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1 Gaussian integrals

1.1 Find all continuous functions f : R2 → R that are rotation invariant and also of product
form. That is, there are functions g : [0,∞) → R and h : R → R such that, for every
x, y ∈ R

f(x, y) = g(
√

x2 + y2) = h(x)h(y).

(Hint: write everything as the function of the square of the radius, e.g. by defining u := x2,
v := y2 and G(z) := g(

√
z). Then you should get G(u + v) = constG(u)G(v). Now study

the logarithm of G.)

1.2 Use the integral substitution y2

2
:= a(x−m)2 to show that

∫ ∞

−∞
e−a(x−m)2 dx =

√

π

a
(1)

whenever m ∈ R and 0 < a ∈ R. We know form class that the value of the integral is
√
2π

when m = 0 and a = 1
2
.

1.3 Let f(x1, . . . , xd) = e−
x
2
1
+···+x

2
d

2 , and let V =
∫

Rd f(x) dx.

• Calculate V using that f is a product:

f(x1, . . . , xd) = e−
x
2
1
2 · e−

x
2
2
2 · · · · · e−

x
2
d

2 .

• Write V as a one-dimensional integral using polar coordinate substitution.
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• Compare the two results to get that

cd =

√
2π

d

∫∞
0
rd−1e−

r2

2 dr
.

1.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . the hard way: if n ≥ 2, then

An =

∫ π

2

0

(1− sin2 x) cosn−2 x dx = An−2 −
∫ π

2

0

[sin x]
[

sin x cosn−2 x
]

dx,

and you can use integration by parts in the second term.

1.5 Let Bd ⊂ Rd be the unit ball in Rd meaning

Bd :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x21 + · · ·+ x2d ≤ 1
}

.

(Compare the definition of the sphere – note the inequality here.) Let bd be the d-dimensional
volume of Bd. Calculate bd.

(Hint: the volume is the integral of the indicator function. Use the theorem about polar
coordinate substitution in d dimensions.)

1.6 Try to calculate bd of the previous exercise the hard way: slice the d+1-dimensional sphere
into d-dimensional ones to see that

bd+1 =

∫ 1

−1

bd
√
1− x2

d
dx.

2 Euler gamma function

2.1 For s > 0 let

Γ(s) =

∫ ∞

0

xs−1e−x dx

be the Euler gamma function. Check that Γ(s+1) = sΓ(s) for all s > 0. Check by induction
that Γ(n+ 1) = n! for all n ∈ N.

2.2 Calculate Γ
(

1
2

)

. Express Γ(s) for every half-integer s > 0 using factorials.

2.3 Fix some s, t > 0. Consider f : (0,∞)× (0,∞) → R defined by f(x, y) := xs−1e−xyt−1e−y

(for all x, y > 0). Calculate
∫

(0,∞)2
f(x, y) dx dy in two different ways:

a.) By using that f has product form,

b.) using the substitution u := x+ y, ξ := y

x+y
. (If it’s easier, you can do this in two steps:

first u := x+ y, v := y; second ξ := v/u.)

Comparing the two results, express the Beta function B(s, t) :=
∫ 1

0
(1 − ξ)s−1ξt−1 dξ using

the Euler gamma function.

2.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . using the substitution ξ := cosx and

the result of the previous exercise.
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3 Almost Gaussian integrals

3.1 Describe the asymptotic behaviour of the integral In :=
∫ 1

−1

√
1− x2

n
dx as n→ ∞.

3.2 Describe the asymptotic behaviour of the integral In :=
∫ 2

−2

√
4− x2

n
dx as n→ ∞.

3.3 Let

fn(x) =

{

cosn x if x ∈ [−π
2
, π
2
]

0 if not
.

Let gn(x) = fn(vnx), where the scaling factors vn are chosen appropriately, so that
∫

R
gn → 1

(More precisely: gn should be integrated on all of its domain.) Find the limit g(x) :=
limn→∞gn(x).

3.4 Let fn(x) =
√
4− x2

n
(for x ∈ [−2, 2]), and let gn(x) = unfn(vnx), where the scaling factors

un and vn are chosen appropriately, so that gn(0) → 1 and
∫

R
gn → 1 (More precisely: gn

should be integrated on all of its domain.) Find the limit g(x) := limn→∞gn(x).

3.5 Let a < 0 < b and let h : [a, b] → R be twice differentiable with a unique non-degenerate local
maximum at 0. Denote A := h(0) and B := −h′′(0). Let fn : [a, b] → R with fn(x) = enh(x).
Now let un > 0 and vn > 0 be two sequences of scaling factors, and define gn as

gn(x) := unfn(vnx),

for the x ∈ R where this makes sense. (This means stretching the graph of fn vertically with
a factor un and shrinking it horizontally with a factor vn.)

a.) How should we choose un to make sure that gn(0) → 0 as n→ ∞? (Of course, there are
many such sequences: if un works and ūn ∼ un, then ūn works as well. So give a simple
example.)

b.) Fix un as in the previous part. Now how should be choose vn to make sure that

∫

Dn

gn(x) dx→ 1

as n→ ∞? (Here let Dn denote the domain of gn.)

c.) With un and vn chosen as above, calculate g(x) := limn→∞ gn(x) for all x ∈ R.

4 Stirling’s approximation

4.1 Let the random vector V = (V1, . . . , Vn) ∈ Rn be uniformly distributed on the (surface of
the) (n−1)-dimensional sphere of radius

√
2nE in Rn. Let fn denote the density of the first

marginal V1 (which is itself a random variable in R, and, of course, its density depends on
n). Calculate fn(x) for every n. Find the limit f(x) := limn→∞ fn(x).

4.2 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of
“heads” is some p ∈ (0, 1)) n times independently. Let q = 1 − p. Let X be the number of
heads we see. So X is binomially distributed with parameters n and p, meaning

P(X = k) = Bin(k;n, p) :=

(

n

k

)

pkqn−k for k = 0, 1, . . . , n.

It is known that X has expectation EX = np and standard deviation DX =
√
V arX =√

npq, so let Y := X−np√
npq

be the normalized version of X (which now has expectation 0 and
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standard deviation 1). Of course, Y is still a discrete random variable, taking only values
from a grid of points which are 1√

npq
apart.

Let us fix x ∈ R, and choose k ∈ Z such that x ≈ k−np√
npq

as closely as possible, so k is

np+ x
√
npq rounded to the nearest integer. Let

fn(x) :=
P(Y = k−np√

npq
)

1√
npq

=
√
npqP(X = k)

be the logical guess for an “approximate density” of Y at x.

Calculate the limit f(x) := limn→∞ fn(x).

Hint:

Use Stirling’s approximation n! ∼ nn
√
2πn

en
, and the fact that k = np + x

√
npq + ∆, where

∆ = ∆(n, x) ∈ [−1
2
, 1
2
], so ∆ = O(1). Use this in the following forms:

k = np+ x
√
npq +∆ , n− k = nq − x

√
npq −∆ (2)

k

np
= 1 + x

√

q

np
+

∆

np
,

n− k

nq
= 1− x

√

p

nq
− ∆

nq
(3)

k

np
= 1 + o(1) ,

n− k

nq
= 1 + o(1) (4)

Notice that (2) is a bit stronger than if we only wrote k = np+ x
√
npq +O(1) and n− k =

nq − x
√
npq +O(1). This will be important, since ∆ will cancel out at some point.

At some point the calculation may become more transparent if you calculate the logarithm
of fn(x).

5 Basics of measure theory

5.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where
2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

• ∅ ∈ F
• if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

• if A1, A2, · · · ∈ F , then (∪∞
i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.

5.2 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of mea-
surable sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) < ∞, then µ(∩∞

i=1Ai) =
limi→∞ µ(Ai) (and both sides of the equation make sense).
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(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing
a counterexample for the statement when this condition does not hold.

5.3 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

5.4 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n
.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{ ∞
∑

n=1

an
3n
, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

5.5 Let V be a random vector in Rn with an n-dimensional standard Gaussian distribution,
meaning that it has density

f(v1, . . . , vn) =
1√
2π

n e
− v

2
1
+···+v

2
n

2 .

Think of V as the velocity vector of a particle with mass m, so the energy is E = m
2
V 2.

Calculate the distribution of the random variable E. (Meaning: calculate the distribution
function and/or the density, and tell the name of the distribution.)
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5.6 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

5.7 Let X = [0, 1] and let µ be Lebesgue measure on X . Let f(x) = x2. Describe the measure
f∗µ

a.) by calculating (f∗µ)([a, b]) for every interval [a, b] ⊂ R

b.) by giving the density of f∗µ with respect to Lebesgue measure.

5.8 Let X = {(a1, a2, . . . ) | ak ∈ {0, 1} for every k} be the set of {0, 1}-sequences. Let µ be the
measure on X for which

µ({(a1, a2, . . . ) ∈ X | a1 = b1, . . . , aN = bN}) =
1

2N

for every b1, . . . , bN ∈ {0, 1}. Let f : X → R be defined as

f(a1, a2, . . . ) :=
∞
∑

k=1

ak
2k
.

Describe the measure f∗µ

a.) by calculating (f∗µ)([a, b]) for every interval [a, b] ⊂ R

b.) by giving the density of f∗µ with respect to Lebesgue measure.

5.9 Let λ be Lebesgue measure and χ be counting measure on R (with the Borel σ-algebra).
Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)

5.10 Let (Ω,F ,P) be a probability space and A ∈ F . Define X : Ω → R as X(ω) = 1A(ω) and
let µ = X∗P be the distribution of X . Show that µ is absolutely continuous w.r.t counting
measure, show that it also has a density. What is the density?

5.11 Let X be a discrete random variable and let µ be its distribution. Give the density of µ
w.r.t. counting measure.

6 Convergence of sequences of functions

6.1 Consider the following measure spaces (X, µ):

I. X = [0, 1], µ is Lebesgue measure.

II. X = [0,∞), µ is Lebesgue measure.

III. X = {1, 2 . . . , N}, µ is counting measure.

IV. X = {1, 2 . . . }, µ is counting measure.

Show examples of functions f1, f2, . . . and f from X to R such that fn converges to f

a.) almost everywhere, but not in L1,

b.) in L1, but not almost everywhere,
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c.) in L1, but not in L2,

d.) in L2, but not in L1.

6.2 The characteristic function of a random variable X is the function Ψ : R → C defined as
Ψ(t) = E(eitX). Calculate the characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ
on {0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν
on {1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) The Poisson distribution with parameter λ – that is, the distribution η on {0, 1, 2 . . . }
with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) The exponential distribution with parameter λ – that is, the distribution on R with
density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

6.3 For a real values random variable X , the characteristic function of X is ψX : R → C defined
as ψX(t) := E

(

eitX
)

, where i ∈ C is the imaginary unit. Show that ψX(t) exists for every
t ∈ R.

6.4 For a probability distribution ν on R, the characteristic function of ν is ψν : R → C defined
as ψν(t) :=

∫

R
eitx dν(x), where i ∈ C is the imaginary unit. Show that ψν(t) exists for every

t ∈ R.

6.5 Let (Ω,F ,P) be a probability space, let X : Ω → R be a random variable and let ν = X∗P
be its distribution. Show that ψX = ψν , where ψX and ψµ are the characteristic functions
defined in exercises 3 and 4.

6.6 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywhere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set
of x-es with µ-measure zero.) Assume furthermore that the fn admit a common integrable
dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following:

a.) Theorem 3 (Continuity of the characteristic function, 1) For any real valued ran-
dom variable X, its characteristic function ψX(t) = E(eitX) is continuous.

b.) Theorem 4 (Continuity of the characteristic function, 2) For any probability dis-
tribution ν on R, its characteristic function ψν(t) =

∫

R
eitx dν(x) is continuous.
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c.) Theorem 5 (Differentiability of the characteristic function, 1) Let X be a real
valued random variable, its characteristic function ψX(t) = E(eitX). If X is integrable,
then ψX is differentiable.

d.) Theorem 6 (Differentiability of the characteristic function, 2) Let ν be a prob-
ability distribution on R, its characteristic function ψν(t) =

∫

R
eitx dν(x). If Eν ∈ R,

then ψν is differentiable.

e.) Theorem 7 (Continuous differentiability of the characteristic function, 1) Let
X be a real valued random variable, its characteristic function ψX(t) = E(eitX). If X is
integrable, then ψ′

X is continuous.

f.) Theorem 8 (Continuous differentiability of the characteristic function, 2) Let
ν be a probability distribution on R, its characteristic function ψν(t) =

∫

R
eitx dν(x). If

Eν ∈ R, then ψ′
ν is continuous.

6.7 Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R

and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) →
f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim

n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these
specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l
2k

≤ x < l+1
2k
,

0 otherwise.

6.8 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?

6.9 Weak convergence and densities. Prove the following

Theorem 9 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Denote their distribution functions by F1, F2, . . . and F , respectively. Suppose
that fn(x)

n→∞−→ f(x) for every x ∈ R. Then Fn(x)
n→∞−→ F (x) for every x ∈ R.

(Hint: Use the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction,
consider G(x) := 1− F (x).)
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7 Linear spaces, norm, inner product

7.1 Which of the spaces V below are linear spaces and why?

a.) V := {(x1, x2, x3) ∈ R3 | x1 + 2x2 = 0}, with the usual addition and the usual multipli-
cation by a scalar.

b.) V := {(x1, x2, x3) ∈ R3 | x1 + 2x2 = 3}, with the usual addition and the usual multipli-
cation by a scalar.

c.) V := {(x1, x2, x3) ∈ R3 | x1 ≥ 0}, with the usual addition and the usual multiplication
by a scalar.

d.) V := {f : (0, 1) → R | f is continuous and |f | ≤ 100}, with the usual addition and the
usual multiplication by a scalar.

e.) V := {f : (0, 1) → R | f is continuous and bounded}, with the usual addition and the
usual multiplication by a scalar.

7.2 On the linear spaces V and W below, which of the given transformations T : V → W are
linear and why?

a.) V = R3, W = R2, T ((x1, x2, x3)) := (x1, x2 + x3).

b.) V = R3, W = R2, T ((x1, x2, x3)) := (x1, 1 + x3).

c.) V = R
3, W = R

2, T ((x1, x2, x3)) := (x1, x2x3).

d.) V := {f : (−1, 1) → R | f differentiable}, with the usual addition and the usual multi-
plication by a scalar; W := R; T (f) := f ′(0).

7.3 On the linear spaces V below, which of the given two-variable functions B : V → R are
bilinear forms? Which ones are symmetric and positive definite? Why?

a.) V = R3, B((x1, x2, x3), (y1, y2, y3)) := x1y2 + x2y3 + x3y1

b.) V = R2, B((x1, x2), (y1, y2)) := x1x2 + y1y2

c.) V = R2, B((x1, x2), (y1, y2)) := x1y1 + x1y2 + x2y1 + x2y2

d.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
x2f(x)g(x) dx

e.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
xf(x)g(x) dx

f.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
f ′(x)g(x) dx

7.4 Let V be an inner product space. Show that the function N : V → R defined as N(x) :=
√

〈x, x〉 is indeed a norm (usually denoted as ||x|| = N(x)).

8 Riesz representation theorem

8.1 Let V be an inner product space, and let d denote the natural metric on it (defined as
d(x, y) := ||x − y||). Let x ∈ V , let D ⊂ V be convex, and assume that d(x,D) = R > 0
(where d(x,D) := inf{d(x, y) | y ∈ D} is the distance of x and D). Find a number C ∈ R

(possibly depending on R) such that if u, v ∈ D, d(x, u) ≤ R + ε and d(x, v) ≤ R + ε with
some ε < R, then d(u, v) ≤ C

√
ε. (Hint: estimate the length of the longest line segment that

fits in the shell {y ∈ V | R ≤ d(x, y) ≤ R + ε}. A two-dimensional drawing will help.)
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8.2 Let V be an inner product space, and let d denote the natural metric (defined as d(x, y) :=
||x− y||).

a.) Let a, c, x ∈ V with x 6= c. Calculate the distance of a from the line {c+ t(x− c) | t ∈ R}
using ||a− c||, ||x− c|| and 〈a− c, x− c〉.

b.) Let E ⊂ V be a linear subspace and let a ∈ V . Suppose that c ∈ E is such that
d(a, x) ≥ d(a, c) for every x ∈ E – which means that c is the point in E which is closest
to a. Prove that E is orthogonal to a− c, meaning that 〈x, a− c〉 = 0 for every x ∈ E.

8.3 Let V be an inner product space over R and let f : V → R be a linear form. Let E := {y ∈
V | f(y) = 0} be the null-space of f . Suppose that f(a) = 1, c ∈ E and a− c is orthogonal
to E, meaning (a− c)y = 0 for every y ∈ E. Now, for any x ∈ V , find the λ ∈ R for which
x1 := x− λ(a− c) ∈ E. Use this to get the relation between f(x) and (a− c)x.

8.4 Represent the following functions f : V → R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R10 with the usual inner product, f((x1, . . . , x10)) := x5 (evaluation at 5)

b.) V = R10 with the usual inner product, f((x1, . . . , x10)) := x6 − x5 (discrete derivative at
5).

c.) V = R10 with the usual inner product, f((x1, . . . , x10)) := x6− 2x5+ x4 (discrete second
derivative at 5).

d.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑100
i=1 x(i).

e.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑∞
i=1 x(i).

f.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑∞
i=1 x

2(i).

g.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
) (evaluation at 1

2
).

h.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
) (derivative at 1

2
).

i.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.

j.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is differentiable}, with the inner product

x · y :=
∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
).

k.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
).

l.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.

9 Radon-Nikodym theorem

9.1 Let (X,F) be a measurable space and let µ, ν be σ-finite measures on it. Show that there is

a countable partition X = ˙⋃
iAi such that µ(Ai) < ∞ and ν(Ai) < ∞ for every i. Use this

to show that the special case of the Radon-Nikodym theorem for finite measures implies the
general theorem (for σ-finite measures).
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9.2 Let (Ω,F ,P) be a probability space. Let X : Ω → R+ be integrable and let G ⊂ F be a
sub-σ-algebra. Define ν : G → R+ by ν(A) :=

∫

A
X dP (whenever A ∈ G). Check that ν

is a measure on (Ω,G). Show that Lebesgue measure on R is absolutely continuous w.r.t.
counting measure (on R), but it does not have a density. Why doesn’t this contradict the
Radon-Nikodym theorem?

10 Conditional expectation

10.1 Let X be a nonempty set and let Fi ⊂ 2X be a σ-algebra for every i ∈ I, where I is some
index set. I may be arbitrary (possibly much bigger that countable), but we assume I 6= ∅.
Show that F :=

⋂

i∈I Fi is also a σ-algebra. (Note that the assumption I 6= ∅ is important.)

10.2 Let (Ω,F) be a probability space and let X : Ω → R be (Borel-)measurable. Let (Gi)i∈I
be the family of all σ-algebras over Ω such that X is Gi-measurable, and let G :=

⋂

i∈I Gi.
Show that G is the smallest σ-algebra for which X is measurable. (In what sense exactly
is it the smallest?)

10.3 Let (Ω,F) be a probability space, let X : Ω → R be (F ,B)-measurable, where B is the
Borel σ-algebra on R. Let σ(X) be the smallest σ-algebra on Ω for which X is measurable.
(This exists by the previous exercise.) This is called the σ-algebra generated by X . Show
that

σ(X) = {X−1(B) |B ∈ B}.

10.4 Let (Ω,F) be a probability space, and let G1,G2 ⊂ F be sub-σ-algebras. We say that F1

and F1 are independent if any A ∈ G1 and B ∈ G2 are independent. Show that if the
random variables X and Y are independent, then σ(X) and σ(Y ) are independent.

10.5 Let (Ω,F) be a probability space, and let G1,G2 ⊂ F be sub-σ-algebras. Let X and Y be
random variables, X ∈ G1, Y ∈ G2. Show that if σ(X) and σ(Y ) are independent, then X
and Y are independent.

10.6 Show that if X is a random variable, f : R → R measurable and Y = f(X), then σ(Y ) ⊂
σ(X). Show an example when equality holds, and an example when not.

10.7 Show that if X, Y are independent random variables and f, g : R → R are measurable, then
f(X) and g(Y ) are also independent.

10.8 Show that the random variables X, Y : Ω → R are independent if and only if the (joint)
distribution of the pair (X, Y ) (which is a probability measure on R2) is the product of the
distributions of X and Y .

10.9 Show that if X and Y are independent and integrable, then E(XY ) = EXEY .

10.10 Show that if the random variable X is independent of the σ-algebra G, then E(X|G) = EX .

10.11 Let Ω = {a, b, c} and P the uniform measure on it. LetX = 1{c} and let G = {∅, {a}, {b, c},Ω}.
Calculate E(X|G).

10.12 We roll two fair dice and let X, Y be the numbers rolled. Calculate E(X|X + Y ).

10.13 Let Ω = [0, 1]2 and let P be Lebesgue measure on Ω. Let X, Y : Ω → R be defined as
X(u, v) = u and Y (u, v) =

√
u+ v. Calculate E(Y |X).

10.14 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U).
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10.15 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(U + V |U − V ).

10.16 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U − V ).

10.17 Let X and Y be independent standard Gaussian random variables. Let U = X + Y and
V = 2X − Y . Calculate E(V |U). (Hint: if W is independent of U , then E(W |U) = EW .
If you choose λ ∈ R cleverly, then W := V − λU will be independent of U . (Since U and
W are jointly Gaussian, to show independence it’s enough to check that Cov(U,W ) = 0.)
Then write V = λU +W .)
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