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Homework sheet 2 – solutions

2.1 The Fatou lemma is the following

Theorem 1 Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale func-
tions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and every
x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing Ω = R, µ as
the Lebesgue measure on R, and constructing a sequence of nonnegative fn : R → R for which
fn(x)

n→∞−−−→ 0 for every x ∈ R, but
∫

R
fn(x) dx ≥ 1 for all n.

2.2 (homework) Exchangeability of integral and limit. Consider the sequences of functions fn :
[0, 1] → R and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals.
Do there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) → f(x)

and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim
n→∞

(

1
∫

0

fn(x)dx

)

and

lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence theorems

and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific
examples? (For the Fatou lemma, see the lecture notes or Exercise 1.)

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in a
unique way for every n). Now let

gn(x) =

{

1 if l

2k
≤ x < l+1

2k
,

0 otherwise.

Solution: Please draw the graph of these functions! You will see that

(a) fn(x) → f(x) := 0 for every x ∈ [0, 1], but
1
∫

0

fn(x)dx = 1 for every n (except for n = 1),

so

lim
n→∞





1
∫

0

fn(x)dx



 = 1 6= 0 =

1
∫

0

f(x)dx.

The convergence is not monotone, so the monotone convergence theorem says nothing. A
natural choice for the common dominating function would be G(x) := 1

x
(see the graphs
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you have drawn), but this is not integrable, because
1
∫

0

1
x
dx = ∞. Indeed, there is no

integrable dominating function, so the dominated convergence theorem says nothing as
well. However, the functions are non-neagtive, so the conditions of the Fatou lemma hold.
Of course, the statement also holds:

1
∫

0

lim inf
n→∞

fn(x)dx = 0 ≤ 1 = lim inf
n→∞

1
∫

0

fn(x)dx.

(b) For every fixed x ∈ [0, 1] as n grows, gn(x) will be 0 most of the time, but it will also
be 1 once in a while (infinitely many times). So gn(x) is not convergent (as n → ∞) for
any x: no limiting g exists. Thus the monotone and dominated convergence theorems
say nothing (there is no

∫ 1

0
g(x)dx to converge to). However, the conditions of the Fatou

lemma hold. Of course, the statement also holds: lim infn→∞ gn(x) = 0 for every x, while
1
∫

0

gn(x)dx = 1
2k

for 2k ≤ n ≤ 2k+1, so
1
∫

0

gn(x)dx
n→∞−−−→ 0. The statement of the lemma

now reads
1

∫

0

lim inf
n→∞

gn(x)dx = 0 ≤ 0 = lim inf
n→∞

1
∫

0

gn(x)dx.

2.3 (homework) Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?

Solution: Sketching the function one easily sees that

∫

∞

−∞

f(x, y) dx =

{

1− y, if 0 < y < 1

0, if not
,

so
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy =
1
∫

0

(1− y)dy = 1
2
. Similarly

∫

∞

−∞

f(x, y) dy =

{

−1 + x, if 0 < x < 1

0, if not
,

so
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx =
1
∫

0

(x− 1)dx = −1
2
. The two double integrals are not equal, but this

does not contradict the Fubini theorem, because f is not integrable (w.r.t. Lebesgue measure
on R2). Indeed,

∫∫

R2 |f | = ∞.

2.4 The characteristic function of a random variable X is the function Ψ : R → C defined as Ψ(t) :=
EeitX , which, of course, depends on the distribution of X only. Calculate the characteristic
function of
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(a) The Bernoulli distribution B(p) (see Homework sheet 1)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ on
{0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν on
{1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) (homework) The Poisson distribution with parameter λ – that is, the distribution η on

{0, 1, 2 . . .} with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

Solution:

ψPoi(λ)(t) =
∞
∑

k=0

eitke−λλ
k

k!
=

∞
∑

k=0

eitkη({k}) = e−λ

∞
∑

k=0

(λeit)k

k!
= e−λeλe

it

= eλ(e
it
−1).

(e) (homework) The exponential distribution with parameter λ – that is, the distribution
on R with density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

Solution:

φExp(λ)(t) =

∫

R

eitxfλ(x) dLeb(x) =

∫

∞

0

eitxλe−λx dx = λ

[

e(it−λ)x

it− λ

]∞

0

=
λ

λ− it
.

2.5 Calculate the characteristic function of the normal distribution N (m, σ2). (Remember the
definition from the old times: N (m, σ2) is the distribution on R with density (w.r.t. Lebesgue
measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can and
should use the fact that

∫

∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

2.6 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . . mea-
surable real valued functions on Ω which converge to the limit function pointwise, µ-almost
everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set of x-es
with µ-measure zero.) Assume furthermore that the fn admit a common integrable dominating
function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and n ∈ N, and
∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.
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Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued ran-
dom variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment of X
exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.
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