Probability 1
CEU Budapest, fall semester 2017
Imre Péter Tóth
Homework sheet 3 - solutions
3.1 (homework) For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$. (Hint: estimate the logarithm of $(1-p)$ with p.)
Solution: For $0 \leq p_{k} \nsupseteq 1$ we have that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(1-p_{k}\right)>-\infty \tag{1}
\end{equation*}
$$

Now if $p_{k} \rightarrow 0$, then this is clearly false. If $p_{k} \rightarrow 0$, then we get from the linear approximation of $x \mapsto \ln (1+x)$ near $x_{0}=0$ that - except possibly for finitely many k-s -

$$
-p_{k} \geq \ln \left(1-p_{k}\right) \geq-2 p_{k} .
$$

This implies that

$$
C-\sum_{k=1}^{n} p_{k} \geq \sum_{k=1}^{n} \ln \left(1-p_{k}\right) \geq C-2 \sum_{k=1}^{n} p_{k}
$$

which means that (1) holds if and only if $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{k}<\infty$.
3.2 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
3.3 (homework) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. Prove that the following two statements are equivalent:
(i) $\mathbb{E}\left|X_{i}\right|<\infty$.
(ii) $\mathbb{P}\left(\left|X_{n}\right|>n\right.$ for infinitely many n-s $)=0$.

Hint: If Y is nonnegative integer valued, then $\mathbb{E} Y=\sum_{k=0}^{\infty} k \mathbb{P}(Y=k)=\sum_{n=1}^{\infty} \mathbb{P}(Y \geq n)$. (Why?)
Solution: The key observation is that for a nonnegative integer valued random variable Y, we have $\mathbb{E} Y=\sum_{k=1}^{\infty} \mathbb{P}(Y \geq k)=\sum_{n=0}^{\infty} \mathbb{P}(Y>n)$. So for the random varibale $|X|$, which is nonnegative but not necessarily integer, the error of such an approximation is at most 1 (choosing, say, Y to be the integer part of X):

$$
|\mathbb{E}| X\left|-\sum_{n=0}^{\infty} \mathbb{P}(|X|>n)\right| \leq 1,
$$

in particular $\mathbb{E}|X|<\infty$ if and only if $\sum_{n=0}^{\infty} \mathbb{P}(|X|>n)<\infty$. Now define the events $A_{n}:=$ $\left\{\left|X_{n}\right|>n\right\}$ with probabilities $p_{n}:=\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\left|X_{n}\right|>n\right)$. These A_{n} are independent, so the two Borel-Cantelli lemmas say exactly that \mathbb{P} (infinitely many occur) $=0$ if and only if $\sum_{n=0}^{\infty} p_{n}<\infty$, which is equivalent to $\mathbb{E}|X|<\infty$.
3.4 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

3.5 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(ii) From every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ a sub-subsequence $\left\{n_{k_{j}}\right\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_{j}}} \rightarrow X$ almost surely as $j \rightarrow \infty$.
3.6 (homework) Let X_{1}, X_{2}, \ldots be independent such that X_{n} has $\operatorname{Bernoulli}\left(p_{n}\right)$ distribution. Determine what property the sequence p_{n} has to satisfy so that
(a) $X_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$
(b) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.

Solution:

a.) $X_{n} \rightarrow 0$ in probability iff $\forall \varepsilon>0$ we have $\mathbb{P}\left(\left|X_{n}\right|<\varepsilon\right) \rightarrow 0$. but $X_{n} \in\{0,1\}$, so for $0<\varepsilon<1,\left\{\left|X_{n}\right|>\varepsilon\right\}=\left\{X_{n}=1\right\}$, so

$$
X_{n} \rightarrow 0 \text { in probability } \Leftrightarrow \mathbb{P}\left(X_{n}=1\right) \rightarrow 0 \Leftrightarrow p_{n} \rightarrow 0 .
$$

b.) Since $X_{n} \in\{0,1\}, X_{n} \rightarrow 0$ almost surely iff $X_{n}=0$ for all but finitely many n-s, almost surely. By independence and the Borel-Cantelli lemmas, this happens iff

$$
\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n} \neq 0\right)=\sum_{n=0}^{\infty} p_{n}<\infty
$$

3.7 Let X_{1}, X_{2}, \ldots be independent random variables. Show that $\mathbb{P}\left(\sup _{n} X_{n}<\infty\right)=1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>A\right)<\infty$.
3.8 Let X_{1}, X_{2}, \ldots be independent exponentially distributed random variables such that X_{n} has parameter λ_{n}. Let $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$, then $S_{n} \rightarrow \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $S_{n} \rightarrow S$ almost surely, where S is some random variable which is almost surely finite.

