Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 4 – solutions

- 4.1 Show that if $X_n \Rightarrow X$ and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f(X_n) \Rightarrow f(X)$.
- 4.2 Let $F : \mathbb{R} \to [0,1]$ be a probability distribution function, and let Y be a random variable which is uniformly distributed in [0,1]. Let $X = \sup\{x|F(x) < Y\}$. Show that the distribution function of X is exactly F.
- 4.3 (homework) For a distribution function $F : \mathbb{R} \to [0,1]$, define its generalized inverse $F^{-1} : [0,1] \to \mathbb{R}$ as $F^{-1}(y) := \sup\{x \in \mathbb{R} | F(x) < y\}$. Let F, F_1, F_2, \ldots be distribution functions such that $F_n \Rightarrow F$. Let $\Omega = [0,1]$, let \mathbb{P} be Lebesgue measure on Ω , and define de random variables $X(\omega) := F^{-1}(\omega), X_n(\omega) := F_n^{-1}(\omega)$ for $\omega \in \Omega$. Show that $X_n \to X$ almost surely.

Solution: see Durrett [1], Theorem 3.2.2.

4.4 (homework) Durrett [1], Exercise 3.2.6

Solution: We first show that ρ is a metric:

- a.) $\rho(F,G) \ge 0$ because F is increasing, so $F(x-\varepsilon) \varepsilon \le F(x+\varepsilon) + \varepsilon$ can not hold for $\varepsilon < 0$.
- b.) $F(x \varepsilon) \varepsilon \leq G(x)$ for every x is the same as $F(y) \leq G(y + \varepsilon) + \varepsilon$ for every y (by the substitution $x = y + \varepsilon$). Similarly $G(x) \leq F(x + \varepsilon) + \varepsilon$ for every x is the same as $G(y \varepsilon) \varepsilon \leq F(y)$ for every y. So

$$[\forall x (F(x-\varepsilon) - \varepsilon \le G(x) \le F(x+\varepsilon) + \varepsilon)] \Leftrightarrow [\forall y (G(y-\varepsilon) - \varepsilon \le F(y) \le G(y+\varepsilon) + \varepsilon)],$$

which means that $\rho(F, G) = \rho(G, F)$.

- c.) If $\rho(F,G) = 0$, then $G(x) \leq F(x+\varepsilon) + \varepsilon$ for every $\varepsilon > 0$, so $G(x) \leq \lim_{y \searrow x} F(y) = F(x)$, since F is a distribution function, thus continuous from the right. By symmetry $F(x) \leq G(x)$ as well, so F = G.
- d.) If $\varepsilon_1 > \rho(F, G)$ and $\varepsilon_2 > \rho(G, H)$, then $F(x \varepsilon_1) \varepsilon_1 \leq G(x)$ and $G(y \varepsilon_2) \varepsilon_2 \leq H(y)$ for every x and y, including $x = y \varepsilon_2$, so

$$F(y - \varepsilon_2 - \varepsilon_1) - \varepsilon_2 - \varepsilon_1 \le G(y - \varepsilon_2) - \varepsilon_2 \le H(y)$$
 for every y.

Similarly

$$H(y) \le F(y + \varepsilon_2 + \varepsilon_1) + \varepsilon_2 + \varepsilon_1$$
 for every y.

Since these hold for every $\varepsilon_1 > \rho(F, G)$ and $\varepsilon_2 > \rho(G, H)$, we have that $\rho(F, H) \leq \rho(F, G) + \rho(G, H)$.

We have shown that ρ is a metric. Now we show that if $\rho(F, F_n) \to 0$, then $F_n \Rightarrow F$. Indeed, $\rho(F, F_n) \to 0$ implies that for every x

$$\lim_{y \nearrow x} F(y) \le \lim_{n \to \infty} F_n(x) \le \overline{\lim_{n \to \infty}} F_n(x) \le \lim_{y \searrow x} F(y).$$

If F is continuous at x, then $\lim_{y \nearrow x} F(y) = \lim_{y \searrow x} F(y) = F(x)$, so this means that $\lim_{n \to \infty} F_n(x) = F(x)$, meaning exactly that $F_n \Rightarrow F$.

Eventually, we show that if $F_n \Rightarrow F$, then $\rho(F, F_n) \to 0$. This is the key part of the statement, and this shows that the definition of ρ is celever. The difficulty is that although

 $F_n(x) \to F(x)$ for all but countably many x, this convergence is not at all uniform, since F may not be continuous. Indeed, if F_n is the indicator function of $\left[\frac{1}{n},\infty\right)$ and F is the indicator function of $[0,\infty)$, then $F_n \Rightarrow F$, but $|F_n - F| = 1$ on a short interval for every n. So, since there is no uniformity, we make use of monotonicity of the distribution functions. Fix $\varepsilon > 0$. Since F is a distribution function, $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$, so there is an $M < \infty$ such that $F(x) < \frac{\varepsilon}{2}$ for all $x \leq -M$ and $F(x) > 1 - \frac{\varepsilon}{2}$ for all $x \geq M$. Furthermore, F is continuous except for at most countably many points, so we can cut up the interval [-M, M] into finitely many subintervals of length at most ε , using only continuity points as endpoints: let $x_0 < -M < x_1 < x_2 < x_3 \cdots < x_{N-2} < x_{N-1} < M < x_N$ such that F is continuous at x_0, \ldots, x_N and $x_{k+1} - x_k \leq \varepsilon$ for all $k \in \{0, 1, \ldots, N-1\}$. By assumption, $F_n(x_k) \to F(x_k)$ as $n \to \infty$ for all $k \in \{0, 1, \ldots, N-1\}$, so if n is big enough, then $|F_n(x_k) - F(x_k)| < \frac{\varepsilon}{2}$ simultaneously for all k (there are only finitely many ks). Then, by monotonicity of F_n and F, if we take $x \in [x_k, x_{k+1}]$ for some k, then

$$F(x-\varepsilon)-\varepsilon \le F(x_k)-\varepsilon \le F_n(x_k) \le F_n(x) \le F_n(x_{k+1}) \le F(x_{k+1})+\varepsilon \le F(x+\varepsilon)+\varepsilon.$$

On the other hand, if $x \leq x_0$, then

$$F(x-\varepsilon)-\varepsilon \le F(x_0)-\varepsilon \le \varepsilon-\varepsilon = 0 \le F_n(x) \le F_n(x_0) \le F(x_0)+\frac{\varepsilon}{2} \le \varepsilon \le F(x+\varepsilon)+\varepsilon.$$

Finally, if $x \ge x_N$, then

$$F(x-\varepsilon)-\varepsilon \le 1-\varepsilon \le F(x_N)-\frac{\varepsilon}{2} \le F_n(x_N) \le F_n(x) \le 1 = 1-\varepsilon+\varepsilon \le F(x_N)+\varepsilon \le F(x+\varepsilon)+\varepsilon.$$

We have shown for all $x \in \mathbb{R}$ that

$$F(x-\varepsilon) - \varepsilon \le F_n(x) \le F(x+\varepsilon) + \varepsilon,$$

so $\rho(F, F_n) \leq \varepsilon$ if n is big enough.

- 4.5 Durrett [1], Exercise 3.2.9
- 4.6 Durrett [1], Exercise 3.2.12
- 4.7 Durrett [1], Exercise 3.2.14
- 4.8 Durrett [1], Exercise 3.2.15
- 4.9 (homework) Weak convergence and densities.
 - (a) Prove the following

Theorem 1 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.

iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.

Solution:

(a)
$$F_n(x) = \int_{-\infty}^x f_n(x) \, dx$$
 and $f_n(x) \to f(x)$ for every x , so the Fatou lemma says that

$$F(x) = \int_{-\infty}^x f(x) \, dx = \int_{-\infty}^x \liminf_{n \to \infty} f_n(x) \, dx \le \liminf_{n \to \infty} \int_{-\infty}^x f_n(x) \, dx = \liminf_{n \to \infty} F_n(x).$$
Circle 1

Similarly,

$$1 - F(x) = \int_{x}^{\infty} f(x) \, \mathrm{d}x = \int_{x}^{\infty} \liminf_{n \to \infty} f_n(x) \, \mathrm{d}x$$
$$\leq \liminf_{n \to \infty} \int_{x}^{\infty} f_n(x) \, \mathrm{d}x = \liminf_{n \to \infty} (1 - F_n(x)) = 1 - \limsup_{n \to \infty} F_n(x),$$

which implies $\limsup_{n\to\infty} F_n(x) \leq F(x)$, so $F_n(x) \to F(x)$ for every x, and we are done.

- (b) i. Let μ_n be uniform on [n, n+1], so f_n is the indicator function of [n, n+1]. Then $f_n \to 0$ for all x.
 - ii. Let μ_n be the uniform distribution on $\left[-\frac{1}{n}, \frac{1}{n}\right]$ and let μ be the probability measure concentrated on $\{0\}$.
 - iii. Let f be the uniform density on [0, 1] and let $f_n = f + h_n$ where the deviation h_n is constructed to be "small" in the sense of weak convergence, but spoils pointwise convergence totally. In particular, for m = 1, 2, 3, ... and $k = 0, 1, ..., 2m^2 1$ let

$$h_{m,k} = \mathbf{1}_{\left[-m + \frac{k}{m}, -m + \frac{k+1}{m}\right]} - \mathbf{1}_{\left[0, \frac{1}{m}\right]},$$

where **1** denotes indicator function. Now let the sequence h_n contain all the $h_{m,k}$ (in any order). Draw these functions and see that they work.

4.10 (homework) Let X_1, X_2, \ldots be independent and uniformly distributed on [0, 1]. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = n(1 - M_n)$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)

Solution: Let F_X be the common distribution function of the X_i :

$$F_X(x) = \mathbb{P}(X_i \le x) = \begin{cases} 0 & \text{if } x \le 0\\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Now $M_n = \max\{X_1, \ldots, X_n\}$, so $M_n \leq x$ iff $X_i \leq x$ for all *i*. So the distribution function of M_n is

$$F_{M_n}(x) := \mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, \dots, X_n \le x) = \mathbb{P}(X_1 \le x) \cdots \mathbb{P}(X_n \le x) = = (F_X(x))^n = \begin{cases} 0 & \text{if } x \le 0 \\ x^n & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

We have used the independence of the X_i . Now the distribution function of Y_n is

$$\begin{split} F_n(y) &:= \mathbb{P}(Y_n \le y) = \mathbb{P}(n(1 - M_n) \le y) = \mathbb{P}\left(M_n \ge 1 - \frac{y}{n}\right) = 1 - F_{M_n}\left(1 - \frac{y}{n}\right) = \\ &= \begin{cases} 0 & \text{if } y \le 0\\ 1 - \left(1 - \frac{y}{n}\right)^n & \text{if } 0 < y < n \\ 1 & \text{if } y \ge n \end{cases} \end{split}$$

Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and $F_n(y) \to \lim_{n \to \infty} 1 - \left(1 - \frac{y}{n}\right)^n = 1 - e^{-y}$. All in all, we got that

$$\lim_{n \to \infty} F_n(y) = F(y) := \begin{cases} 0 & \text{if } y \le 0\\ 1 - e^{-y} & \text{if } y > 0 \end{cases}$$

for every $y \in \mathbb{R}$, so $F_n \Rightarrow F$. This F is exactly the distribution function of the exponential distribution with parameter 1, so we have shown that $Y_n \Rightarrow Exp(1)$.

- 4.11 Let X_1, X_2, \ldots be independent and exponentially distributed with parameter $\lambda = 1$. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = M_n \ln n$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)
- 4.12 Let $S = \mathbb{Z}$ and let the random variables $X, X_1, X_2, \dots \in S$.
 - a.) Show that $X_n \Rightarrow X$ if and only if $\mathbb{P}(X_n = k) \to \mathbb{P}(X = k)$ as $n \to \infty$ for every $k \in S$.
 - b.) It this also true for some arbitrary countable $S \subset \mathbb{R}$?

References

 Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)