Probability 1

CEU Budapest, fall semester 2018

Imre Péter Tóth

Homework sheet 3 - solutions

3.1 The characteristic function of a random variable X is the function $\Psi: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\Psi(t):=\mathbb{E} e^{i t X}$, which, of course, depends on the distribution of X only. Calculate the characteristic function of
(a) The Bernoulli distribution $B(p)$
(b) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.
(e) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array} .\right.
$$

3.2 Calculate the characteristic function of the normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$. (Remember the definition from the old times: $\mathcal{N}\left(m, \sigma^{2}\right)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} .
$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$
\int_{-\infty}^{\infty} f_{m, \sigma^{2}}(x) \mathrm{d} x=1
$$

for every m and σ.
3.3 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywehere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following

Theorem 2 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t)=\mathbb{E}\left(e^{i t X}\right)$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}\left(|X|^{n}\right)<\infty$), then ψ is n times continuously differentiable and

$$
\psi^{(k)}(0)=i^{k} \mathbb{E}\left(X^{k}\right), \quad k=0,1,2, \ldots, n
$$

Write the proof in detail for $n=1$. Don't forget about proving continuous differentiability - meaning that you also have to check that the derivative is continuous.
3.4 For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$.
(Hint: estimate the logarithm of $(1-p)$ with p.)
3.5 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with $\mathbb{E} X_{1}=0$ and $\mathbb{E}\left(X_{1}^{4}\right)<\infty$ and set $S_{n}=X_{1}+\cdots+X_{n}$. Show that there is a $C<\infty$ such that $\mathbb{E}\left(S_{n}^{4}\right) \leq C n^{2}$.
3.6 (homework) Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=-1
$$

almost surely.

Solution:

$$
\mathbb{E} X_{n}=-1 \mathbb{P}\left(X_{n}=-1\right)+\left(n^{2}-1\right) \mathbb{P}\left(X_{n}=n^{2}-1\right)=-1+\frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}}=0
$$

Now define the events $A_{n}:=\left\{X_{n} \neq-1\right\}$. Then $\sum_{n=1}^{\infty} A_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, so the first Borel-Cantelli lemma says that with probability 1 only finitely many A_{n} occur. In particular, $X_{n} \rightarrow-1$ almost surely. Then of course $\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow-1$ almost surely as well.
3.7 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. Prove that the following two statements are equivalent:
(i) $\mathbb{E}\left|X_{i}\right|<\infty$.
(ii) $\mathbb{P}\left(\left|X_{n}\right|>n\right.$ for infinitely many n-s $)=0$.

Hint: If Y is nonnegative integer valued, then $\mathbb{E} Y=\sum_{k=0}^{\infty} k \mathbb{P}(Y=k)=\sum_{n=1}^{\infty} \mathbb{P}(Y \geq n)$. (Why?)
3.8 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

3.9 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(ii) From every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ a sub-subsequence $\left\{n_{k_{j}}\right\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_{j}}} \rightarrow X$ almost surely as $j \rightarrow \infty$.
3.10 Let X_{1}, X_{2}, \ldots be independent such that X_{n} has $\operatorname{Bernoulli}\left(p_{n}\right)$ distribution. Determine what property the sequence p_{n} has to satisfy so that
(a) $X_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$
(b) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
3.11 Let X_{1}, X_{2}, \ldots be independent random variables. Show that $\mathbb{P}\left(\sup _{n} X_{n}<\infty\right)=1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>A\right)<\infty$.
3.12 Let X_{1}, X_{2}, \ldots be independent exponentially distributed random variables such that X_{n} has parameter λ_{n}. Let $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$, then $S_{n} \rightarrow \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $S_{n} \rightarrow S$ almost surely, where S is some random variable which is almost surely finite. (Hint: the second part is easy. For the first part, a possible solution is to let x_{i} be such that $\mathbb{P}\left(X_{i} \geq x_{i}\right)=\frac{1}{2}, Y_{i}:=x_{i} \mathbf{1}_{\left\{X_{i} \geq x_{i}\right\}}, Z_{i}:=x_{i}-Y_{i}$ and use that $\left.S_{n} \geq \sum_{i=1}^{n} Y_{i}.\right)$
3.13 (homework) Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution $\operatorname{Bernoulli}(p)$ for some $p \in(0 ; 1)$ but $p \neq \frac{1}{2}$. Let $Y:=\sum_{n=1}^{\infty} 2^{-n} X_{n}$. (The sum is absolutely convergent.) Show that the distribution ν of Y is continuous (meaning that the distribution function is continuous, which is the same as $\nu(\{x\})=0$ for any $x \in \mathbb{R}$), but singular w.r.t. Lebesgue measure (meaning that there is a set $A \subset \mathbb{R}$ such that $\operatorname{Leb}(A)=0$ and $\nu(\mathbb{R} \backslash A)=0$).
(Hint: Think of these random numbers as sequences of 0 s and 1 s in binary form. What will be the proportion of $0 s$ and $1 s$?)
Solution: Clearly $0 \leq Y \leq 1$ always, so $\nu(\mathbb{R} \backslash[0,1])=\mathbb{P}(Y \notin[0,1])=0$. If $y \in[0,1]$, then there are either 1 or 2 sequences of bits $x_{n} \in\{0,1\}$ which produce $\sum_{n=1}^{\infty} 2^{-n} x_{n}=y$. (Indeed, the binary expansion is unique for most numbers, and only the numbers of the form $\frac{l}{2^{k}}$ have two expansions, e.g. $0.10100000 \dot{0}=0.10011111 i$.) But the probability of each sequence is zero: for a fixed sequence x_{1}, x_{2}, \ldots

$$
\mathbb{P}\left(X_{i}=x_{i} \text { for every } i\right) \leq \mathbb{P}\left(X_{1}=x_{1}, \ldots X_{n}=x_{n}\right) \leq(\max \{p, 1-p\})^{n}
$$

for every n, so $\mathbb{P}\left(X_{i}=x_{i}\right.$ for every $\left.i\right)=0$. This means that $\mathbb{P}(Y=y)=0$ for every y, so ν is continuous.

Now let $A=A_{p}$ be the set of those numbers in $[0,1]$ whose binary expansion is such that the proportion of 1 s converges to p :

$$
A:=A_{p}:=\left\{y \in[0,1] \left\lvert\, y=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}\right. \text { with } a_{n} \in\{0,1\} \text { and } \frac{a_{1}+\cdots+a_{n}}{n} \rightarrow p\right\}
$$

The strong law of large numbers says that $\nu(A)=\mathbb{P}(Y \in A)=1$, because $\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow\right.$ $1)=1$. So $\nu(\mathbb{R} \backslash A)=0$.
If, instead of $p \neq \frac{1}{2}$ we took $p=\frac{1}{2}$, then Y would be uniform on $[0,1]$, so its distribution ν would be Lebesgue measure (restricted to $[0,1]$). So again, the strong law of large numbers says that $\operatorname{Leb}_{[0,1]}\left(A_{\frac{1}{2}}\right)=1$. Since $A=A_{p}$ and $A_{\frac{1}{2}}$ are $\operatorname{disjoint,~} \operatorname{Leb}(A)=0$, so ν is indeed singular w.r.t Lebesgue measure.
3.14 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space and suppose that $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $Y_{n}=f\left(X_{n}\right)$ and $Y=f(X)$, show that $Y_{n} \rightarrow Y$ in probability as $n \rightarrow \infty$.
(b) Show that if the X_{n} are almost surely uniformly bounded [that is: there exists a constant $M<\infty$ such that $\left.\mathbb{P}\left(\forall n \in \mathbb{N}\left|X_{n}\right| \leq M\right)=1\right]$, then $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X$.
(c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
3.15 (homework) Let the random variables $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots, X$ and Y be defined on the same probability space and assume that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ in probability. Show that
(a) $X_{n} Y_{n} \rightarrow X Y$ in probability.
(b) If almost surely $Y_{n} \neq 0$ and $Y \neq 0$, then $X_{n} / Y_{n} \rightarrow X / Y$ in probability.

Solution:

(a)

$$
\begin{align*}
\left|X_{n} Y_{n}-X Y\right| & =\left|X_{n}\left(Y_{n}-Y\right)+\left(X_{n}-X\right) Y\right| \leq\left|X_{n}\right|\left|Y_{n}-Y\right|+\left|X_{n}-X\right||Y| \tag{1}\\
& \leq\left(|X|+\left|X_{n}-X\right|\right)\left|Y_{n}-Y\right|+\left|X_{n}-X\right||Y| .
\end{align*}
$$

Let $\delta>0$ and $\varepsilon>0$. We will show that if n is big enough, then $\mathbb{P}\left(\left|X_{n} Y_{n}-X Y\right| \geq \delta\right) \leq \varepsilon$. For this purpose,
i. let M be so big that $\mathbb{P}(|Y| \geq M) \leq \frac{\varepsilon}{4}$ and $\mathbb{P}(|X| \geq M) \leq \frac{\varepsilon}{4}$,
ii. let n be so big that

- $\mathbb{P}\left(\left|X_{n}-X\right| \geq \frac{\delta}{2 M}\right) \leq \frac{\varepsilon}{4}$
- $\mathbb{P}\left(\left|Y_{n}-Y\right| \geq \frac{\delta}{2\left(M+\frac{\delta}{2 M}\right)}\right) \leq \frac{\varepsilon}{4}$.

Then on some event A with probability at least $1-4 \frac{\varepsilon}{4}=1-\varepsilon$ we have that

- $|Y| \leq M$
- $|X| \leq M$
- $\left|X-X_{n}\right| \leq \frac{\delta}{2 M}$
- $\left|Y-Y_{n}\right| \leq \frac{\delta}{2\left(M+\frac{\delta}{2 M}\right)}$.

Writing these back to (1), we get that on the set A

$$
\left|X_{n} Y_{n}-X Y\right| \leq\left(M+\frac{\delta}{2 M}\right) \frac{\delta}{2\left(M+\frac{\delta}{2 M}\right)}+\frac{\delta}{2 M} M=\delta
$$

(b) Because of the previous point, it is enough to show the statement for $X_{n}=X \equiv 1$. Then

$$
\begin{equation*}
\left|\frac{1}{Y_{n}}-\frac{1}{Y}\right| \leq \frac{\left|Y-Y_{n}\right|}{\left|Y_{n}\right||Y|} . \tag{2}
\end{equation*}
$$

Let $\delta>0$ and $\varepsilon>0$. We will show that if n is big enough, then $\mathbb{P}\left(\left|\frac{1}{Y_{n}}-\frac{1}{Y}\right| \geq \delta\right) \leq \varepsilon$. For this purpose,
i. let $c>0$ be so small that $\mathbb{P}(|Y| \leq c) \leq \frac{\varepsilon}{2}$,
ii. let n be so big that $\mathbb{P}\left(\left|Y_{n}-Y\right| \geq \max \left\{\frac{c}{2}, \delta \frac{c^{2}}{2}\right\}\right) \leq \frac{\varepsilon}{2}$.

Then on some event A with probability at least $1-2 \frac{\varepsilon}{2}=1-\varepsilon$ we have that

- $|Y| \geq c$
- $\left|Y-Y_{n}\right| \leq \frac{c}{2}$, so $\left|Y_{n}\right| \geq \frac{c}{2}$
- $\left|Y-Y_{n}\right| \leq \delta \frac{c^{2}}{2}$.

Writing these back to (2), we get that on the set A

$$
\left|\frac{1}{Y_{n}}-\frac{1}{Y}\right| \leq \frac{\delta \frac{c^{2}}{2}}{\frac{c}{2} c}=\delta
$$

3.16 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be defined on the same probability space and let $Y_{n}:=\sup _{m \geq n}\left|X_{m}\right|$. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
(ii) $Y_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$.

Solution: For any sequence of numbers a_{n}, if we set $b_{n}:=\sup _{m \geq n}\left|a_{m}\right|$, then we get $b_{n} \rightarrow 0$ if and only if $a_{n} \rightarrow 0$. Moreover, b_{n} is automatically monotone decreasing. So the events $\left\{Y_{n} \rightarrow 0\right\}$ and $\left\{X_{n} \rightarrow 0\right\}$ are the same, so $X_{n} \rightarrow 0$ almost surely if and only if $Y_{n} \rightarrow 0$ almost surely. This of course implies that $Y_{n} \rightarrow 0$ in probability.
Now since Y_{n} is monotone decreasing, convergence to 0 in probability also implies convergence to 0 almost surely: if there were a set of positive measure where $Y_{n} \nrightarrow 0$, then on some (possibly smaller) positive measure set Y_{n} would stay bigger than some $\varepsilon>0$ for ever, which contradicts convergence in probability.

