
Probability 1
CEU Budapest, fall semester 2018

Imre Péter Tóth
Homework sheet 6 – solutions

6.1 Consider the probability space Ω = {a, b, c} equipped with the uniform measure as P (so
P({a}) = P({b}) = P({c}) = 1

3
). Let the random variable X : Ω → R be such that

X(a) = X(b) = 0, X(c) = 1.

a.) Let D1 be the partition {{a}, {b, c}}. Find the conditional expectation E(X|D1) (which
is the same as E(X|G1), where the σ-algebra G1 is G1 = {∅, {a}, {b, c},Ω}.)

b.) Let D2 be the partition {{a, b}, {c}}. Find the conditional expectation E(X|D2) (which
is the same as E(X|G2), where the σ-algebra G2 is G2 = {∅, {a, b}, {c},Ω}.)

6.2 (homework) Let (Ω,F ,P) be the probability space where Ω = [0, 1]× [0, 1], F is the Borel
σ-algebra and P is the Lebesgue measure on ω (restricted to F). Let G be the σ-algebra

G = {B × [0, 1] |B ⊂ [0, 1] is a Borel set}.

Let X : Ω → R be the random variable X(x, y) = x(x+ y). Calculate E(X|G).

Solution: Y := E(X|G) is a random variable Y : Ω → R which is G-measurable, so
Y = Y (x, y) depends on x only. (This is because events in G contain entire vertical line
segments, so for any x, y1 and y2, if we set c := Y (x, y1), then Y −1({c}) has to contain
(x, y2) in order to be G-meausrable, so Y (x, y2) = Y (x, y1).) So there is some f : [0, 1] → R

such that Y (x, y) = f(x) for every (x, y).

To find f , let Ab := [0, b]× [0, 1] ∈ G. The definition of the conditional expectation says that
∫

Ab

X dP =
∫

Ab

Y dP, so we write out the two sides:

∫

Ab

X dP =

∫ b

0

[
∫ 1

0

x(x+ y) dy

]

dx =

∫ b

0

x

(

x+
1

2

)

dx =

∫ b

0

x2 +
x

2
dx,

∫

Ab

Y dP =

∫ b

0

f(x) dx.

These have to be equal for every b, so

Y (x, y) = f(x) = x2 +
x

2

for almost every (x, y) ∈ Ω.

6.3 Let (Ω,F ,P) be the probability space where Ω = [0, 1]× [0, 1], F is the Borel σ-algebra and
P is the Lebesgue measure on ω (restricted to F). Let G be the σ-algebra

G = {[0, 1]×B |B ⊂ [0, 1] is a Borel set}.

Let X : Ω → R be the random variable X(x, y) = x2 + y2. Calculate E(X|G).

6.4 Let ξ and η be independent random variables uniformly distributed on (0, 1). Let X = ξη
and Y = ξ/η. Calcualte E(X|Y ).

6.5 Durrett [1], Exercise 5.1.1

6.6 Durrett [1], Exercise 5.1.3

6.7 Durrett [1], Exercise 5.1.4
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6.8 (homework) Durrett [1], Exercise 5.1.6

Solution: More or less anything will do, as long as F1 6⊂ F2 and F2 6⊂ F1. For example, let
P be the uniform measure, F1 = {∅, {a, b}, {c},Ω}, F2 = {∅, {a}, {b, c},Ω}, and

X(ω) =

{

0 if ω = a or ω = b

1 if ω = c
.

Then E(X|F1) = X because X is F1-measurable, and from the definition of conditional
expectation we immediately get that

Y := E(X|F2)(ω) =

{

X(a) = 0 if ω = a
X(b)+X(c)

2
= 1

2
if ω = b or ω = c

.

This implies that
E(E(X|F1)|F2)(a) = E(X|F2)(a) = Y (a) = 0,

but

E(E(X|F2)|F1)(a) = E(Y |F1)(a) =
Y (a) + Y (b)

2
=

1

4
.

So at least for ω = a,

E(E(X|F1)|F2)(ω) 6= E(E(X|F2)|F1)(ω).

6.9 Durrett [1], Exercise 5.2.1

6.10 Durrett [1], Exercise 5.2.3

6.11 Durrett [1], Exercise 5.2.4

6.12 (homework) Let Xn be a martingale w.r.t. the filtration Fn on the probability space
(Ω,F ,P) and let the random variable τ : Ω → N be a stopping time, meaning

{τ = k} := {ω ∈ Ω | τ(ω) = k} ∈ Fk for every k.

Using the notation a ∧ b := min{a, b}, we introduce the process

Yn := Xτ∧n =

{

Xn if n < τ,

Xτ if n ≥ τ .

Show that Yn is also a martingale w.r.t. Fn. (Hint: Yn is the fortune of a gambler with a
certain strategy.)

Solution 1 (painful): We check the definition.

a.) For any B ⊂ R measurable, {Yn ∈ B} = ({n < τ} ∩ {Xn ∈ B}) ∪ ({τ ≤ n} ∩ {Xτ ∈
B}) ∈ Fn, so Yn is adapted.

b.) |Yn| = |Xn∧τ | ≤ |X1|+ |X2| + · · ·+ |Xn|, so E|Yn| ≤ E|X1|+ · · ·+ E|Xn| < ∞, so Yn is
integrable.

c.) The essence is to check that E(Yn+1|Fn) = Yn. We show this by checking the definition
of the conditional expectation. We have seen that Yn ∈ Fn, so we only need that

∫

B

Yn dP =

∫

B

Yn+1 dP for B ∈ Fn.

For this purpose, let A = {τ ≤ n}, so A ∈ Fn.
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• On the event A we have τ ≤ n, so n ∧ τ = τ , so Yn = Xτ . Also, we have τ ≤ n+ 1,
so Yn+1 = Xτ as well. All in all, on the event A we have Yn+1 = Yn.

• On the event Ac we have τ > n, so n ∧ τ = n, so Yn = Xn. But we also have
τ ≥ n+ 1, so n+ 1 ∧ τ = n+ 1 and Yn+1 = Xn+1 (on Ac).

Now we take B ∈ Fn and write
∫

B

Yn dP =

∫

B∩A

Yn dP+

∫

B\A

Yn dP.

In the first term Yn = Yn+1, since B ∩ A ⊂ A. In the second term Yn = Xn, since
B \A ⊂ Ac. Now we use that B \ A ∈ Fn and E(Xn+1|Fn) = Xn to get

∫

B\A

Yn dP =

∫

B\A

Xn dP =

∫

B\A

Xn+1 dP.

We use that Xn+1 = Yn+1 on B \ A ⊂ Ac to conclude that
∫

B\A
Yn dP =

∫

B\A
Yn+1 dP.

Putting these together, we get
∫

B

Yn dP =

∫

B∩A

Yn dP+

∫

B\A

Yn dP =

∫

B∩A

Yn+1 dP+

∫

B\A

Yn+1 dP =

∫

B

Yn+1 dP.

Solution 2 (elegant): Think of Xn as a stock price. An investor buys one stock at time 0
and sells it at time τ . So the number of stocks she holds is

Hn :=

{

1 if n ≤ τ

0 if n > τ
.

Since τ is a stopping time, {τ ≤ n} ∈ Fn, so {Hn = 0} = {τ ≤ n−1} ∈ Fn−1, meaning that
Hn is predictable. Hn is also bounded, so we know that the discrete stochastic integral

(H ·X)n :=
n

∑

m=1

Hm(Xm −Xm−1)

is also a martingale. But
Yn = X0 + (H ·X)n

and X0 ∈ F0 ⊂ Fn for every n, so Yn is also a martingale.

6.13 (homework) Let a, b ∈ Z with a < 0 < b. Let Sn be a simple symmetric random walk with
S0 = 0 and let τ be the first hitting time for {a, b}. Apply the optional stopping theorem to
the martingale Sn to find the hitting probabilities pa = P(Sτ = a) and pb = P(Sτ = b).

Solution: We will heavily use the fact that the random walk hits the set {a, b} almost
surely, meaning that P(τ < ∞) = 1 and pa + pb = 1. Let’s believe this for a moment.

The martingale Sn has bounded increments and the stopping time τ is almost surely finite,
so the optional stopping theorem says that ESτ = ES0. (The second sufficient condition
in the theorem is satisfied.) Now ESτ = apa + bpb and ES0 = 0, so pa and pb satisfy the
following system of linear equations:

{

apa + bpb = 0

pa + pb = 1

The unique solution is

pa =
b

b− a

pb =
−a

b− a
.
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We are left to show that P(τ < ∞) = 1. There are many ways to do this. For example:
The stopped martingale Sτ∧n is also a martingale by Exercise 12. It is also bounded by
construction, so the martingale convergence theorem says that it is almost surely convergent.
Since it is integer valued, it can only be convergent by being eventually constant, maning
that the walk has to reach a or b.

6.14 Let p ∈ (0, 1) be fixed, and let q = 1− p. A frog performs a (discrete time) random walk on
the 1-dimensional lattice Z the following way:

The initial position is X0 = 0. The frog jumps 1 step up with probability p and jumps 1 step
down with probability q at each time step, independently of what happened before, until it
reaches either the point a = −10 or the point b = +30, which are sticky : if the frog reaches
one of them, it stays there forever.

Let Xn denote the position of the frog after n steps (for n = 0, 1, 2, . . . ).

a.) Show that Yn :=
(

q

p

)Xn

is a martingale (w.r.t. the natural filtration).

b.) Show that Yn converges almost surely to some limiting random variable Y∞. What are
the possible values of Y∞?

c.) How much is EY∞ and why?

d.) Suppose now that p 6= 1
2
. Use the previous results to calculate the probability that the

frog eventually gets stuck at the point a = −10.

6.15 Let 0 ≤ p ≤ 1 and q = 1 − p. Let X1, X2, . . . be i.i.d. with P(Xi = −1) = q and
P(Xi = 1) = p. For n = 0, 1, . . . let Sn = X1 + · · · + Xn. So Sn is a simple asymmetric
random walk starting from S0 = 0. (Symmetric if p = 1

2
.) Show that Mn := Sn − n(p − q)

is a martingale (w.r.t. the natural filtration).

For p 6= q, use this to find the expectation of the time when the frog of Exercise 14 gets
stuck.

6.16 Let X1, X2, . . . be i.i.d. with P(Xi = −1) = P(Xi = 1) = 1
2
. For n = 0, 1, . . . let Sn =

X1 + · · ·+Xn. So Sn is a simple symmetric random walk starting from S0 = 0.

a.) Show that S2
n − n is a martingale (w.r.t. the natural filtration). This is a special case of

Durrett [1], Exercise 5.2.6. You can also solve that – it’ not any harder.

b.) Use this and the result of Exercise 13 to find the expectation of the stopping time when
the walk first reaches either −10 or 30.

c.) How about the expectation of the stopping time when the walk first reaches 30?

6.17 Let Fn be a filtration and X any random varibale with E|X| < ∞. Let Xn = E(X|Fn).

a.) Show that Xn is a martingale w.r.t. Fn.

b.) Show that Xn converges almost surely to some limit X∞.

c.) Give a specific example when X∞ 6= X .

d.) Give a specific example when X∞ = X .
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