Probability 1
CEU Budapest, fall semester 2018
Imre Péter To6th
Homework sheet 3 — solutions

3.1 The characteristic function of a random variable X is the function ¥ : R — C defined
as U(t) := Ee™ which, of course, depends on the distribution of X only. Calculate the
characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” — that is, the distribution p
on {0,1,2...} with weights u({k}) = (1 —p)p* (k=0,1,2...).

(c) The “optimistic geometric distribution with parameter p” — that is, the distribution v
on {1,2,3,...} with weights v({k}) = (1 —p)pF~t (k=1,2...).

(d) The Poisson distribution with parameter A — that is, the distribution  on {0,1,2...}

with weights n({k}) = e*’\/l\ﬁ—l!c (k=0,1,2...).

(e) The exponential distribution with parameter A\ — that is, the distribution on R with
density (w.r.t. Lebesgue measure)

e ™ if x>0
@) = {O, if not

3.2 Calculate the characteristic function of the normal distribution N (m,c?). (Remember the
definition from the old times: N (m, 0?) is the distribution on R with density (w.r.t. Lebesgue

measure)
1 _@m?

(& 202
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You can save yourself some paperwork if you only do the calculation for N'(0,1) and reduce
the general case to this using the relation between different normal distributions. You can
and should use the fact that

fm,a2 (:L’) =

/ Jmo2(z)de =1
for every m and o.

3.3 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let (2, F, ) be a measure space and fi, fo,. ..
measurable real valued functions on ) which converge to the limit function pointwise, -
almost everywehere. (That is, lim, o fo(x) = f(z) for every x € Q, except possibly for a
set of z-es with p-measure zero.) Assume furthermore that the f,, admit a common integrable
dominating function: there ezists a g : 2 — R such that | f,(x)| < g(z) for every x € Q and
n € N, and ngdu < 00. Then (all the f,, and also f are integrable and)

lim [ f,dp= / fdp.

Use this theorem to prove the following
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3.5
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Theorem 2 (differentiability of the characteristic function) Let X be a real valued
random variable, 1 (t) = E(e"X) its characteristic function and n € N. If the n-th moment
of X exists and is finite (i.e. E(]X|") < 00), then ¢ is n times continuously differentiable
and

P®(0) = FE(X*), k=0,1,2,...,n.

Write the proof in detail for n = 1. Don’t forget about proving continuous differentiability
— meaning that you also have to check that the derivative is continuous.

o
For real numbers a, as, as, ... define the infinite product ] ay as
k=1

o n

Hak = lim Hak,
n—oo

k=1 k=1

whenever this limit exists.

Let p1,po, ps, ... satisfy 0 < p, < 1 for all k. Show that [ (1 — px) > 0 if and only if
k=1

[e.e]

Pr < Q0.
k=1

(Hint: estimate the logarithm of (1 — p) with p.)

Let X1, Xs,..., X, be i.i.d. random variables with EX; = 0 and E(X}]) < oo and set
S, = X1+ -+ X,. Show that there is a C' < oo such that E(S?) < Cn?.

(homework) Let X;, Xs,... be independent random variables such that

1 1
— 2 _ — —
Show that EX,, = 0 for every n, but
X4+ X,
lim =-1
n—o00 n

almost surely.

Solution:

1 n?—1

EX, = -1P(X,, = -1)+ (n* = )P(X,, =n* —1) = -1 + S+ =5 =0

Now define the events A, := {X,, # —1}. Then > o2 A, = > >, 4 < oo, so the first

n=1n

Borel-Cantelli lemma says that with probability 1 only finitely many A,, occur. In particular,
X, — —1 almost surely. Then of course % — —1 almost surely as well.

Let Xy, Xs,..., X, beii.d. random variables. Prove that the following two statements are
equivalent:

(i) E|X;| < 0.
(ii) P(|X,| > n for infinitely many n-s) = 0.

Hint: If Y is nonnegative integer valued, then EY =% "7° kP(Y = k) =3 P(Y > n).
(Why?)
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Prove that for any sequence Xi, Xs,... of random variables (real valued, defined on the
same probability space) there exists a sequence ¢y, ca, ... of numbers such that

~— — 0 almost surely.
Cn

Let the random variables X, Xo,...,X,,,... and X be defined on the same probability
space. Prove that the following two statements are equivalent:

(i) X,, = X in probability as n — oc.

(ii) From every subsequence {n}72, a sub-subsequence {ny; }32, can be chosen such that
Xp, — X almost surely as j — oo.
J

Let Xj, Xs,... be independent such that X, has Bernoulli(p,) distribution. Determine
what property the sequence p,, has to satisfy so that

(a) X, — 0 in probability as n — oo

(b) X, — 0 almost surely as n — 0.

Let X1, Xs,... be independent random variables. Show that P(sup,, X,, < oco) = 1 if and
only if there is some A € R for which >~ ° P(X,, > A) < co.

Let X, X5, ... be independent exponentially distributed random variables such that X,, has
parameter A,. Let S, := >  X;. Show that if > ﬁ = oo, then S,, — oo almost
surely, but if > ﬁ < 00, then S,, — S almost surely, where S is some random variable
which is almost surely finite. (Hint: the second part is easy. For the first part, a possible
solution is to let x; be such that P(X; > z;) = 2, Y; := Tl (x,>2.,}, Zi = x; — Y; and use that

27
S > 325 Vi)

(homework) Let X, X5, ... be ii.d. random variables with distribution Bernoulli(p) for
some p € (0;1) but p # 3. Let Y := >>° 27"X,,. (The sum is absolutely convergent.)
Show that the distribution v of Y is continuous (meaning that the distribution function is
continuous, which is the same as v({z}) = 0 for any x € R), but singular w.r.t. Lebesgue

measure (meaning that there is a set A C R such that Leb(A) =0 and v(R\ A) = 0).

(Hint: Think of these random numbers as sequences of 0s and 1s in binary form. What will
be the proportion of Os and 1s?)

Solution: Clearly 0 <Y <1 always, so v(R\ [0,1]) =P(Y ¢ [0,1]) = 0. If y € [0, 1], then
there are either 1 or 2 sequences of bits z,, € {0, 1} which produce "7 27"z, = y. (Indeed,
the binary expansion is unique for most numbers, and only the numbers of the form 2% have
two expansions, e.g. 0.101000000 = 0.100111111.) But the probability of each sequence is
zero: for a fixed sequence x1, To, ...

P(X; = x; for every i) < P(X; = 21, ... X, = x,) < (max{p,1—p})"

for every n, so P(X; = z; for every i) = 0. This means that P(Y = y) = 0 for every y, so v
is continuous.

Now let A = A, be the set of those numbers in [0, 1] whose binary expansion is such that
the proportion of 1s converges to p:

oo

y:ZQ—ZWithanE{O,l} andW%p}.

A=A, = {yE[O,l] )

n=1
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The strong law of large numbers says that v(4) = P(Y € A) = 1, because P(&1+=4+Xn
1)=1. Sov(R\ A) =0.

If, instead of p # % we took p = %, then Y would be uniform on [0, 1], so its distribution v
would be Lebesgue measure (restricted to [0, 1]). So again, the strong law of large numbers

says that Leby (A%> = 1. Since A = A, and A% are disjoint, Leb(A) = 0, so v is indeed
singular w.r.t Lebesgue measure.

Let the random variables X1, X5, ..., X,,,... and X be defined on the same probability space
and suppose that X,, — X in probability as n — oc.

(a) If f: R — R is a continuous function, Y,, = f(X,) and Y = f(X), show that ¥, = Y
in probability as n — oc.

(b) Show that if the X, are almost surely uniformly bounded [that is: there exists a constant
M < oo such that P(Vn € N|X,| < M) = 1], then lim,_,,, EX, = EX.

(c) Show, through an example, that for the previous statement, the condition of boundedness
is needed.

(homework) Let the random variables X, X,..., Y7,Y5, ..., X and Y be defined on the
same probability space and assume that X,, — X and Y,, — Y in probability. Show that

(a) X,Y, — XY in probability.
(b) If almost surely Y,, # 0 and Y # 0, then X,,/Y,, — X/Y in probability.

Solution:
(a)

XY — XY = [ X, (Yo = Y) + (X, — X)Y| < | Xo||Ys — Y]+ X, — XY 0
< (IX]+ [Xp = XDYn = Y]+ |X, = X[]Y].

Let § > 0 and € > 0. We will show that if n is big enough, then P(| X,,Y,, — XY | > ¢) < e.
For this purpose,

i. let M be so big that P(|Y| > M) < § and P(|X| > M) < £,
ii. let n be so big that
* IP>(|Xn_)(| > %) Si
o P (- Y12 ) <%
Then on some event A with probability at least 1 — 45 =1 — ¢ we have that
o |YV|<M
o | X|<M

° |X—Xn|§ﬁ

[

Writing these back to (1), we get that on the set A

5 ) )
XY, - XY| <M M =6.
| | ( +2M)2(M+ﬁ)+2M



(b) Because of the previous point, it is enough to show the statement for X, = X = 1.
Then
1 1 < Y —Y,| 2)
Yo YT YY)

Let 6 > 0 and € > 0. We will show that if n is big enough, then P <
For this purpose,

i. let ¢ > 0 be so small that P(|Y| <¢) < 5,

ii. let n be so big that PP <|Yn —Y| > max {%,5%}) <

L—i}yﬁ)gs,

N

Then on some event A with probability at least 1 — 25 =1 — ¢ we have that
o |Y|>c
o [V Vil <850 Vil 2 6
o Y-V, < 5%.

Writing these back to (2), we get that on the set A

50_
i_l< 2 4.
Y, Y _gc

3.16 (homework) Let the random variables Xi, X5, ..., X,,,... be defined on the same probabil-
ity space and let Y, := sup,,~,, | Xi|. Prove that the following two statements are equivalent:

(i) X,, — 0 almost surely as n — oc.
(ii) Y, — 0 in probability as n — oc.

Solution: For any sequence of numbers a,, if we set b, := sup,,-,, |anm|, then we get b, — 0
if and only if a, — 0. Moreover, b, is automatically monotone decreasing. So the events
{Y, — 0} and {X,, — 0} are the same, so X,, — 0 almost surely if and only if Y,, — 0
almost surely. This of course implies that Y,, — 0 in probability.

Now since Y,, is monotone decreasing, convergence to 0 in probability also implies convergence
to 0 almost surely: if there were a set of positive measure where Y,, - 0, then on some
(possibly smaller) positive measure set Y,, would stay bigger than some € > 0 for ever, which
contradicts convergence in probability.



