
Probability 1
CEU Budapest, fall semester 2018

Imre Péter Tóth
Homework sheet 2 – solutions

2.1 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every (Borel) subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by the old “probability 1” definition, using its
distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

2.2 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n

.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an
3n

, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

2.3 (homework) In the probability space (Ω,F ,P) let Ω = [0, 1], let F be the Borel σ-algebra
and let P be the Lebesgue measure (restricted to F). Let the random variable X : Ω → R

be defined as

X(ω) :=

{

lnω, if ω 6= 0

0, if ω = 0
.
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(a) Show that X is measurable as a function X : Ω → R when Ω is equipped with the Borel
σ-algebra F and R is also equipped with its Borel σ-algebra B. (Remark: This exercise
is only for those interested in every mathematical detail. It is not at all as important
as it may seem. You are also welcome to just believe that X is measurable.)

(b) Let µ be the distribution of X , which means that µ is the measure on (R,B) defined
by

µ(A) := P({ω ∈ Ω |X(ω) ∈ A}) for all A ∈ B.
(In other words, µ is the push-forward of the measure P to R by X .)

“Describe” the measure µ by calculating F (x) := µ((−∞, x]) for every x ∈ R. Also
calculate µ([a, b]) for every interval [a, b] ⊂ R (with a ≤ b).

(This function F : R → [0, 1] is called the (cumulative) distribution function of the
measure µ, or also the (cumulative) distribution function of the random variable X.)

Solution:

(a) We will use a lemma.

Lemma 1. If Ω1, Ω2 are nonempty sets, f : Ω1 → Ω2 is any function and F ⊂ 2Ω1 is
a σ-algebra over Ω1, then

G := {B ⊂ Ω2 | f−1(B) ∈ F}

is a σ-algebra over Ω2.

Proof. We check the definition.

• f−1(∅) = ∅ ∈ F , so ∅ ∈ G
• If B ∈ G then f−1(B) ∈ F . Since F is a σ-algebra, this means

f−1(Ω2 \B) = f−1(Ω2) \ f−1(B) = Ω1 \ f−1(B) ∈ F

as well, so Ω2 \B ∈ G.
• If B1, B2, · · · ∈ G then f−1(Bi) ∈ F for all i. Since F is a σ-algebra, this means

f−1 (∪∞
i=1Bi) = ∪∞

i=1f
−1(Bi) ∈ F

as well, so ∪∞
i=1Bi ∈ G.

This has a trivial corollary:

Corollary 1. Let Ω1, Ω2 be nonempty sets, f : Ω1 → Ω2 a function and F ⊂ 2Ω1 a
σ-algebra over Ω1. Let H ⊂ Ω2 be a family of sets. If f−1(B) ∈ F holds for every
B ∈ H, then it also holds for every B ∈ σ(H), where σ(H) is the σ-algebra generated
by H.

Proof. Let G := {B ⊂ Ω2 | f−1(B) ∈ F}. Then G is a σ-algebra by the lemma, which
contains H by assumption, so it also contains σ(H).

We apply the corollary with Ω1 = Ω, Ω2 = R, F = F , f = X and H = {B ⊂
R |B is open}. Then σ(H) = B, so to get the measurability of X , it is enough to check
that inverse images of open sets are (Borel) measurable. This is obvious, since X is
continuous except at the single point 0, so the inverse image of an open set is also an
open set, plus possibly a point.

(Remark: The same argument works with H := {intervals}, since then σ(H) = B as
well.)
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(b) since Leb({0}) = 0, the single point ω = 0 where X is defined separately, plays no role
and can be ignored. Using the definitions,

F (x) = µ((−∞, x]) = P(X ∈ (−∞, x]) = Leb({ω ∈ (0, 1] | lnω ≤ x})

= Leb({ω ∈ (0, 1] |ω ≤ ex}) =
{

Leb((0, 1]) = 1 if x ≥ 0 (so ex ≥ 1)

Leb((0, ex]) = ex if x < 0 (so ex < 1)
.

Summary:

F (x) =

{

ex if x < 0

1 if x ≥ 0
.

This F (x) is continuous, so µ({a}) = 0 for every a ∈ R, so for all a ≤ b

µ([a, b]) = µ((a, b]) = F (b)− F (a) =











eb − ea if b < 0

1− ea if a < 0 ≤ b

0 if 0 ≤ a

.

2.4 Let χ be the counting measure on N. Calculate
∫

N
f dχ if f : N → R is given by

a.) f(k) := 1
2k

b.) f(k) := 1
k

c.) f(k) := (−1)k

k

2.5 Let χ be the counting measure on R and µ be Lebesgue measure on R.

a.) Show that µ is absolutely contuinuous w.r.t. χ: µ ≪ χ.

b.) Show that µ does not have a density f w.r.t. χ: there is no such f that µ(B) =
∫

B
f dχ

would hold for every (Borel) B ⊂ R.

c.) What’s wrong with the Ranod-Nikodym theorem?

2.6 Let χ be the counting measure on N and let the measure µ be absolutely continuous with
respect to χ, with density f(k) := qkp, where p ∈ (0, 1) and q = 1 − p. Define X : N → R

as X(k) := k.

a.) Calculate
∫

N
X dµ.

b.) Calculate
∫

N
X2 dµ.

2.7 (homework) Let µ be a measure on R which has density f(x) := x2 with respect to
Lebesgue measure. Let ν be a measure on R which has density g(x) :=

√
x with respect to

µ. Calculate ν([1, 3]).

Solution: By the definition of the density ind its usage in integrals:

ν([1, 3]) =

∫

[1,3]

g dµ =

∫

[1,3]

gf dLeb =

∫ 3

1

√
xx2 dx =

[

2

7
x

7

2

]3

1

= 2
27
√
3− 1

3
.

2.8 (homework) Let the random variable X have density

f(x) =

{

2e−2x if x > 0

0 if not
,

with respect to Lebesgue measure on R.
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a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.

b.) Let Y := X2. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and
find its density.

Solution:

a.) We need to check three things:

• f is measurable: don’t worry about this. (Actually, f is piecewise continuous, so
the argument of Exercise 3a works.)

• f ≥ 0 almost everywhere (actually everywhere).

•
∫

R
f dLeb =

∫∞
−∞ f(x) dx =

∫∞
0

2e−2x dx = [−e−2x]
∞
0 = 1.

b.) We will find the density by differentiating the distribution function FY (y) := P(Y ≤ y).
Clearly X ≥ 0 almost surely, so Y ≥ 0 almost surely, so FY (y) = 0 for y < 0. For y ≥ 0,
from the definitions

FY (y) = P(Y ≤ y) = P(X ≤ √
y) =

∫

(−∞,
√
y]

f dLeb =

∫

√
y

0

f(x) dx.

This would be easy to calculate explicitly, but we don’t need it: let fY (y) := F ′
Y (y)

wherever FY is differentiable: fY (y) = 0 for y < 0, and for y > 0

fY (y) =
d

dy

∫

√
y

0

f(x) dx = f(
√
y)

1

2
√
y
= e2

√
y 1

2
√
y
.

Summary: the function

fY (y) =

{

0 if x < 0
1√
y
e2

√
y if x > 0

has the property that P(Y ∈ (a, b]) = FY (b)− FY (a) =
∫

(a,b]
fY dLeb for every a < b, so

it is indeed the density of Y with respect to Leb. The existence of the density in turn
implies that Y is absolutely continuous.

2.9 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that. Help: What is the probability that the elevator
stops on the first floor?)

2.10 We take a huge bag. 1 minute before midnight we put 10 balls (numbered 1 . . . 10) into the
bag. Then we draw a ball from the bag at random, and throw it away. 1

2
minute before

midnight we put another 10 balls (numbered 11 . . . 20) into the bag. Then we draw a ball
from the bag at random, and throw it away. 1

4
minute before midnight we put another 10

balls (numbered 21 . . . 30) into the bag. Then we draw a ball from the bag at random, and
throw it away. And so on, infinitely many times: 1

2n
minute before midnight we put 10 balls

(numbered (10n + 1) . . . (10n + 10)) into the bag. Then we draw a ball from the bag at
random, and throw it away.

a.) What is the probability that ball number 1 will be in the bag at midnight? (Hint: we
will see later that limN→∞

∏N

n=0

(

1− 1
9n+10

)

= 0.)

b.) What is the probability that ball number 11 will be in the bag at midnight?
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c.) Show that, at midnight, with probability 1, the bag will be empty. (What?!?!)

2.11 The Fatou lemma is the following

Theorem 1. Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale
functions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and
every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing Ω = R, µ
as the Lebesgue measure on R, and constructing a sequence of nonnegative fn : R → R for
which fn(x)

n→∞−−−→ 0 for every x ∈ R, but
∫

R
fn(x) dx ≥ 1 for all n.

2.12 (homework) Exchangeability of integral and limit. Consider the sequences of functions
fn : [0, 1] → R and gn : [0, 1] → R concerning their pointwise limits and the limits of
their integrals. Do there exist integrable functions f : [0, 1] → R and g : [0, 1] → R,
such that fn(x) → f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is

lim
n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and mono-

tone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems
ensure about these specific examples? (For the Fatou lemma, see the lecture notes or Exer-
cise 11.)

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l
2k

≤ x < l+1
2k

,

0 otherwise.

Solution: Please draw the graph of these functions! You will see that

(a) fn(x) → f(x) := 0 for every x ∈ [0, 1], but
1
∫

0

fn(x)dx = 1 for every n (except for n = 1),

so

lim
n→∞





1
∫

0

fn(x)dx



 = 1 6= 0 =

1
∫

0

f(x)dx.

The convergence is not monotone, so the monotone convergence theorem says nothing.
A natural choice for the common dominating function would be G(x) := 1

x
(see the

graphs you have drawn), but this is not integrable, because
1
∫

0

1
x
dx = ∞. Indeed,

there is no integrable dominating function, so the dominated convergence theorem says
nothing as well. However, the functions are non-negative, so the conditions of the Fatou
lemma hold. Of course, the statement also holds:

1
∫

0

lim inf
n→∞

fn(x)dx = 0 ≤ 1 = lim inf
n→∞

1
∫

0

fn(x)dx.
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(b) For every fixed x ∈ [0, 1] as n grows, gn(x) will be 0 most of the time, but it will also
be 1 once in a while (infinitely many times). So gn(x) is not convergent (as n → ∞) for
any x: no limiting g exists. Thus the monotone and dominated convergence theorems
say nothing (there is no

∫ 1

0
g(x)dx to converge to). However, the conditions of the

Fatou lemma hold. Of course, the statement also holds: lim infn→∞ gn(x) = 0 for every

x, while
1
∫

0

gn(x)dx = 1
2k

for 2k ≤ n ≤ 2k+1, so
1
∫

0

gn(x)dx
n→∞−−−→ 0. The statement of the

lemma now reads

1
∫

0

lim inf
n→∞

gn(x)dx = 0 ≤ 0 = lim inf
n→∞

1
∫

0

gn(x)dx.

2.13 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?
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