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Probability 1
CEU Budapest, fall semester 2018
Imre Péter To6th
Homework sheet 4 — solutions

Show that if X,, = X and f: R — R is continuous, then f(X,) = f(X).

Let F : R — [0,1] be a probability distribution function, and let Y be a random vari-
able which is uniformly distributed in [0,1]. Let X = sup{z|F(z) < Y'}. Show that the
distribution function of X is exactly F'.

(homework) For a distribution function F' : R — [0, 1], define its generalized inverse
F71:00,1] = R as F~l(y) := sup{z € R|F(x) < y}. Let F,F|, F;,... be distribution
functions such that F,, = F. Let Q = [0, 1], let P be Lebesgue measure on €2, and define de
random variables X (w) := F~!(w), X,,(w) := F;}(w) for w € Q. Show that X,, — X almost
surely.

Solution: see Durrett [1], Theorem 3.2.2.

(homework) Durrett [1], Exercise 3.2.6

Solution: We first show that p is a metric:

a.) p(F,G) > 0 because F' is increasing, so F(z —¢) —e < F(x + ¢) + ¢ can not hold for
e <0.

b.) F(x —e) —e < G(x) for every z is the same as F(y) < G(y + ¢) + ¢ for every y (by
the substitution z = y + ¢). Similarly G(z) < F(x + €) + ¢ for every z is the same as
Gy —¢e) —e < F(y) for every y. So

Va(F(z—¢e)—e < G(z) < Flz+e)+e)] e [W(Gy—¢e) —e < Fly) < Gy +¢) +¢)],

which means that p(F,G) = p(G, F).

c.) If p(F,G) = 0, then G(z) < F(x +¢) + ¢ for every € > 0, so G(z) < limy, Fy) =
F(x), since F' is a distribution function, thus continuous from the right. By symmetry

F(z) < G(x) as well, so F' = G.
d.) Ife; > p(F,G) and g5 > p(G, H), then F(z—e1)—e; < G(z) and G(y —e2) —e2 < H(y)
for every z and y, including x = y — &5, so
Fly—es—e1) —ea—e1 <G(y—e2) —e2a < H(y) for every y.
Similarly
Hy) < F(y+ey+e1)+ey+e; forevery y.
Since these hold for every €1 > p(F,G) and e > p(G, H), we have that p(F, H) <
p(F,G) + p(G, H).

We have shown that p is a metric. Now we show that if p(F), F},) — 0, then F,, = F. Indeed,
p(F, F,) — 0 implies that for every x

lim F(y) < lim Fy(x) < Tm Fy(x) < lim F(y).

y n—00 n—o0 Y\

If F is continuous at z, then limy », F(y) = lim,, F(y) = F(x), so this means that
lim,, o Fy,(x) = F(z), meaning exactly that F, = F.

Eventually, we show that if F,, = F, then p(F,F,) — 0. This is the key part of the
statement, and this shows that the definition of p is celever. The difficulty is that although
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F.(z) — F(zx) for all but countably many x, this convergence is not at all uniform, since
F may not be continuous. Indeed, if F;, is the indicator function of [%, oo) and F' is the
indicator function of [0, 00), then F,, = F', but |F,, — F| = 1 on a short interval for every n.
So, since there is no uniformity, we make use of monotonicity of the distribution functions.

Fix ¢ > 0. Since F' is a distribution function, lim, , ., F(z) = 0 and lim,_,, F(z) = 1,
so there is an M < oo such that F(z) < § for all z < —M and F(z) > 1 — 5 for all
x > M. Furthermore, F' is continuous except for at most countably many points, so we can
cut up the interval [—M, M| into finitely many subintervals of length at most ¢, using only
continuity points as endpoints: let 1o < —M < z; <y <x3--- < Ty o< Ty_1 <M <zxN
such that F' is continuous at xg,...,xy and zx11 —xp < e for all k € {0,1,...,N —1}. By
assumption, F,(zg) — F(x) asn — oo for all k € {0,1,..., N — 1}, so if n is big enough,
then |F,(zx) — F'(zx)| < § simultaneously for all k (there are only finitely many ks). Then,
by monotonicity of F,, and F', if we take x € [xy, x)41] for some k, then

Flx—¢e)—e < F(xg) —e < Fy(ay) < Fo(x) < Fy(zp1) < Frpy) +e < Fx +¢) ¢
On the other hand, if x < x, then

Flr—e)—e<F(xg) —e<e—e=0<F,(z) < Fy(xg) < F(zg)+ = <e< F(z+e¢)+e.

Finally, if x > xx, then
Fz—e)—e <1—e < F(:cN)—% < Fu(zny) < Fu(z) <1=1-c+e < F(zy)+e < F(a+e)+e.
We have shown for all z € R that
Flr—¢)—e < Fuy(z) < F(r +¢) +e,
so p(F, F,) < ¢ if n is big enough.
Durrett [1], Exercise 3.2.9
Durrett [1], Exercise 3.2.12
Durrett [1], Exercise 3.2.14
Durrett [1], Exercise 3.2.15
(homework) Weak convergence and densities.

(a) Prove the following

Theorem 1 Let piy, pia, ... and i be a sequence of probability distributions on R which
are absolutely continouos w.r.t. Lebesque measure. Denote their densities by fi, fo, ...
n—oo

and f, respectively. Suppose that f,(x) — f(z) for every x € R. Then u, = p
(weakly).

(Hint: denote the cumulative distribution functions by Fi, Fs, ... and F, respectively.
Use the Fatou lemma to show that F(z) < liminf, . F,,(x). For the other direction,
consider G(z) := 1 — F(x).

(b) Show examples of the following facts:

i. It can happen that the f, converge pointwise to some f, but the sequence pu,, is
not weakly convergent, because f is not a density.

ii. It can happen that the yu,, are absolutely continuous, u,, = i, but @ is not absolutely
continuous.



iii. It can happen that the u, and also p are absolutely continuous, p,, = u, but f,(x)
does not converge to f(x) for any z.

Solution:
f fo(z)dx and f,(x) — f(z) for every z, so the Fatou lemma says that
= / f(z)dz = / liminf f,(z) dz < lim mf/ fn(z) dz = liminf F,(z).
—00 —c0 n—o0 n— oo n—o00
Similarly,

:/jf@)dx:/;nggffn@)dx

< liminf/ fau(z)dx =liminf(1 — F,(z)) = 1 — limsup F,,(x),
n—oo T n—oo n—oo
which implies limsup,, . Fn(z) < F(z), so F,(z) — F(x) for every z, and we are
done.
(b) i. Let p, be uniform on [n,n + 1], so f, is the indicator function of [n,n + 1]. Then
frn — 0 for all x.
ii. Let u, be the uniform distribution on [—%, ﬂ and let i be the probability measure
concentrated on {0}.
iii. Let f be the uniform density on [0, 1] and let f, = f + h,, where the deviation h,
is constructed to be “small” in the sense of weak convergence, but spoils pointwise
convegrence totally. In particular, for m =1,2,3,... and k =0,1,...,2m? — 1 let

ot = Lo e s2] = o2

where 1 denotes indicator function. Now let the sequence h,, contain all the A,
(in any order). Draw these functions and see that they work.

4.10 (homework) Let X, X5, ... be independent and uniformly distributed on [0, 1]. Let M,, =

max{Xy,...,X,} and let Y,, = n(1 — M,,). Find the weak limit of Y,,. (Hint: Calculate the
distribution functions.)

Solution: Let F'x be the common distribution function of the X;:

0 fz<0
Fx(z)=P(X;<z)=qx if0<z<l1.
1 ifx>1

Now M, = max{Xy,..., X,,}, so M,, <z iff X; <z for all 7. So the distribution function of
M, is

0 itz <0

= (Fx(x)"=<a2" if0<z<l.
1 ifx>1

We have used the independence of the X;. Now the distribution function of Y,, is

=P, <y) = (I—Mn)éy)ZIP’(anl—g):1—FMn(1_E):
n n
0 ify <0
if0<y<n.
1 ify>n



Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and
Fo(y) = lim, 01— (1 - £)" =1 —¢7%. All in all, we got that

lim F,(y) = F(y) :=

n—oo

0 if y <0
l—e™ ify>0

for every y € R, so F,, = F. This F' is exactly the distribution function of the exponential
distribution with parameter 1, so we have shown that Y,, = Exp(1).

4.11 Let X, Xs,... be independent and exponentially distributed with parameter A\ = 1. Let
M, = max{Xy,..., X, } and let Y,, = M,, —Inn. Find the weak limit of Y,,. (Hint: Calculate
the distribution functions.)

4.12 Let S = 7Z and let the random variables X, X, X5,--- € S.

a.) Show that X,, = X if and only if P(X,, = k) — P(X = k) as n — oo for every k € S.
b.) It this also true for some arbitrary countable S C R?
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