Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 1 – solutions

1.1 (homework) Define a σ -algebra as follows:

Definition 1 For a nonempty set Ω , a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega} := \{A : A \subset \Omega\}$ is the power set of Ω) is called a σ -algebra over Ω if

- $\bullet \ \emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^C := \Omega \setminus A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_1, A_2, \dots \in \mathcal{F}$, then $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ -algebra is closed under countable intersection, and under finite union and intersection.

Solution:

If $B_1, B_2, \dots \in \mathcal{F}$ then $A_i := \Omega \setminus A_i \in \mathcal{F}$ as well, for $i = 1, 2, \dots$ due to (1), and thus $C := (\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ by (1). Finally, $\Omega \setminus C \in \mathcal{F}$ by (1), but $\Omega \setminus C = \bigcap_{i=1}^{\infty} B_i$ by the basics of set algebra, so we have shown that \mathcal{F} is closed under countable intersection. For finite union, notice that if $A_1, A_2, \dots, A_n \in \mathcal{F}$, then we can choose $A_{n+1} = A_{n+2} = \dots = \emptyset \in \mathcal{F}$ by (1), to get $(\bigcup_{i=1}^{n} A_i) = (\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ by (1). So \mathcal{F} is shown to be closed under finite union. Closedness under finite intersection can be seen similarly.

1.2 (homework) Continuity of the measure

a.) Prove the following:

Theorem 1 (Continuity of the measure)

- i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_1, A_2, \ldots is an increasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \subset A_{i+1}$ for all i), then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_1, A_2, \ldots is a decreasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \supset A_{i+1}$ for all i) and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- b.) Show that in the second statement the condition $\mu(A_1) < \infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.

Solution:

- a.) i. Let $B_1 = A_1$ and let $B_n = A_n \setminus A_{n-1}$ for $n \ge 2$. so B_1, B_2, \ldots are pairwise disjoint and
 - $A_n = \bigcup_{i=1}^n B_i$, so by additivity $\mu(A_n) = \sum_{i=1}^n \mu(B_i)$
 - $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i =$, so by σ -additivity

$$\nu\left(\bigcup_{i=1}^{\infty}A_i\right) = \sum_{i=1}^{\infty} mu(B_i) \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(A_n).$$

ii. Let $C_i = A_1 \setminus A_i$, so C_1, C_2, \ldots is an increasing sequence and we can apply the result of the previous point:

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1 \setminus \bigcup_{i=1}^{\infty} C_i) = \mu(A_1) - \mu(\bigcup_{i=1}^{\infty} C_i) = \mu(A_1) - \lim_{n \to \infty} \mu(C_n)$$
$$= \mu(A_1) - \lim_{n \to \infty} [\mu(A_1) - \mu(A_n)] = \lim_{n \to \infty} \mu(A_n).$$

Whenever we wrote $\mu(A_1)$ in a subtraction, we heavily used that $\mu(A_1) < \infty$.

- b.) Let $\Omega = \mathbb{R}$, let μ be Lebesgue measure and let $A_i = [i, \infty)$. Then $\mu(A_i) = \infty$ for every i, but $\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(\emptyset) = 0$.
- 1.3 (homework) Let $\Omega = \{(i, j) | i, j \in \mathbb{N}, 1 \le i \le 6\}$ be the set of all 36 possible outcomes in an experiment where we roll a bule and a red die: the result of the experiment is a pair of numbers between 1 and 6, the first number being the number rolled on the blue die, and the second number being the number rolled on the red one.

Let $f: \Omega \to \mathbb{R}$ be given by f((i, j)) := i + j, so f is the sum of the two numbers rolled. Clearly, the range of f is $Y := \{2, 3, ..., 12\}$. Let \mathcal{G} be the discrete σ -algebra on Y and let

$$\mathcal{F} := \{ f^{-1}(B) \mid B \in \mathcal{G} \},\$$

so $\mathcal{F} \subset 2^{\Omega}$.

- a.) Show that \mathcal{F} is a σ -algebra over Ω .
- b.) Describe the σ -algebra \mathcal{F} : which are the sets that belong to it? Give examples of subsets of Ω that are not in \mathcal{F} .

Solution:

- a.) We check the definition:
 - \mathcal{G} is a σ -algebra, so $\emptyset \in \mathcal{G}$, so $\emptyset = f^{-1}(\emptyset) \in \mathcal{F}$.
 - If $A \in \mathcal{F}$, then $A = f^{-1}B$ for some $B \in \mathcal{G}$. Since \mathcal{G} is a σ -algebra, $Y \setminus B \in \mathcal{G}$ as well, so $\Omega \setminus A = f^{-1}(Y \setminus B) \in \mathcal{F}$.
 - If $A_1, A_2, \dots \in \mathcal{F}$, then $A_i = f^{-1}B_i$ for some $B_i \in \mathcal{G}$. Since \mathcal{G} is a σ -algebra, $\bigcup_{i=1}^{\infty} B_i \in \mathcal{G}$ as well, so $\bigcup_{i=1}^{\infty} A_i = f^{-1} (\bigcup_{i=1}^{\infty} B_i) \in \mathcal{F}$.
- b.) "Atoms" of the σ -algebra \mathcal{F} are the sets

$$C_{2} := f^{-1}(\{2\}) = \{(1,1)\}$$

$$C_{3} := f^{-1}(\{3\}) = \{(1,2), (2,1)\}$$

$$C_{4} := f^{-1}(\{4\}) = \{(1,3), (2,2), (3,1)\}$$

$$C_{5} := f^{-1}(\{5\}) = \{(1,4), (2,3), (3,2), (4,1)\}$$

$$C_{6} := f^{-1}(\{6\}) = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

$$C_{7} := f^{-1}(\{7\}) = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$C_{8} := f^{-1}(\{8\}) = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

$$C_{9} := f^{-1}(\{8\}) = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

$$C_{10} := f^{-1}(\{10\}) = \{(4,6), (5,5), (6,4)\}$$

$$C_{11} := f^{-1}(\{11\}) = \{(5,6), (6,5)\}$$

$$C_{12} := f^{-1}(\{12\}) = \{(6,6)\}.$$

These form a partition of Ω . Every $A \in \mathcal{F}$ is a disjoint union of some C_i . An $\omega \in \Omega$ can only be in A if the whole class C_i containing ω is also subset of A. For example, $A := \{(2,2), (3,1)\} \notin \mathcal{F}$: if we had $A = f^{-1}(B)$ for some $B \in \mathcal{G}$, then f((2,2)) = 4would have to be in B, but then all of $C_4 = f^{-1}(\{4\})$ would have to be part of A, including (1,3), which is not there.