## Probability 1 CEU Budapest, fall semester 2017 Imre Péter Tóth Homework sheet 4 – solutions

- 4.1 Let the random variables  $X_1, X_2, \ldots, X_n, \ldots$  and X be defined on the same probability space and suppose that  $X_n \to X$  in probability as  $n \to \infty$ .
  - (a) If  $f : \mathbb{R} \to \mathbb{R}$  is a continuous function,  $Y_n = f(X_n)$  and Y = f(X), show that  $Y_n \to Y$  in probability as  $n \to \infty$ .
  - (b) Show that if the  $X_n$  are almost surely uniformly bounded [that is: there exists a constant  $M < \infty$  such that  $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1]$ , then  $\lim_{n \to \infty} \mathbb{E} X_n = \mathbb{E} X$ .
  - (c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
- 4.2 Let the random variables  $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$  and Y be defined on the same probability space and assume that  $X_n \to X$  and  $Y_n \to Y$  in probability. Show that
  - (a)  $X_n Y_n \to XY$  in probability.
  - (b) If almost surely  $Y_n \neq 0$  and  $Y \neq 0$ , then  $X_n/Y_n \rightarrow X/Y$  in probability.
- 4.3 Prove that

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = \frac{2}{3}.$$

4.4 (homework) Let  $f: [0,1] \to \mathbb{R}$  be a continuous function. Prove that

(a)  

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) dx_1 dx_2 \dots dx_n = f\left(\frac{1}{2}\right)$$
(b)  

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left((x_1 x_2 \dots + x_n)^{1/n}\right) dx_1 dx_2 \dots dx_n = f\left(\frac{1}{2}\right).$$

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left( (x_1 x_2 \dots x_n)^{1/n} \right) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = f\left(\frac{1}{e}\right).$$

(*Hint: interprete these integrals as expectations.*)

## Solution:

(a) The integral (without the limit) is exactly  $\mathbb{E}f\left(\frac{X_1+X_2+...X_n}{n}\right)$ , where the  $X_i$  are independent random variables, uniformly distributed on [0, 1]. (Indeed, the joint density of these is 1 on  $[0,1]^n$ , and 0 elsewhere.) The weak law of large numbers says that

$$\frac{X_1 + X_2 + \dots + X_n}{n} \Rightarrow \mathbb{E}X_1 = \frac{1}{2}$$

By (one of the) the definition(s) of weak convergence, this means exactly that

$$\mathbb{E}f\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) \to f\left(\frac{1}{2}\right)$$

when  $f : \mathbb{R} \to \mathbb{R}$  is bounded and continuous. Now, in this exercise, f is only assumed to be continuous, and defined only on [0, 1]. This is enough, because  $\frac{X_1+X_2+...X_n}{n} \in [0, 1]$  anyway, and a continuous function on a closed interval is always bounded. (To strictly apply the definition of weak convergence, you can extend f to  $\mathbb{R}$  in any continuous way.)

(b) The integral (without the limit) is exactly

$$I_n := \mathbb{E}f\left((X_1 X_2 \dots X_n)^{1/n}\right) = \mathbb{E}f\left(\exp\left(\frac{\log X_1 + \dots + \log X_n}{n}\right)\right)$$

where the  $X_i$  are independent random variables, uniformly distributed on [0, 1]. (Indeed, the joint density of these is 1 on  $[0, 1]^n$ , and 0 elsewhere.) So, with the notation  $g(y) := f(\exp(y))$  and  $Y_i := \log X_i$ ,

$$I_n = \mathbb{E}g\left(\frac{Y_1 + \dots + Y_n}{n}\right).$$

The weak law of large numbers says that

$$\frac{Y_1 + \dots + Y_n}{n} \Rightarrow \mathbb{E}Y_1 = \int_0^1 \log(x) \, \mathrm{d}x = -1.$$

By (one of the) the definition(s) of weak convergence, this means exactly that

$$\mathbb{E}g\left(\frac{Y_1 + \dots + Y_n}{n}\right) \to g(-1) = f(\exp(-1)) = f\left(\frac{1}{e}\right)$$

if  $g : \mathbb{R} \to \mathbb{R}$  is bounded and continuous. In our case g(y) := f(exp(y)) is continuous, because f is continuous. Boundedness comes as before: f is only assumed to be continuous, and defined only on [0, 1]. This is enough, because  $\exp\left(\frac{Y_1+\dots+Y_n}{n}\right) \in [0, 1]$  anyway, and a continuous function on a closed interval is always bounded. (To strictly apply the definition of weak convergence, you can extend f to  $\mathbb{R}$  in any continuous way.)

- 4.5 Let the random variables  $X_1, X_2, \ldots, X_n, \ldots$  be defined on the same probability space and let  $Y_n := \sup_{m>n} |X_m|$ . Prove that the following two statements are equivalent:
  - (i)  $X_n \to 0$  almost surely as  $n \to \infty$ .
  - (ii)  $Y_n \to 0$  in probability as  $n \to \infty$ .
- 4.6 Weak convergence and densities.
  - (a) Prove the following

**Theorem 1** Let  $\mu_1, \mu_2, \ldots$  and  $\mu$  be a sequence of probability distributions on  $\mathbb{R}$  which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by  $f_1, f_2, \ldots$  and f, respectively. Suppose that  $f_n(x) \xrightarrow{n \to \infty} f(x)$  for every  $x \in \mathbb{R}$ . Then  $\mu_n \Rightarrow \mu$  (weakly).

(Hint: denote the cumulative distribution functions by  $F_1, F_2, \ldots$  and F, respectively. Use the Fatou lemma to show that  $F(x) \leq \liminf_{n \to \infty} F_n(x)$ . For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
  - i. It can happen that the  $f_n$  converge pointwise to some f, but the sequence  $\mu_n$  is not weakly convergent, because f is not a density.
  - ii. It can happen that the  $\mu_n$  are absolutely continuous,  $\mu_n \Rightarrow \mu$ , but  $\mu$  is not absolutely continuous.
  - iii. It can happen that the  $\mu_n$  and also  $\mu$  are absolutely continuous,  $\mu_n \Rightarrow \mu$ , but  $f_n(x)$  does not converge to f(x) for any x.

- 4.7 Let  $X_1, X_2, \ldots$  be independent and uniformly distributed on [0, 1]. Let  $M_n = \max\{X_1, \ldots, X_n\}$ and let  $Y_n = n(1-M_n)$ . Find the weak limit of  $Y_n$ . (*Hint: Calculate the distribution functions.*)
- 4.8 (homework) Let  $X_1, X_2, \ldots$  be independent and exponentially distributed with parameter  $\lambda = 1$ . Let  $M_n = \max\{X_1, \ldots, X_n\}$  and let  $Y_n = M_n \ln n$ . Find the weak limit of  $Y_n$ . (Hint: Calculate the distribution functions.)

**Solution:** The distribution function of each  $X_i$  is

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - e^{-x} & \text{if } x \ge 0 \end{cases}.$$

Using the independence of the  $X_i$ , The distribution function of  $M_n$  is

$$F_{M_n}(x) = \mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, \dots, X_n \le x) = \mathbb{P}(X_1 \le x) \dots \mathbb{P}(X_n \le x) = (F_X(x))^n \\ = \begin{cases} 0 & \text{if } x < 0 \\ (1 - e^{-x})^n & \text{if } x \ge 0 \end{cases}.$$

So, by the definition of  $Y_n$ , the distribution function of  $Y_n$  is

$$F_{n}(y) := F_{Y_{n}}(y) = \mathbb{P}(M_{n} - \ln n \leq y) = \mathbb{P}(M_{n} \leq \ln n + y) = F_{M_{n}}(\ln n + y) =$$
$$= \begin{cases} 0 & \text{if } \ln n + y < 0, \text{ meaning } y < -\ln n \\ \left(1 - e^{-(\ln n + y)}\right)^{n} = \left(1 - \frac{e^{-y}}{n}\right)^{n} & \text{if } y \geq -\ln n \end{cases}$$

To find the weak limit, we need to calculate  $\lim_{n\to\infty} F_n(y)$  for each fixed  $y \in \mathbb{R}$ . Since y is fixed and n grows, we will have  $y \ge -\ln n$  for n large enough, and we only need to look at the second line of the case separation:

$$\lim_{n \to \infty} F_n(y) = \lim_{n \to \infty} \left( 1 - \frac{e^{-y}}{n} \right)^n = \exp(-e^{-y}).$$

(We used that  $\left(1+\frac{c}{n}\right)^n \to \exp(c)$  for every  $c \in \mathbb{R}$ , including  $c = -e^{-y}$ .)

So we got that  $Y_n \Rightarrow Y$  where Y has distribution function  $F(y) := \exp(-e^{-y}) = e^{-e^{-y}}$ . One can see that this is indeed a distribution function, by checking the monotonicity and the limits at  $\pm \infty$ . The distribution of Y is called the Gumbel distribution.

- 4.9 Poisson approximation of the binomial distribution. Fix  $0 < \lambda \in \mathbb{R}$ . Show that if  $X_n$  has binomial distribution with parameters (n, p) such that  $np \to \lambda$  as  $n \to \infty$ , then  $X_n$  converges to  $Poi(\lambda)$  weakly.
- 4.10 (homework) Continuous limit of the geometric distribution. Let  $X_n$  be geometrically distributed with parameter  $p_n = \frac{1}{n}$  and let  $Y_n = \frac{1}{n}X_n$ . (So  $\mathbb{E}Y_n = 1$ .) Find the weak limit of  $Y_n$ . (Hint: you can use the method of characteristic functions, but you can also calculate the limiting distribution function directly.)

**Solution:** Using characteristic functions. From an earlier homework,  $X_n$  has characteristic function

$$\psi_{X_n}(t) = \mathbb{E}e^{itX_n} = \frac{p_n e^{it}}{1 - (1 - p_n)e^{it}} = \frac{\frac{1}{n}e^{it}}{1 - (1 - \frac{1}{n})e^{it}}.$$

So the characteristic function of  $Y_n$  is

$$\psi_n(t) := \psi_{Y_n}(t) = \mathbb{E}e^{it\frac{X_n}{n}} = \mathbb{E}e^{i\frac{t}{n}X_n} = \psi_{X_n}\left(\frac{t}{n}\right) = \frac{\frac{1}{n}e^{i\frac{t}{n}}}{1 - (1 - \frac{1}{n})e^{i\frac{t}{n}}} = \frac{e^{i\frac{t}{n}}}{1 + n(1 - e^{i\frac{t}{n}})}$$

To find the weak limit, we need the pointwise limit  $\lim_{n\to\infty} \psi_n(t)$  for each fixed  $t \in R$ . For fixed t, the numerator  $e^{i\frac{t}{n}}$  just goes to 1, while in the denominator  $n(1-e^{i\frac{t}{n}}) \to -it$ . (This you can see by using L'Hospital's rule, or by writing the first order Taylor expansion  $e^{i\frac{t}{n}} = 1 + i\frac{t}{n} + o(i\frac{t}{n})$ .) So

$$\lim_{n \to \infty} \psi_n(t) = \frac{1}{1 - it}$$

So, by the continuity theorem,  $Y_n \Rightarrow Y$  where Y has characteristic function  $\psi(t) := \frac{1}{1-it}$ . By a previous homework, this is exactly the characteristic function of the exponential distribution with parameter 1, so  $Y_n \Rightarrow \text{Exp}(1)$ .

- 4.11 Let X be uniformly distributed on [-1; 1], and set  $Y_n = nX$ .
  - a.) Calculate the characteristic function  $\psi_n$  of  $Y_n$ .
  - b.) Calculate the pointwise limit  $\lim_{n\to\infty}\psi_n(t)$ , if it exists.
  - c.) Does (the distribution of)  $Y_n$  have a weak limit?
  - d.) How come?
- 4.12 Show that if  $\Psi$  is the characteristic function of some random variable X, then the complex conjugate  $\overline{\Psi}$  is also the characteristic function of some random variable Y. (Hint: try to find out what Y is.)
- 4.13 Durrett [1], Exercise 3.3.1 (Hint: try to find the appropriate random variables. Use the previous exercise.)
- 4.14 Durrett [1], Exercise 3.3.3
- 4.15 Durrett [1], Exercise 3.3.9
- 4.16 Durrett [1], Exercise 3.3.10. Show also that independence is needed.
- 4.17 Durrett [1], Exercise 3.3.11
- 4.18 Let  $X_1, X_2, \ldots$  be i.i.d. random variables with density (w.r.t. Lebesgue measure)  $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ . (So they have the Cauchy distribution.) Find the weak limit (as  $n \to \infty$ ) of the average

$$\frac{X_1 + \dots + X_n}{n}$$

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is using characteristic functions. Calculating the characteristic function of the Cauchy distribution is a little tricky, but you can look it up.

## References

[1] Durrett, R. Probability: Theory and Examples. Cambridge University Press (2010)