Tools of Modern Probability Imre Péter Tóth sample exam exercise sheet, fall 2019 (working time: 90 minutes)

- 1. Show that if X_n , X are real valued random variables and $X_n \to X$ almost surely, then $X_n \Rightarrow X$ (weakly).
- 2. Construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X : \Omega \to \mathbb{R}$ and a sequence of random variables $X_n : \Omega \to \mathbb{R}$ such that X_n has uniform distribution on the (finite) set $\{0, \frac{2}{n}, \frac{4}{n}, \dots, 2 \frac{2}{n}, 2\}$ and $X_n \to X$ almost surely.
- 3. Let E be a nonempty, closed, convex set and x a point in a Hilbert space. Show that there is an $e \in E$ such that d(x, E) = d(x, e).
- 4. Show that if the random variables Y and Z both satisfy the definition of $\mathbb{E}(X|\mathcal{G})$, then $\mathbb{P}(Y=Z)=1$.
- 5. Let $\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$ and let $\mathbb{P} = \frac{1}{36}\chi$ where χ is counting measure on Ω . Let $X : \Omega \to \mathbb{R}$ be defined as X((i, j)) = i + j. Describe the measure $X_*\mathbb{P}$.
- 6. Which of the spaces V below are linear spaces and why?
 - a.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 = 0\}$, with the usual addition and the usual multiplication by a scalar.
 - b.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 = 3\}$, with the usual addition and the usual multiplication by a scalar.
 - c.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 \ge 0\}$, with the usual addition and the usual multiplication by a scalar.
 - d.) $V := \{f : (0,1) \to \mathbb{R} \mid f \text{ is continuous and } |f| \le 100\}$, with the usual addition and the usual multiplication by a scalar.
 - e.) $V := \{f : (0,1) \to \mathbb{R} \mid f \text{ is continuous and bounded}\}$, with the usual addition and the usual multiplication by a scalar.
- 7. Let (X, \mathcal{F}) be a measurable space and let μ, ν be σ -finite measures on it. Show that there is a countable partition $X = \bigcup_i A_i$ such that $\mu(A_i) < \infty$ and $\nu(A_i) < \infty$ for every *i*. Use this to show that the special case of the Radon-Nikodym theorem for finite measures implies the general theorem (for σ -finite measures).
- 8. Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate $\mathbb{E}(\sqrt{U+V}|U)$.