Probability 1 CEU Budapest, fall semester 2018 Imre Péter Tóth Homework sheet 6 – solutions

- 6.1 Consider the probability space $\Omega = \{a, b, c\}$ equipped with the uniform measure as \mathbb{P} (so $\mathbb{P}(\{a\}) = \mathbb{P}(\{b\}) = \mathbb{P}(\{c\}) = \frac{1}{3}$). Let the random variable $X : \Omega \to \mathbb{R}$ be such that X(a) = X(b) = 0, X(c) = 1.
 - a.) Let D_1 be the partition $\{\{a\}, \{b, c\}\}$. Find the conditional expectation $\mathbb{E}(X|D_1)$ (which is the same as $\mathbb{E}(X|G_1)$, where the σ -algebra G_1 is $G_1 = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$.)
 - b.) Let D_2 be the partition $\{\{a, b\}, \{c\}\}$. Find the conditional expectation $\mathbb{E}(X|D_2)$ (which is the same as $\mathbb{E}(X|G_2)$, where the σ -algebra G_2 is $G_2 = \{\emptyset, \{a, b\}, \{c\}, \Omega\}$.)
- 6.2 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ -algebra

 $\mathcal{G} = \{ B \times [0,1] \mid B \subset [0,1] \text{ is a Borel set} \}.$

Let $X : \Omega \to \mathbb{R}$ be the random variable X(x, y) = x(x + y). Calculate $\mathbb{E}(X|\mathcal{G})$.

Solution: $Y := \mathbb{E}(X|\mathcal{G})$ is a random variable $Y : \Omega \to \mathbb{R}$ which is \mathcal{G} -measurable, so Y = Y(x, y) depends on x only. (This is because events in \mathcal{G} contain entire vertical line segments, so for any x, y_1 and y_2 , if we set $c := Y(x, y_1)$, then $Y^{-1}(\{c\})$ has to contain (x, y_2) in order to be \mathcal{G} -measurable, so $Y(x, y_2) = Y(x, y_1)$.) So there is some $f : [0, 1] \to \mathbb{R}$ such that Y(x, y) = f(x) for every (x, y).

To find f, let $A_b := [0, b] \times [0, 1] \in \mathcal{G}$. The definition of the conditional expectation says that $\int_{A_b} X \, \mathrm{d}\mathbb{P} = \int_{A_b} Y \, \mathrm{d}\mathbb{P}$, so we write out the two sides:

$$\int_{A_b} X \,\mathrm{d}\mathbb{P} = \int_0^b \left[\int_0^1 x(x+y) \,\mathrm{d}y \right] \,\mathrm{d}x = \int_0^b x \left(x + \frac{1}{2} \right) \,\mathrm{d}x = \int_0^b x^2 + \frac{x}{2} \,\mathrm{d}x,$$
$$\int_{A_b} Y \,\mathrm{d}\mathbb{P} = \int_0^b f(x) \,\mathrm{d}x.$$

These have to be equal for every b, so

$$Y(x,y) = f(x) = x^2 + \frac{x}{2}$$

for almost every $(x, y) \in \Omega$.

6.3 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ -algebra

 $\mathcal{G} = \{[0,1] \times B \mid B \subset [0,1] \text{ is a Borel set} \}.$

Let $X: \Omega \to \mathbb{R}$ be the random variable $X(x, y) = x^2 + y^2$. Calculate $\mathbb{E}(X|\mathcal{G})$.

- 6.4 Let ξ and η be independent random variables uniformly distributed on (0,1). Let $X = \xi \eta$ and $Y = \xi / \eta$. Calcualte $\mathbb{E}(X|Y)$.
- 6.5 Durrett [1], Exercise 5.1.1
- 6.6 Durrett [1], Exercise 5.1.3
- 6.7 Durrett [1], Exercise 5.1.4

6.8 (homework) Durrett [1], Exercise 5.1.6

Solution: More or less anything will do, as long as $\mathcal{F}_1 \not\subset \mathcal{F}_2$ and $\mathcal{F}_2 \not\subset \mathcal{F}_1$. For example, let \mathbb{P} be the uniform measure, $\mathcal{F}_1 = \{\emptyset, \{a, b\}, \{c\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$, and

$$X(\omega) = \begin{cases} 0 & \text{if } \omega = a \text{ or } \omega = b \\ 1 & \text{if } \omega = c \end{cases}$$

Then $\mathbb{E}(X|\mathcal{F}_1) = X$ because X is \mathcal{F}_1 -measurable, and from the definition of conditional expectation we immediately get that

$$Y := \mathbb{E}(X|\mathcal{F}_2)(\omega) = \begin{cases} X(a) = 0 & \text{if } \omega = a \\ \frac{X(b) + X(c)}{2} = \frac{1}{2} & \text{if } \omega = b \text{ or } \omega = c \end{cases}$$

This implies that

$$\mathbb{E}(\mathbb{E}(X|\mathcal{F}_1)|\mathcal{F}_2)(a) = \mathbb{E}(X|\mathcal{F}_2)(a) = Y(a) = 0,$$

but

$$\mathbb{E}(\mathbb{E}(X|\mathcal{F}_2)|\mathcal{F}_1)(a) = \mathbb{E}(Y|\mathcal{F}_1)(a) = \frac{Y(a) + Y(b)}{2} = \frac{1}{4}.$$

So at least for $\omega = a$,

$$\mathbb{E}(\mathbb{E}(X|\mathcal{F}_1)|\mathcal{F}_2)(\omega) \neq \mathbb{E}(\mathbb{E}(X|\mathcal{F}_2)|\mathcal{F}_1)(\omega).$$

- 6.9 Durrett [1], Exercise 5.2.1
- 6.10 Durrett [1], Exercise 5.2.3
- 6.11 Durrett [1], Exercise 5.2.4
- 6.12 (homework) Let X_n be a martingale w.r.t. the filtration \mathcal{F}_n on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau : \Omega \to \mathbb{N}$ be a *stopping time*, meaning

$$\{\tau = k\} := \{\omega \in \Omega \mid \tau(\omega) = k\} \in \mathcal{F}_k \text{ for every } k.$$

Using the notation $a \wedge b := \min\{a, b\}$, we introduce the process

$$Y_n := X_{\tau \wedge n} = \begin{cases} X_n & \text{if } n < \tau, \\ X_\tau & \text{if } n \ge \tau. \end{cases}$$

Show that Y_n is also a martingale w.r.t. \mathcal{F}_n . (Hint: Y_n is the fortune of a gambler with a certain strategy.)

Solution 1 (painful): We check the definition.

- a.) For any $B \subset \mathbb{R}$ measurable, $\{Y_n \in B\} = (\{n < \tau\} \cap \{X_n \in B\}) \cup (\{\tau \le n\} \cap \{X_\tau \in B\}) \in \mathcal{F}_n$, so Y_n is adapted.
- b.) $|Y_n| = |X_{n \wedge \tau}| \le |X_1| + |X_2| + \dots + |X_n|$, so $\mathbb{E}|Y_n| \le \mathbb{E}|X_1| + \dots + \mathbb{E}|X_n| < \infty$, so Y_n is integrable.
- c.) The essence is to check that $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = Y_n$. We show this by checking the definition of the conditional expectation. We have seen that $Y_n \in \mathcal{F}_n$, so we only need that

$$\int_{B} Y_n \, \mathrm{d}\mathbb{P} = \int_{B} Y_{n+1} \, \mathrm{d}\mathbb{P} \quad \text{ for } B \in \mathcal{F}_n.$$

For this purpose, let $A = \{\tau \leq n\}$, so $A \in \mathcal{F}_n$.

- On the event A we have $\tau \leq n$, so $n \wedge \tau = \tau$, so $Y_n = X_{\tau}$. Also, we have $\tau \leq n+1$, so $Y_{n+1} = X_{\tau}$ as well. All in all, on the event A we have $Y_{n+1} = Y_n$.
- On the event A^c we have $\tau > n$, so $n \wedge \tau = n$, so $Y_n = X_n$. But we also have $\tau \ge n+1$, so $n+1 \wedge \tau = n+1$ and $Y_{n+1} = X_{n+1}$ (on A^c).

Now we take $B \in \mathcal{F}_n$ and write

$$\int_{B} Y_n \, \mathrm{d}\mathbb{P} = \int_{B \cap A} Y_n \, \mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_n \, \mathrm{d}\mathbb{P}$$

In the first term $Y_n = Y_{n+1}$, since $B \cap A \subset A$. In the second term $Y_n = X_n$, since $B \setminus A \subset A^c$. Now we use that $B \setminus A \in \mathcal{F}_n$ and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ to get

$$\int_{B\setminus A} Y_n \, \mathrm{d}\mathbb{P} = \int_{B\setminus A} X_n \, \mathrm{d}\mathbb{P} = \int_{B\setminus A} X_{n+1} \, \mathrm{d}\mathbb{P}$$

We use that $X_{n+1} = Y_{n+1}$ on $B \setminus A \subset A^c$ to conclude that $\int_{B \setminus A} Y_n \, d\mathbb{P} = \int_{B \setminus A} Y_{n+1} \, d\mathbb{P}$. Putting these together, we get

$$\int_{B} Y_n \,\mathrm{d}\mathbb{P} = \int_{B \cap A} Y_n \,\mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_n \,\mathrm{d}\mathbb{P} = \int_{B \cap A} Y_{n+1} \,\mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_{n+1} \,\mathrm{d}\mathbb{P} = \int_{B} Y_{n+1} \,\mathrm{d}\mathbb{P}.$$

Solution 2 (elegant): Think of X_n as a stock price. An investor buys one stock at time 0 and sells it at time τ . So the number of stocks she holds is

$$H_n := \begin{cases} 1 & \text{if } n \le \tau \\ 0 & \text{if } n > \tau \end{cases}.$$

Since τ is a stopping time, $\{\tau \leq n\} \in \mathcal{F}_n$, so $\{H_n = 0\} = \{\tau \leq n-1\} \in \mathcal{F}_{n-1}$, meaning that H_n is predictable. H_n is also bounded, so we know that the discrete stochastic integral

$$(H \cdot X)_n := \sum_{m=1}^n H_m(X_m - X_{m-1})$$

is also a martingale. But

$$Y_n = X_0 + (H \cdot X)_n$$

and $X_0 \in \mathcal{F}_0 \subset \mathcal{F}_n$ for every n, so Y_n is also a martingale.

6.13 (homework) Let $a, b \in \mathbb{Z}$ with a < 0 < b. Let S_n be a simple symmetric random walk with $S_0 = 0$ and let τ be the first hitting time for $\{a, b\}$. Apply the optional stopping theorem to the martingale S_n to find the hitting probabilities $p_a = \mathbb{P}(S_\tau = a)$ and $p_b = \mathbb{P}(S_\tau = b)$.

Solution: We will heavily use the fact that the random walk hits the set $\{a, b\}$ almost surely, meaning that $\mathbb{P}(\tau < \infty) = 1$ and $p_a + p_b = 1$. Let's believe this for a moment.

The martingale S_n has bounded increments and the stopping time τ is almost surely finite, so the optional stopping theorem says that $\mathbb{E}S_{\tau} = \mathbb{E}S_0$. (The second sufficient condition in the theorem is satisfied.) Now $\mathbb{E}S_{\tau} = ap_a + bp_b$ and $\mathbb{E}S_0 = 0$, so p_a and p_b satisfy the following system of linear equations:

$$\begin{cases} ap_a + bp_b = 0\\ p_a + p_b = 1 \end{cases}$$

The unique solution is

$$p_a = \frac{b}{b-a}$$
$$p_b = \frac{-a}{b-a}$$

We are left to show that $\mathbb{P}(\tau < \infty) = 1$. There are many ways to do this. For example: The stopped martingale $S_{\tau \wedge n}$ is also a martingale by Exercise 12. It is also bounded by construction, so the martingale convergence theorem says that it is almost surely convergent. Since it is integer valued, it can only be convergent by being eventually constant, maning that the walk has to reach a or b.

6.14 Let $p \in (0, 1)$ be fixed, and let q = 1 - p. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} the following way:

The initial position is $X_0 = 0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point a = -10 or the point b = +30, which are *sticky*: if the frog reaches one of them, it stays there forever.

Let X_n denote the position of the frog after n steps (for n = 0, 1, 2, ...).

- a.) Show that $Y_n := \left(\frac{q}{p}\right)^{X_n}$ is a martingale (w.r.t. the natural filtration).
- b.) Show that Y_n converges almost surely to some limiting random variable Y_{∞} . What are the possible values of Y_{∞} ?
- c.) How much is $\mathbb{E}Y_{\infty}$ and why?
- d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point a = -10.
- 6.15 Let $0 \leq p \leq 1$ and q = 1 p. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = q$ and $\mathbb{P}(X_i = 1) = p$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple asymmetric random walk starting from $S_0 = 0$. (Symmetric if $p = \frac{1}{2}$.) Show that $M_n := S_n n(p q)$ is a martingale (w.r.t. the natural filtration).

For $p \neq q$, use this to find the expectation of the time when the frog of Exercise 14 gets stuck.

- 6.16 Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = \mathbb{P}(X_i = 1) = \frac{1}{2}$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple symmetric random walk starting from $S_0 = 0$.
 - a.) Show that $S_n^2 n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that -it' not any harder.
 - b.) Use this and the result of Exercise 13 to find the expectation of the stopping time when the walk first reaches either -10 or 30.
 - c.) How about the expectation of the stopping time when the walk first reaches 30?
- 6.17 Let \mathcal{F}_n be a filtration and X any random varibale with $\mathbb{E}|X| < \infty$. Let $X_n = \mathbb{E}(X|\mathcal{F}_n)$.
 - a.) Show that X_n is a martingale w.r.t. \mathcal{F}_n .
 - b.) Show that X_n converges almost surely to some limit X_{∞} .
 - c.) Give a specific example when $X_{\infty} \neq X$.
 - d.) Give a specific example when $X_{\infty} = X$.

References

 Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)