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Imre Péter Tóth
Homework sheet 4 – solutions

4.1 Show that if Xn ⇒ X and f : R → R is continuous, then f(Xn) ⇒ f(X).

4.2 Let F : R → [0, 1] be a probability distribution function, and let Y be a random vari-
able which is uniformly distributed in [0, 1]. Let X = sup{x|F (x) < Y }. Show that the
distribution function of X is exactly F .

4.3 (homework) For a distribution function F : R → [0, 1], define its generalized inverse
F−1 : [0, 1] → R̄ as F−1(y) := sup{x ∈ R|F (x) < y}. Let F, F1, F2, . . . be distribution
functions such that Fn ⇒ F . Let Ω = [0, 1], let P be Lebesgue measure on Ω, and define de
random variables X(ω) := F−1(ω), Xn(ω) := F−1

n (ω) for ω ∈ Ω. Show that Xn → X almost
surely.

Solution: see Durrett [1], Theorem 3.2.2.

4.4 (homework) Durrett [1], Exercise 3.2.6

Solution: We first show that ρ is a metric:

a.) ρ(F,G) ≥ 0 because F is increasing, so F (x − ε) − ε ≤ F (x + ε) + ε can not hold for
ε < 0.

b.) F (x − ε) − ε ≤ G(x) for every x is the same as F (y) ≤ G(y + ε) + ε for every y (by
the substitution x = y + ε). Similarly G(x) ≤ F (x + ε) + ε for every x is the same as
G(y − ε)− ε ≤ F (y) for every y. So

[∀x(F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε)] ⇔ [∀y(G(y − ε)− ε ≤ F (y) ≤ G(y + ε) + ε)],

which means that ρ(F,G) = ρ(G,F ).

c.) If ρ(F,G) = 0, then G(x) ≤ F (x + ε) + ε for every ε > 0, so G(x) ≤ limyցx F (y) =
F (x), since F is a distribution function, thus continuous from the right. By symmetry
F (x) ≤ G(x) as well, so F = G.

d.) If ε1 > ρ(F,G) and ε2 > ρ(G,H), then F (x−ε1)−ε1 ≤ G(x) and G(y−ε2)−ε2 ≤ H(y)
for every x and y, including x = y − ε2, so

F (y − ε2 − ε1)− ε2 − ε1 ≤ G(y − ε2)− ε2 ≤ H(y) for every y.

Similarly
H(y) ≤ F (y + ε2 + ε1) + ε2 + ε1 for every y.

Since these hold for every ε1 > ρ(F,G) and ε2 > ρ(G,H), we have that ρ(F,H) ≤
ρ(F,G) + ρ(G,H).

We have shown that ρ is a metric. Now we show that if ρ(F, Fn) → 0, then Fn ⇒ F . Indeed,
ρ(F, Fn) → 0 implies that for every x

lim
yրx

F (y) ≤ lim
n→∞

Fn(x) ≤ lim
n→∞

Fn(x) ≤ lim
yցx

F (y).

If F is continuous at x, then limyրx F (y) = limyցx F (y) = F (x), so this means that
limn→∞ Fn(x) = F (x), meaning exactly that Fn ⇒ F .

Eventually, we show that if Fn ⇒ F , then ρ(F, Fn) → 0. This is the key part of the
statement, and this shows that the definition of ρ is celever. The difficulty is that although
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Fn(x) → F (x) for all but countably many x, this convergence is not at all uniform, since
F may not be continuous. Indeed, if Fn is the indicator function of

[

1

n
,∞

)

and F is the
indicator function of [0,∞), then Fn ⇒ F , but |Fn − F | = 1 on a short interval for every n.
So, since there is no uniformity, we make use of monotonicity of the distribution functions.

Fix ε > 0. Since F is a distribution function, limx→−∞ F (x) = 0 and limx→∞ F (x) = 1,
so there is an M < ∞ such that F (x) < ε

2
for all x ≤ −M and F (x) > 1 − ε

2
for all

x ≥ M . Furthermore, F is continuous except for at most countably many points, so we can
cut up the interval [−M,M ] into finitely many subintervals of length at most ε, using only
continuity points as endpoints: let x0 < −M < x1 < x2 < x3 · · · < xN−2 < xN−1 < M < xN

such that F is continuous at x0, . . . , xN and xk+1 − xk ≤ ε for all k ∈ {0, 1, . . . , N − 1}. By
assumption, Fn(xk) → F (xk) as n → ∞ for all k ∈ {0, 1, . . . , N − 1}, so if n is big enough,
then |Fn(xk)− F (xk)| <

ε
2
simultaneously for all k (there are only finitely many ks). Then,

by monotonicity of Fn and F , if we take x ∈ [xk, xk+1] for some k, then

F (x− ε)− ε ≤ F (xk)− ε ≤ Fn(xk) ≤ Fn(x) ≤ Fn(xk+1) ≤ F (xk+1) + ε ≤ F (x+ ε) + ε.

On the other hand, if x ≤ x0, then

F (x− ε)− ε ≤ F (x0)− ε ≤ ε− ε = 0 ≤ Fn(x) ≤ Fn(x0) ≤ F (x0) +
ε

2
≤ ε ≤ F (x+ ε) + ε.

Finally, if x ≥ xN , then

F (x−ε)−ε ≤ 1−ε ≤ F (xN)−
ε

2
≤ Fn(xN ) ≤ Fn(x) ≤ 1 = 1−ε+ε ≤ F (xN )+ε ≤ F (x+ε)+ε.

We have shown for all x ∈ R that

F (x− ε)− ε ≤ Fn(x) ≤ F (x+ ε) + ε,

so ρ(F, Fn) ≤ ε if n is big enough.

4.5 Durrett [1], Exercise 3.2.9

4.6 Durrett [1], Exercise 3.2.12

4.7 Durrett [1], Exercise 3.2.14

4.8 Durrett [1], Exercise 3.2.15

4.9 (homework) Weak convergence and densities.

(a) Prove the following

Theorem 1 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which
are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . .

and f , respectively. Suppose that fn(x)
n→∞
−→ f(x) for every x ∈ R. Then µn ⇒ µ

(weakly).

(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively.
Use the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction,
consider G(x) := 1− F (x).

(b) Show examples of the following facts:

i. It can happen that the fn converge pointwise to some f , but the sequence µn is
not weakly convergent, because f is not a density.

ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.
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iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.

Solution:

(a) Fn(x) =
∫ x

−∞
fn(x) dx and fn(x) → f(x) for every x, so the Fatou lemma says that

F (x) =

∫ x

−∞

f(x) dx =

∫ x

−∞

lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫ x

−∞

fn(x) dx = lim inf
n→∞

Fn(x).

Similarly,

1− F (x) =

∫ ∞

x

f(x) dx =

∫ ∞

x

lim inf
n→∞

fn(x) dx

≤ lim inf
n→∞

∫ ∞

x

fn(x) dx = lim inf
n→∞

(1− Fn(x)) = 1− lim sup
n→∞

Fn(x),

which implies lim supn→∞ Fn(x) ≤ F (x), so Fn(x) → F (x) for every x, and we are
done.

(b) i. Let µn be uniform on [n, n + 1], so fn is the indicator function of [n, n + 1]. Then
fn → 0 for all x.

ii. Let µn be the uniform distribution on
[

− 1

n
, 1

n

]

and let µ be the probability measure
concentrated on {0}.

iii. Let f be the uniform density on [0, 1] and let fn = f + hn where the deviation hn

is constructed to be “small” in the sense of weak convergence, but spoils pointwise
convegrence totally. In particular, for m = 1, 2, 3, . . . and k = 0, 1, . . . , 2m2 − 1 let

hm,k = 1[−m+
k

m
,−m+

k+1

m
] − 1[0, 1

m
],

where 1 denotes indicator function. Now let the sequence hn contain all the hm,k

(in any order). Draw these functions and see that they work.

4.10 (homework) Let X1, X2, . . . be independent and uniformly distributed on [0, 1]. Let Mn =
max{X1, . . . , Xn} and let Yn = n(1−Mn). Find the weak limit of Yn. (Hint: Calculate the
distribution functions.)

Solution: Let FX be the common distribution function of the Xi:

FX(x) = P(Xi ≤ x) =











0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

.

Now Mn = max{X1, . . . , Xn}, so Mn ≤ x iff Xi ≤ x for all i. So the distribution function of
Mn is

FMn
(x) := P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) = P(X1 ≤ x) · · ·P(Xn ≤ x) =

= (FX(x))
n =











0 if x ≤ 0

xn if 0 < x < 1

1 if x ≥ 1

.

We have used the independence of the Xi. Now the distribution function of Yn is

Fn(y) := P(Yn ≤ y) = P(n(1−Mn) ≤ y) = P

(

Mn ≥ 1−
y

n

)

= 1− FMn

(

1−
y

n

)

=

=











0 if y ≤ 0

1−
(

1− y

n

)n
if 0 < y < n

1 if y ≥ n

.
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Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and
Fn(y) → limn→∞ 1−

(

1− y

n

)n
= 1− e−y. All in all, we got that

lim
n→∞

Fn(y) = F (y) :=

{

0 if y ≤ 0

1− e−y if y > 0

for every y ∈ R, so Fn ⇒ F . This F is exactly the distribution function of the exponential
distribution with parameter 1, so we have shown that Yn ⇒ Exp(1).

4.11 Let X1, X2, . . . be independent and exponentially distributed with parameter λ = 1. Let
Mn = max{X1, . . . , Xn} and let Yn = Mn− lnn. Find the weak limit of Yn. (Hint: Calculate
the distribution functions.)

4.12 Let S = Z and let the random variables X,X1, X2, · · · ∈ S.

a.) Show that Xn ⇒ X if and only if P(Xn = k) → P(X = k) as n → ∞ for every k ∈ S.

b.) It this also true for some arbitrary countable S ⊂ R?
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