Probability 1

CEU Budapest, fall semester 2018

Imre Péter Tóth

Homework sheet 3 – solutions

- 3.1 The characteristic function of a random variable X is the function $\Psi : \mathbb{R} \to \mathbb{C}$ defined as $\Psi(t) := \mathbb{E}e^{itX}$, which, of course, depends on the distribution of X only. Calculate the characteristic function of
 - (a) The Bernoulli distribution B(p)
 - (b) The "pessimistic geometric distribution with parameter p" that is, the distribution μ on $\{0, 1, 2...\}$ with weights $\mu(\{k\}) = (1-p)p^k \ (k=0, 1, 2...)$.
 - (c) The "optimistic geometric distribution with parameter p" that is, the distribution ν on $\{1, 2, 3, ...\}$ with weights $\nu(\{k\}) = (1-p)p^{k-1}$ (k=1, 2...).
 - (d) The Poisson distribution with parameter λ that is, the distribution η on $\{0, 1, 2...\}$ with weights $\eta(\{k\}) = e^{-\lambda} \frac{\lambda^k}{k!}$ (k = 0, 1, 2...).
 - (e) The exponential distribution with parameter λ that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0\\ 0, & \text{if not} \end{cases}.$$

3.2 Calculate the characteristic function of the normal distribution $\mathcal{N}(m, \sigma^2)$. (Remember the definition from the old times: $\mathcal{N}(m, \sigma^2)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$\int_{-\infty}^{\infty} f_{m,\sigma^2}(x) \, \mathrm{d}x = 1$$

for every m and σ .

3.3 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_1, f_2, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ -almost everywhere. (That is, $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ -measure zero.) Assume furthermore that the f_n admit a common integrable dominating function: there exists a $g: \Omega \to \mathbb{R}$ such that $|f_n(x)| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \, \mathrm{d}\mu < \infty$. Then (all the f_n and also f are integrable and)

$$\lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu = \int_{\Omega} f \, \mathrm{d}\mu.$$

1

Use this theorem to prove the following

Theorem 2 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t) = \mathbb{E}(e^{itX})$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}(|X|^n) < \infty$), then ψ is n times continuously differentiable and

$$\psi^{(k)}(0) = i^k \mathbb{E}(X^k), \quad k = 0, 1, 2, \dots, n.$$

Write the proof in detail for n = 1. Don't forget about proving *continuous* differentiability – meaning that you also have to check that the derivative is continuous.

3.4 For real numbers a_1, a_2, a_3, \ldots define the infinite product $\prod_{k=1}^{\infty} a_k$ as

$$\prod_{k=1}^{\infty} a_k := \lim_{n \to \infty} \prod_{k=1}^{n} a_k,$$

whenever this limit exists.

Let p_1, p_2, p_3, \ldots satisfy $0 \le p_k < 1$ for all k. Show that $\prod_{k=1}^{\infty} (1 - p_k) > 0$ if and only if

$$\sum_{k=1}^{\infty} p_k < \infty.$$

(Hint: estimate the logarithm of (1-p) with p.)

- 3.5 Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $\mathbb{E}X_1 = 0$ and $\mathbb{E}(X_1^4) < \infty$ and set $S_n = X_1 + \cdots + X_n$. Show that there is a $C < \infty$ such that $\mathbb{E}(S_n^4) \leq Cn^2$.
- 3.6 (homework) Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every n, but

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -1$$

almost surely.

Solution:

$$\mathbb{E}X_n = -1\mathbb{P}(X_n = -1) + (n^2 - 1)\mathbb{P}(X_n = n^2 - 1) = -1 + \frac{1}{n^2} + \frac{n^2 - 1}{n^2} = 0.$$

Now define the events $A_n:=\{X_n\neq -1\}$. Then $\sum_{n=1}^\infty A_n=\sum_{n=1}^\infty \frac{1}{n^2}<\infty$, so the first Borel-Cantelli lemma says that with probability 1 only finitely many A_n occur. In particular, $X_n\to -1$ almost surely. Then of course $\frac{X_1+\cdots+X_n}{n}\to -1$ almost surely as well.

- 3.7 Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n\text{-s}) = 0.$

Hint: If Y is nonnegative integer valued, then $\mathbb{E}Y = \sum_{k=0}^{\infty} k \mathbb{P}(Y = k) = \sum_{n=1}^{\infty} \mathbb{P}(Y \ge n)$. (Why?)

3.8 Prove that for *any* sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0$$
 almost surely.

- 3.9 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.
- 3.10 Let X_1, X_2, \ldots be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that
 - (a) $X_n \to 0$ in probability as $n \to \infty$
 - (b) $X_n \to 0$ almost surely as $n \to \infty$.
- 3.11 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.12 Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^\infty \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^\infty \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite. (Hint: the second part is easy. For the first part, a possible solution is to let x_i be such that $\mathbb{P}(X_i \geq x_i) = \frac{1}{2}$, $Y_i := x_i \mathbf{1}_{\{X_i \geq x_i\}}$, $Z_i := x_i Y_i$ and use that $S_n \geq \sum_{i=1}^n Y_i$.)
- 3.13 (homework) Let $X_1, X_2, ...$ be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0;1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution ν of Y is continuous (meaning that the distribution function is continuous, which is the same as $\nu(\{x\}) = 0$ for any $x \in \mathbb{R}$), but singular w.r.t. Lebesgue measure (meaning that there is a set $A \subset \mathbb{R}$ such that Leb(A) = 0 and $\nu(\mathbb{R} \setminus A) = 0$).

(Hint: Think of these random numbers as sequences of 0s and 1s in binary form. What will be the proportion of 0s and 1s?)

Solution: Clearly $0 \le Y \le 1$ always, so $\nu(\mathbb{R} \setminus [0,1]) = \mathbb{P}(Y \notin [0,1]) = 0$. If $y \in [0,1]$, then there are either 1 or 2 sequences of bits $x_n \in \{0,1\}$ which produce $\sum_{n=1}^{\infty} 2^{-n} x_n = y$. (Indeed, the binary expansion is unique for most numbers, and only the numbers of the form $\frac{l}{2^k}$ have two expansions, e.g. $0.10100000\dot{0} = 0.10011111\dot{1}$.) But the probability of each sequence is zero: for a fixed sequence x_1, x_2, \ldots

$$\mathbb{P}(X_i = x_i \text{ for every } i) \le \mathbb{P}(X_1 = x_1, \dots X_n = x_n) \le (\max\{p, 1 - p\})^n$$

for every n, so $\mathbb{P}(X_i = x_i \text{ for every } i) = 0$. This means that $\mathbb{P}(Y = y) = 0$ for every y, so ν is continuous.

Now let $A = A_p$ be the set of those numbers in [0,1] whose binary expansion is such that the proportion of 1s converges to p:

$$A := A_p := \left\{ y \in [0, 1] \middle| y = \sum_{n=1}^{\infty} \frac{a_n}{2^n} \text{ with } a_n \in \{0, 1\} \text{ and } \frac{a_1 + \dots + a_n}{n} \to p \right\}.$$

The strong law of large numbers says that $\nu(A) = \mathbb{P}(Y \in A) = 1$, because $\mathbb{P}(\frac{X_1 + \dots + X_n}{n} \to A)$ 1) = 1. So $\nu(\mathbb{R} \setminus A) = 0$.

If, instead of $p \neq \frac{1}{2}$ we took $p = \frac{1}{2}$, then Y would be uniform on [0, 1], so its distribution ν would be Lebesgue measure (restricted to [0,1]). So again, the strong law of large numbers says that $Leb_{[0,1]}\left(A_{\frac{1}{2}}\right)=1$. Since $A=A_p$ and $A_{\frac{1}{2}}$ are disjoint, Leb(A)=0, so ν is indeed singular w.r.t Lebesgue measure.

- 3.14 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space and suppose that $X_n \to X$ in probability as $n \to \infty$.
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, $Y_n = f(X_n)$ and Y = f(X), show that $Y_n \to Y$ in probability as $n \to \infty$.
 - (b) Show that if the X_n are almost surely uniformly bounded [that is: there exists a constant $M < \infty$ such that $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1$, then $\lim_{n \to \infty} \mathbb{E} X_n = \mathbb{E} X$.
 - (c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
- 3.15 (homework) Let the random variables $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$ and Y be defined on the same probability space and assume that $X_n \to X$ and $Y_n \to Y$ in probability. Show that
 - (a) $X_n Y_n \to XY$ in probability.
 - (b) If almost surely $Y_n \neq 0$ and $Y \neq 0$, then $X_n/Y_n \to X/Y$ in probability.

Solution:

(a)

$$|X_n Y_n - XY| = |X_n (Y_n - Y) + (X_n - X)Y| \le |X_n||Y_n - Y| + |X_n - X||Y|$$

$$\le (|X| + |X_n - X|)|Y_n - Y| + |X_n - X||Y|.$$
(1)

Let $\delta > 0$ and $\varepsilon > 0$. We will show that if n is big enough, then $\mathbb{P}(|X_nY_n - XY| \ge \delta) \le \varepsilon$. For this purpose,

- i. let M be so big that $\mathbb{P}(|Y| \ge M) \le \frac{\varepsilon}{4}$ and $\mathbb{P}(|X| \ge M) \le \frac{\varepsilon}{4}$,
- ii. let n be so big that
 - $\mathbb{P}\left(|X_n X| \ge \frac{\delta}{2M}\right) \le \frac{\varepsilon}{4}$
 - $\mathbb{P}\left(|Y_n Y| \ge \frac{\delta}{2(M + \frac{\delta}{2M})}\right) \le \frac{\varepsilon}{4}$.

Then on some event A with probability at least $1 - 4\frac{\varepsilon}{4} = 1 - \varepsilon$ we have that

- $|Y| \leq M$
- $|X| \leq M$
- $|X X_n| \le \frac{\delta}{2M}$ $|Y Y_n| \le \frac{\delta}{2(M + \frac{\delta}{2M})}$

Writing these back to (1), we get that on the set A

$$|X_n Y_n - XY| \le \left(M + \frac{\delta}{2M}\right) \frac{\delta}{2\left(M + \frac{\delta}{2M}\right)} + \frac{\delta}{2M}M = \delta.$$

(b) Because of the previous point, it is enough to show the statement for $X_n = X \equiv 1$. Then

$$\left|\frac{1}{Y_n} - \frac{1}{Y}\right| \le \frac{|Y - Y_n|}{|Y_n||Y|}.\tag{2}$$

Let $\delta > 0$ and $\varepsilon > 0$. We will show that if n is big enough, then $\mathbb{P}\left(\left|\frac{1}{Y_n} - \frac{1}{Y}\right| \ge \delta\right) \le \varepsilon$. For this purpose,

- i. let c > 0 be so small that $\mathbb{P}(|Y| \le c) \le \frac{\varepsilon}{2}$,
- ii. let n be so big that $\mathbb{P}\left(|Y_n Y| \ge \max\left\{\frac{c}{2}, \delta\frac{c^2}{2}\right\}\right) \le \frac{\varepsilon}{2}$.

Then on some event A with probability at least $1-2\frac{\varepsilon}{2}=1-\varepsilon$ we have that

- $|Y| \ge c$
- $|Y Y_n| \le \frac{c}{2}$, so $|Y_n| \ge \frac{c}{2}$
- $\bullet |Y Y_n| \le \delta \frac{c^2}{2}.$

Writing these back to (2), we get that on the set A

$$\left| \frac{1}{Y_n} - \frac{1}{Y} \right| \le \frac{\delta \frac{c^2}{2}}{\frac{c}{2}c} = \delta.$$

- 3.16 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ be defined on the same probability space and let $Y_n := \sup_{m > n} |X_m|$. Prove that the following two statements are equivalent:
 - (i) $X_n \to 0$ almost surely as $n \to \infty$.
 - (ii) $Y_n \to 0$ in probability as $n \to \infty$.

Solution: For any sequence of numbers a_n , if we set $b_n := \sup_{m \ge n} |a_m|$, then we get $b_n \to 0$ if and only if $a_n \to 0$. Moreover, b_n is automatically monotone decreasing. So the events $\{Y_n \to 0\}$ and $\{X_n \to 0\}$ are the same, so $X_n \to 0$ almost surely if and only if $Y_n \to 0$ almost surely. This of course implies that $Y_n \to 0$ in probability.

Now since Y_n is monotone decreasing, convergence to 0 in probability also implies convergence to 0 almost surely: if there were a set of positive measure where $Y_n \nrightarrow 0$, then on some (possibly smaller) positive measure set Y_n would stay bigger than some $\varepsilon > 0$ for ever, which contradicts convergence in probability.