Probability 1

CEU Budapest, fall semester 2018

Imre Péter Tóth

Homework sheet 1 - solutions

1.1 (homework) Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of $\left.\Omega\right)$ is called a σ-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.

Solution:

If $B_{1}, B_{2}, \cdots \in \mathcal{F}$ then $A_{i}:=\Omega \backslash A_{i} \in \mathcal{F}$ as well, for $i=1,2, \ldots$ due to (1), and thus $C:=\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ by (1). Finally, $\Omega \backslash C \in \mathcal{F}$ by (1), but $\Omega \backslash C=\cap_{i=1}^{\infty} B_{i}$ by the basics of set algebra, so we have shown that \mathcal{F} is closed under countable intersection. For finite union, notice that if $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$, then we can choose $A_{n+1}=A_{n+2}=\cdots=\emptyset \in \mathcal{F}$ by (1), to get $\left(\cup_{i=1}^{n} A_{i}\right)=\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ by (1). So \mathcal{F} is shown to be closed under finite union. Closedness under finite intersection can be seen similarly.
1.2 (homework) Continuity of the measure
a.) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
b.) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.

Solution:

a.) i. Let $B_{1}=A_{1}$ and let $B_{n}=A_{n} \backslash A_{n-1}$ for $n \geq 2$. so B_{1}, B_{2}, \ldots are pairwise disjoint and

- $A_{n}=\cup_{i=1}^{n} B_{i}$, so by additivity $\mu\left(A_{n}\right)=\sum_{i=1}^{n} \mu\left(B_{i}\right)$
- $\cup_{i=1}^{\infty} A_{i}=\cup_{i=1}^{\infty} B_{i}=$, so by σ-additivity

$$
\nu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} m u\left(B_{i}\right) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

ii. Let $C_{i}=A_{1} \backslash A_{i}$, so C_{1}, C_{2}, \ldots is an increasing sequence and we can apply the result of the previous point:

$$
\begin{aligned}
\mu\left(\cap_{i=1}^{\infty} A_{i}\right) & =\mu\left(A_{1} \backslash \cup_{i=1}^{\infty} C_{i}\right)=\mu\left(A_{1}\right)-\mu\left(\cup_{i=1}^{\infty} C_{i}\right)=\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(C_{n}\right) \\
& =\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty}\left[\mu\left(A_{1}\right)-\mu\left(A_{n}\right)\right]=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
\end{aligned}
$$

Whenever we wrote $\mu\left(A_{1}\right)$ in a subtraction, we heavily used that $\mu\left(A_{1}\right)<\infty$.
b.) Let $\Omega=\mathbb{R}$, let μ be Lebesgue measure and let $A_{i}=[i, \infty)$. Then $\mu\left(A_{i}\right)=\infty$ for every i, but $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=\mu(\emptyset)=0$.
1.3 (homework) Let $\Omega=\{(i, j) \mid i, j, \in \mathbb{N}, 1 \leq i \leq 6\}$ be the set of all 36 possible outcomes in an experiment where we roll a bule and a red die: the result of the experiment is a pair of numbers between 1 and 6 , the first number being the number rolled on the blue die, and the second number being the number rolled on the red one.
Let $f: \Omega \rightarrow \mathbb{R}$ be given by $f((i, j)):=i+j$, so f is the sum of the two numbers rolled. Clearly, the range of f is $Y:=\{2,3, \ldots, 12\}$. Let \mathcal{G} be the discrete σ-algebra on Y and let

$$
\mathcal{F}:=\left\{f^{-1}(B) \mid B \in \mathcal{G}\right\}
$$

so $\mathcal{F} \subset 2^{\Omega}$.
a.) Show that \mathcal{F} is a σ-algebra over Ω.
b.) Describe the σ-algebra \mathcal{F} : which are the sets that belong to it? Give examples of subsets of Ω that are not in \mathcal{F}.

Solution:

a.) We check the definition:

- \mathcal{G} is a σ-algebra, so $\emptyset \in \mathcal{G}$, so $\emptyset=f^{-1}(\emptyset) \in \mathcal{F}$.
- If $A \in \mathcal{F}$, then $A=f^{-1} B$ for some $B \in \mathcal{G}$. Since \mathcal{G} is a σ-algebra, $Y \backslash B \in \mathcal{G}$ as well, so $\Omega \backslash A=f^{-1}(Y \backslash B) \in \mathcal{F}$.
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $A_{i}=f^{-1} B_{i}$ for some $B_{i} \in \mathcal{G}$. Since \mathcal{G} is a σ-algebra, $\cup_{i=1}^{\infty} B_{i} \in \mathcal{G}$ as well, so $\cup_{i=1}^{\infty} A_{i}=f^{-1}\left(\cup_{i=1}^{\infty} B_{i}\right) \in \mathcal{F}$.
b.) "Atoms" of the σ-algebra \mathcal{F} are the sets

$$
\begin{aligned}
C_{2} & :=f^{-1}(\{2\})=\{(1,1)\} \\
C_{3} & :=f^{-1}(\{3\})=\{(1,2),(2,1)\} \\
C_{4} & :=f^{-1}(\{4\})=\{(1,3),(2,2),(3,1)\} \\
C_{5} & :=f^{-1}(\{5\})=\{(1,4),(2,3),(3,2),(4,1)\} \\
C_{6} & :=f^{-1}(\{6\})=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \\
C_{7} & :=f^{-1}(\{7\})=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
C_{8} & :=f^{-1}(\{8\})=\{(2,6),(3,5),(4,4),(5,3),(6,2)\} \\
C_{9} & :=f^{-1}(\{9\})=\{(3,6),(4,5),(5,4),(6,3)\} \\
C_{10} & :=f^{-1}(\{10\})=\{(4,6),(5,5),(6,4)\} \\
C_{11} & :=f^{-1}(\{11\})=\{(5,6),(6,5)\} \\
C_{12} & :=f^{-1}(\{12\})=\{(6,6)\} .
\end{aligned}
$$

These form a partition of Ω. Every $A \in \mathcal{F}$ is a disjoint union of some C_{i}. An $\omega \in \Omega$ can only be in A if the whole class C_{i} containing ω is also subset of A. For example, $A:=\{(2,2),(3,1)\} \notin \mathcal{F}:$ if we had $A=f^{-1}(B)$ for some $B \in \mathcal{G}$, then $f((2,2))=4$ would have to be in B, but then all of $C_{4}=f^{-1}(\{4\})$ would have to be part of A, including $(1,3)$, which is not there.

