Tools of Modern Probability
 exam exercise sheet, 22.01.2020

(working time: 90 minutes)
Every exercise is worth 14 points. Every student should choose 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 70 . Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

1. Describe the asymptotic behaviour of the following sequences as $n \rightarrow \infty$:
a.) $A_{n}:=\int_{-1}^{1} \frac{e^{n x^{2}}}{e^{n x^{4}}} \mathrm{~d} x$
b.) $B_{n}:=\int_{0}^{\infty} x^{\frac{n+1}{2}} e^{-x} \mathrm{~d} x$
(By "describing the asymptotic behaviour" I mean: find sequences a_{n} and b_{n} given by nice simple formulas, such that $A_{n} \sim a_{n}$ and $B_{n} \sim b_{n}$.)
2. Let the probability measure μ have density $f(k)=\frac{c}{1+k^{2}}$ with respect to counting measure on \mathbb{Z} (where the constant c is chosen appropriately). Let the random variable X have distribution μ. Calculate $\mathbb{E}\left(X^{3}\right)$.
3. We roll a fair die 10 times. Let μ be the distribution of the product of the numbers rolled. Calculate $\int_{\mathbb{R}} x^{2} \mathrm{~d} \mu(x)$.
4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_{1}, X_{2}, \ldots be random variables. Assume that $X_{n} \rightarrow 0$ in L^{1}. Show that $X_{n} \rightarrow 0$ almost surely as well, or give a counterexample.
5. Let μ, ν be finite measures on the measurable space (X, \mathcal{F}) and let $\rho=\mu+\nu$. Show that there is a function $f \in L^{2}(X, \rho)$ such that $\int_{X} g \mathrm{~d} \nu=\int_{X} f g \mathrm{~d} \rho$ for all $g \in L^{2}(X, \rho)$, or give a counterexample.
6. Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space and let $X, Y: \Omega \rightarrow \mathbb{R}$ be \mathcal{G}-measurable. Assume that $\int_{A} X d \mathbb{P}=\int_{A} Y d \mathbb{P}$ for all $A \in \mathcal{G}$. Show that $X=Y$ almost surely.
7. Let $(X, Y) \in \mathbb{R}^{2}$ be a random point uniformly distributed on the unit disk $D:=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$. Calculate the conditional expectation $\mathbb{E}\left(X^{2}+Y^{2} \left\lvert\, \frac{Y}{X}\right.\right)$.
8. Let μ_{1}, μ_{2}, \ldots and μ be probability distributions on \mathbb{R} such that $\mu_{n} \Rightarrow \mu$. (That is, μ_{n} converges to μ weakly.) Show that there is a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and there are random variables X_{1}, X_{2}, \ldots and $X: \Omega \rightarrow \mathbb{R}$ such that X_{n} has distribution μ_{n}, X has distribution μ and $X_{n} \rightarrow X$ almost surely. (Show means: sketch the proof.)
