Tools of Modern Probability exam exercise sheet, 08.01.2020 (working time: 90 minutes)

- 1. Describe the asymptotic behaviour of the following sequences as $n \to \infty$:
 - a.) $A_n := \int_{-1}^1 \cos^n x \, \mathrm{d}x$ b.) $B_n := \int_{-\infty}^\infty \cos^n x \, \mathrm{d}x$

(By "describing the asymptotic behaviour" I mean: find sequences a_n and b_n given by nice simple formulas, such that $A_n \sim a_n$ and $B_n \sim b_n$.)

- 2. Let $X = [-1, 1] \times [-1, 1]$ and let μ be Lebesgue measure on X. Let $f : X \to \mathbb{R}$ be given by f(x, y) = x + y and let $\nu = f_*\mu$. Calculate $\int_{\mathbb{R}} u \, d\nu(u)$.
- 3. Let μ be a probability distribution on \mathbb{R} . Show that the function $f : \mathbb{R} \to \mathbb{C}$ defined by $f(t) := \int_{\mathbb{R}} e^{itx} d\mu(x)$ is continuous.
- 4. Consider the Hilbert space $V = L^2(X, \mu)$ where (X, \mathcal{F}, μ) is some measure space. Let $A \in \mathcal{F}$ and consider the operator $L : V \to \mathbb{R}$ given by $Lf := \int_A f \, d\mu$. Show that this operator is linear and bounded, or give a counterexample.
- 5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X : \Omega \to \mathbb{R}$ integrable and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. Show that the conditional expectation $\mathbb{E}(X | \mathcal{G})$ exists. (Show means: sketch the proof.)
- 6. Let X and Y be independent, standard Gaussian random variables. Find $\mathbb{E}(X \mid X + 2Y)$.
- 7. Let X and Y be independent random variables with *Bernoulli* $\left(\frac{2}{3}\right)$ distribution. Find $\mathbb{E}(X \mid X + 2Y)$.
- 8. Let X_n have geometric distribution with parameter $p_n = \frac{1}{n}$ and let $Y_n = \frac{X_n}{n}$. Find the weak limit of Y_n . (*Hint: find the pointwise limit of the distribution function sequence.*)