draw a ball from the bag at random, and throw it away. i minute before midnight
we put another 10 balls (numbered 21...30) into the bag. Then we draw a ball from the
bag at random, and throw it away. And so on, infinitely many times: 2% minute before

midnight we put 10 balls (numbered (10n 4+ 1) ...(10n + 10)) into the bag. Then we draw
a ball from the bag at random, and throw it away.

a.) What is the probability that ball number 1 will be in the bag at midnight? (Hint: we

will see later that limy o [, (1-5775) =0.)

b.) What is the probability that ball number 11 will be in the bag at midnight?
c.) Show that, at midnight, with probability 1, the bag will be empty. (What?!?!)

Solution:

a.) At each step we add 10 balls and take away 1, so after n steps there are 9n balls in the

bag, and 10 more when we do the next draw. So, in step n + 1 the chance of throwing
away ball 1 is 9n-1i-10 — provided that it hasn’t been thrown away before. The draws are
independent, so

N-1
1
P(ball 1 survives N steps) = H (1 ~onx 10) :
n

n=0

To be in the bag at midnight, it needs to survive all the infinitely many steps, which

has probability limy e HnN:o (1- 9nJ1r10)’ which is 0 by the hint.

Of course, balls 2, 3, ..., 10 have the same chance 0 of surviving.

b.) Similarly to the previous case, the chance of surviving is limy_,« HnN:1 (1 — m),
which differs from the previous only with the factor corresponding to n = 0, which is
1- % # 0. So, since the other limit is 0, this is also 0.

Of course, balls 12, 13, ..., 20 have the same chance 0 of surviving.

c.) With the same argument, each and every ball has 0 probability if surviving. Let
A; be the event that ball ¢ survives, and let B be the event that there is at least 1
surviving ball (so the bag is not empty). So B = |J;2, 4;, and the o-subadditivity of
the probability implies that

P(B) < iIP’(Ai) - io ~0.

This seemingly contradicts the fact that the number of balls is growing in each step,
so after infinitely many steps there should be infinitely many balls in the bag. The
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contradiction comes from the problem not being formulated precisely. To see that there
are two different questions here, let A;, be the event that ball number ¢ is in the bag
after n steps. We have shown that

P(B) =P <Dl A,) =P <O N A,;n> =0,

i=1 n

which does not contradict the fact that

lim #{é| A;, holds} = oo.
n—oo

This is deeply related to the non-interchangeability of limit and integral — discussed in
class.



