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CEU Budapest, fall semester 2017

Imre Péter Tóth
Homework sheet 3 – solutions

3.1 (homework) For real numbers a1, a2, a3, . . . define the infinite product
∞
∏

k=1

ak as

∞
∏

k=1

ak := lim
n→∞

n
∏

k=1

ak,

whenever this limit exists.

Let p1, p2, p3, . . . satisfy 0 ≤ pk < 1 for all k. Show that
∞
∏

k=1

(1−pk) > 0 if and only if
∞
∑

k=1

pk < ∞.

(Hint: estimate the logarithm of (1− p) with p.)

Solution: For 0 ≤ pk � 1 we have that
∞
∏

k=1

(1− pk) > 0 if and only if

lim
n→∞

n
∑

k=1

ln(1− pk) > −∞. (1)

Now if pk 9 0, then this is clearly false. If pk → 0, then we get from the linear approximation
of x 7→ ln(1 + x) near x0 = 0 that – except possibly for finitely many k-s –

−pk ≥ ln(1− pk) ≥ −2pk.

This implies that

C −
n

∑

k=1

pk ≥
n

∑

k=1

ln(1− pk) ≥ C − 2
n

∑

k=1

pk,

which means that (1) holds if and only if limn→∞

∑n

k=1
pk < ∞.

3.2 Let X1, X2, . . . be independent random variables such that

P(Xn = n2 − 1) =
1

n2
, P(Xn = −1) = 1−

1

n2
.

Show that EXn = 0 for every n, but

lim
n→∞

X1 + . . .Xn

n
= −1

almost surely.

3.3 (homework) Let X1, X2, . . . , Xn be i.i.d. random variables. Prove that the following two
statements are equivalent:

(i) E|Xi| < ∞.

(ii) P(|Xn| > n for infinitely many n-s) = 0.
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Hint: If Y is nonnegative integer valued, then EY =
∑

∞

k=0
kP(Y = k) =

∑

∞

n=1
P(Y ≥ n).

(Why?)

Solution: The key observation is that for a nonnegative integer valued random variable Y ,
we have EY =

∑

∞

k=1
P(Y ≥ k) =

∑

∞

n=0
P(Y > n). So for the random varibale |X|, which

is nonnegative but not necessarily integer, the error of such an approximation is at most 1
(choosing, say, Y to be the integer part of X):

∣

∣

∣

∣

∣

E|X| −
∞
∑

n=0

P(|X| > n)

∣

∣

∣

∣

∣

≤ 1,

in particular E|X| < ∞ if and only if
∑

∞

n=0
P(|X| > n) < ∞. Now define the events An :=

{|Xn| > n} with probabilities pn := P(An) = P(|Xn| > n). These An are independent, so
the two Borel-Cantelli lemmas say exactly that P(infinitely many occur) = 0 if and only if
∑

∞

n=0
pn < ∞, which is equivalent to E|X| < ∞.

3.4 Prove that for any sequence X1, X2, . . . of random variables (real valued, defined on the same
probability space) there exists a sequence c1, c2, . . . of numbers such that

Xn

cn
→ 0 almost surely.

3.5 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space.
Prove that the following two statements are equivalent:

(i) Xn → X in probability as n → ∞.

(ii) From every subsequence {nk}
∞

k=1
a sub-subsequence {nkj}

∞

j=1
can be chosen such that

Xnkj
→ X almost surely as j → ∞.

3.6 (homework) Let X1, X2, . . . be independent such that Xn has Bernoulli(pn) distribution.
Determine what property the sequence pn has to satisfy so that

(a) Xn → 0 in probability as n → ∞

(b) Xn → 0 almost surely as n → ∞.

Solution:

a.) Xn → 0 in probability iff ∀ε > 0 we have P(|Xn| < ε) → 0. but Xn ∈ {0, 1}, so for
0 < ε < 1, {|Xn| > ε} = {Xn = 1}, so

Xn → 0 in probability ⇔ P(Xn = 1) → 0 ⇔ pn → 0.

b.) Since Xn ∈ {0, 1}, Xn → 0 almost surely iff Xn = 0 for all but finitely many n-s, almost
surely. By independence and the Borel-Cantelli lemmas, this happens iff

∞
∑

n=0

P(Xn 6= 0) =

∞
∑

n=0

pn < ∞.

3.7 Let X1, X2, . . . be independent random variables. Show that P(supnXn < ∞) = 1 if and only
if there is some A ∈ R for which

∑

∞

n=1
P(Xn > A) < ∞.

3.8 Let X1, X2, . . . be independent exponentially distributed random variables such that Xn has
parameter λn. Let Sn :=

∑n

i=1
Xi. Show that if

∑

∞

n=1

1

λn
= ∞, then Sn → ∞ almost surely,

but if
∑

∞

n=1

1

λn
< ∞, then Sn → S almost surely, where S is some random variable which is

almost surely finite.
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