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Chapter 1

Introduction

Considerable attention has been payed to the case when all the probabilities

in the construction of the Mandelbrot percolation (see the Mandelbrot per-

colation section) are identical. However, in this thesis we focus on the much

more difficult case when the probabilities are not identical. We concentrate

on the orthogonal projection of the three-dimensional Mandelbrot percola-

tion to the line {te | t ∈ R}, where e = (1, 1, 1). The methods we use prove

statements about the projection are very similar to the ones in [4] and [6],

although in these articles the authors consider the sum of two independent

one-dimensional Mandelbrot percolations. The problem in our case is easier

since we have less dependence in our construction. The main difficulty was

to find the way how we could use similar arguments in the three- instead of

two-dimensional case. Our main example throughout this thesis is the ran-

dom Menger sponge (defined in the section Menger sponge). The structure

of the thesis is as follows.

Later in this chapter (chapter 1) we define the Mandelbrot percolation
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CHAPTER 1. INTRODUCTION

fractal, the Menger sponge and the random Menger sponge.

In the second chapter we define conditions, and prove that under these

conditions the projection of the Mandelbrot percolation contains an interval

almost surely, following the lines of [4]. Later we prove that in the case of

the random Menger sponge the conditions are also necessary.

In chapter 3 we define conditions under which the projection of the Man-

delbrot percolation has positive Lebesgue measure almost surely analogously

to [6].

In the last – Conclusion chapter we summarize the results and show

an interesting consequence regarding the attractor of a random self-similar

iterated function system on the line.

1.1 Mandelbrot percolation

1.1.1 The intuition

For the d-dimensional Mandelbrot percolation we choose an integer M. Then

we take the d-dimensional unit square, and divide it to Md congruent sub-

squares, for each subsquares we choose a probability, which remains the same

until the end of the process and keep each square with the assigned prob-

ability. For the retained squares we repeat the same process, and so on, if

we do this infinitely many times we get the so-called Mandelbrot percolation

fractal.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The partition in the case of the two-dimensional Mandelbrot

percolation.

1.1.2 Construction of the Mandelbrot percolation frac-

tal

The following construction is from [3]. Let I := [0, 1]d denote the unit

square. For given M ≥ 2 integer and pi1,...,id ∈ [0, 1] for (i1, . . . , id) ∈

{0, 1, . . . ,M − 1}d probabilities the Mandelbrot percolation set in the d-

dimensional Euclidean-space is constructed in the following way: Let Tn :=

{(i1n , . . . , idn) | i1n , . . . , idn ∈ {0, 1, . . . ,M − 1}n} denote the d-lets of se-

quences of length n from {0, 1, . . . ,M − 1} indexing the level n sub-squares

of I, the empty sequence is denoted by ∅, as follows T0 = (∅, . . . , ∅). Denote

the first level sub-squares of I of side length
1

M
with Ii1,...,id :

Ii1,...,id :=

[
i1
M
,
i1 + 1

M

]
×

[
i2
M
,
i2 + 1

M

]
× · · · ×

[
id
M
,
id + 1

M

]
(1.1)
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CHAPTER 1. INTRODUCTION

This is a partition of the unit square into Md congruent squares :

I =
M−1⋃

i1,...,id=0

Ii1,...,id .

We can define the level n squares similarly: if (i1n ,. . . , idn) ∈ Tn then

Ii1n ,...,idn =

[
n∑
k=1

i1k ·
1

Mk
,

n∑
k=1

i1k ·
1

Mk
+

1

Mn

]
× . . .

×

[
n∑
k=1

idk ·
1

Mk
,

n∑
k=1

idk ·
1

Mk
+

1

Mn

]
. (1.2)

Now we have the base for the fractal percolation set. The next step is to

define the survival set En consisting the indices of the retained level n squares.

Definition 1.1. E0 = T0 = (∅, . . . , ∅) and inductively if we have En−1

and (i1n−1
, . . . , idn−1

) /∈ En−1 then for all (j1, . . . , jd) ∈ {0, 1, . . . ,M −

1}d (i11 . . . i1n−1j1, . . . , id1 , . . . , idn−1 , jd) /∈ En, if (i1n−1
, . . . , idn−1

) ∈ En−1 then

(i11 . . . i1n−1j1, . . . , id1 . . . idn−1jd) ∈ En with probability pj1,...,jd.

We can also think about Tn as an Md-ary tree with height n and nodes

(i1k , . . . , idk). An (i1k , . . . , idk) node has Md children: (i1kj1, . . . , idkjd),

j1, . . . , jd ∈ {0, . . . ,M − 1}. For p = (p0,...,0, . . . , pM−1,...,M−1) we can in-

troduce a probability measure Pp on the space of labeled trees. For each

node (i11 . . . i1n , . . . , id1 . . . idn) we give a random label Xi11 ...i1n ,...,id1 ...idn
this

will be 0 or 1. It is required that

1. Xi11 ...i1n ,...,id1 ...idn
are independent Bernoulli random variables;

2. P(X∅) = 1;

3. Pp(Xi11 ...i1n ,...,id1 ...idn
) = pi1n ,...,idn .
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CHAPTER 1. INTRODUCTION

Figure 1.2: The zeroth, first, second and third level approximation of the

Menger sponge.

Thus

En = {i11 . . . i1n , . . . , id1 . . . idn : Xi11 ,...,id1
= Xi11 i12 ,...,id1 id2

= . . .

= Xi11 ...i1n ,...,id1 ...idn
= 1}.

Now the nth level approximation of Λ is Λn, defined by the survival set En:

Λn =
⋃

(i1n ,...,idn )∈En

Ii1n ,idn and from that Λ =
∞⋂
n=1

Λn. (1.3)

The above defined Λ is random variable i.e. Λ: Ω→ {the Cantor sets of Id},

where Ω is an infinite randomly labeled tree, defined above.

Definition 1.2. We say that the Mandelbrot percolation is homogeneous if all

the probabilities are the same i.e. pi1,...,id = p for all i1, . . . , id ∈ {0, . . . ,M−1}

for some p ∈ [0, 1]. Otherwise we say that it is inhomogeneous.
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CHAPTER 1. INTRODUCTION

1.2 Menger sponge

Definition 1.3 (Menger sponge). The Menger sponge is the attractor of the

following iterated function system:

S =

{
Si,j,k(x) =

1

3
(x+ (i, j, k))

}
(i,j,k)∈J

,

where

J = {0, 1, 2}3 \ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1)}.

(1.4)

Definition 1.4. The (homogeneous) random Menger sponge is a three-dimensional

Mandelbrot percolation, with probabilities pi,j,k = p for (i, j, k) ∈ J and

pi,j,k = 0 for (i, j, k) /∈ J for some p ∈ [0, 1].

We denote the random Menger sponge with Mp.

7



Chapter 2

Interval in the projection

2.1 Theorem and Proof

Let I = [0, 1]3 and Iln,mn,jn
as in (1.2) Let M = 3 and Λ = ΛM

p is the

three dimensional Mandelbrot percolation with vector of probabilities p =

{p0,0,0, . . . , p2,2,2} ∈ [0, 1]27, and let Λn denote the nth level approximation of

Λ as in (1.3). Let Sl,m,j : R3 → R3 for (l,m, j) ∈ {0, 1, 2}3 defined as:

Sl,m,j(x, y, z) =
1

3
[(x, y, z) + (l,m, j)]. (2.1)

And let

Sln,mn,jn
(x) = Sln,mn,jn ◦ · · · ◦ Sl1,m1,j1(x).

Hence Il,m,j = Sl,m,j(I) and similarly Iln,mn,jn
= Sln,mn,jn

(I). Let

γk =
∑

l+m+n≡k (mod 3)

pl,m,n for k ∈ {0, 1, 2}. (2.2)

Now we define shape A, B and C, later called level 0 shapes. Shape A is the

tetrahedron defined by (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), B is the tetrahedron
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CHAPTER 2. INTERVAL IN THE PROJECTION

Figure 2.1: Shape A, B and C.

defined by (1, 1, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1) and C is [0, 1]3 \ (A∪B). Define

Ci = {(x, y, z) : x+ y + z ∈ [i, i+ 1]}, for i = 0, 1, 2 and

Cin = Ci1,...,in =

{
(x, y, z) : x+ y + z ∈

[
n∑
k=0

ik ·
1

Mk
,

n∑
k=0

ik ·
1

Mk
+

1

Mn

]}

which we call a level n−1 column, note that A = [0, 1]3∩C0, B = [0, 1]3∩C2,

C = [0, 1]3 ∩ C1. We define the shapes of subcubes of I, indexed as the

subcubes, called level n shapes:

Aln,mn,jn
:= Sln,mn,jn

(A)

Cln,mn,jn
:= Sln,mn,jn

(C)

Bln,mn,jn
:= Sln,mn,jn

(B)
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CHAPTER 2. INTERVAL IN THE PROJECTION

Let ZU,V (k) denote the number of level 1 V shapes in a level 0 U shape in

the level 1 column k:

ZU,V (k) = #{(l,m, n) ∈ E1 : Vl,m,n ⊂ Ci,k,

where i = 0 if U = A, i = 1 if U = C, i = 2 if U = B}.

Note that En was defined in Definition 1.1, it denotes the indices of the

retained level n cubes. Similarly ZU,V (kn) is the number of level n (retained)

V shape in Ci,kn , i = 0 if U = A, i = 1 if U = C, i = 2 if U = B. Denote

ZV (k) =
∑

U∈{A,B,C}

ZU,V (k), (2.3)

and similarly ZV (kn) =
∑

U∈{A,B,C} Z
U,V (kn) For k ∈ {0, 1, 2} let M(k)

denote the expectation matrices, namely:

M(k) =


E(ZA,A(k)) E(ZA,B(k)) E(ZA,C(k))

E(ZB,A(k)) E(ZB,B(k)) E(ZB,C(k))

E(ZC,A(k)) E(ZC,B(k)) E(ZC,C(k))


and for kn ∈ {0, 1, 2}n

M(kn) =


E(ZA,A(kn)) E(ZA,B(kn)) E(ZA,C(kn))

E(ZB,A(kn)) E(ZB,B(kn)) E(ZB,C(kn))

E(ZC,A(kn)) E(ZC,B(kn)) E(ZC,C(kn))

 .
Lemma 2.1. For any kn ∈ {0, 1, 2}n, kn = (k1, . . . , kn): M(kn) = M(k1) . . .M(kn)

Proof. First we prove it for k2 = (k1, k2). By the construction if Wl1,m1,n1 ⊂

Ci,k1 , then Vl1l2,m1m2,n1n2 ⊂ Ci,k1,k2∩Wl1,m1,n1 if and only if Vl2,m2,n2 ⊂ Cj,k2 , j =

0 if W = A,j = 1 if W = C,j = 2 if W = B, for any i, j, l1, l2,m1,m2, n1, n2 ∈
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{0, 1, 2}, V,W ∈ {A,B,C}. Fix U, V ∈ {A,B,C} and let i = 0 if U = A,i =

1 if U = C,i = 2 if U = B.

E(ZU,V (k1k2))

= E(
∑
W

∈{A,B,C}

∑
Wl1,m1,n1
⊂Ci,k1

1[(l1,m1, n1) ∈ E1]
∑

Vl2,m2,n2
⊂Ci,k1k2

Vl2,m2,n2
⊂Wl1,m1,n1

1[(l2,m2, n2) ∈ E2])

=
∑
W

∈{A,B,C}

∑
Wl1,m1,n1
⊂Ci,k1

P((l1,m1, n1) ∈ E1)
∑

Vl2,m2,n2
⊂Ci,k1k2

Vl2,m2,n2
⊂Wl1,m1,n1

P((l2,m2, n2) ∈ E2|(l1,m1, n1) ∈ E1)

=
∑
W

∈{A,B,C}

∑
Wl1,m1,n1
⊂Ci,k1

pl1,m1,n1

∑
Vl2,m2,n2

⊂Ci,k1k2
Vl2,m2,n2

⊂Wl1,m1,n1

pl2,m2,n2

=
∑
W

∈{A,B,C}

∑
Wl1,m1,n1
⊂Ci,k1

pl1,m1,n1E(ZW,V (k2))

=
∑

W∈{A,B,C}

E(ZU,W (k1))E(ZW,V (k2))

This proves that M(k1k2) = M(k1)M(k2). Now assume that for s − 1:

M(ks−1) = M(k1) . . .M(ks−1), then by a similar argument to the above:

E(ZU,V (ks)) =
∑

W∈{A,B,C}

ZU,W (ks−1)ZW,V (ks)

Which shows, that M(ks) = M(ks−1)M(ks), which by the induction hypoth-

esis equals M(k1) . . .M(ks).

In the case of the three dimensional inhomogeneous Mandelbrot percola-

tion with M=3, the level one expectation matrices are the following:

M(0) =


u0 0 0

u6 u4 u5

u3 u1 u2

 ,M(1) =


u1 0 u0

0 u5 u6

u4 u2 u3

 ,M(2) =


u2 u0 u1

0 u6 0

u4 u3 u4

 .
(2.4)
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Where

ui =
∑

k+l+m=i

pk,l,m.

For example u0 = p0,0,0 and u5 = p1,2,2 + p2,1,2 + p2,2,1. Hence the column

sums of the matrices are equal to γi for some i, the column sums of M(0)

are γ0, γ1, γ2 respectively, the column sums of M(1) are γ1, γ2, γ0 and lastly,

the column sums of M(2) are γ2, γ0, γ1. Let

γ := min{γ0, γ1, γ2}.

Condition 1. γ > 1.

Remark. Under Condition 1 the Hausdorff dimension of Λ is greater than

1 almost surely conditioned on non extinction, because it is proved in [5] that

under non extinction a.s.

dimH(Λ) =
log(

∑
(i,j,k)∈{0,1,2}3 pi,j,k)

log(3)
=

log(γ0 + γ1 + γ2)

log(3)
>

log(3)

log(3)
= 1.

Condition 2. There exists a k ∈ {0, 1, 2} such that at least one of the rows

of M(k) is strictly positive.

Let proj denote the orthogonal projection to the line {te | t ∈ R}, where

e = (1, 1, 1).

Theorem 2.2. Assume that Conditions 1, 2 hold. Then the orthogonal

proj(Λ) contains an interval almost surely conditioned on Λ being non empty.

The intuitive meaning of these conditions are the following: we will later

define a process that starts from a triplet of different shapes, and we count

the shape triplets in every column in every level coming from the first triplet.

Condition 2 guarantees that we can start the process with positive probability
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(we can find a column in which we keep at least one of each shape with

positive probability) and Condition 1 guarantees that the process does not die

out with positive probability. The main steps of the proof are the following:

• First we show that we can find a level 1 column where with positive

probability all types of shapes are retained, this means that we can

start the process.

• Then we will show that starting from this column with positive proba-

bility in every level in every subcolumn of the column we find at least

one of all the shapes A, B and C. This means that with positive prob-

ability the projection of the cube contains an interval.

• After that, using statistical self-similarity, and that all the level n cubes

are conditionally independent and that we retain exponential number

of level n cubes conditioned on non-extinction (because the dimension

of the set is larger than 1), we will show that the projection contains

an interval a.s. conditioned on Λ being non empty.

Lemma 2.3. Assume that Condition 2 holds. Then there exist i, j ∈ {0, 1, 2}

such that Ci,j ∩Λ1 contains at least one from each of the level one shapes A,B

and C with positive probability.

Proof. From Condition 2 we know that there exists a j and an i such that

eTi M(j) > 0. Let XU := #{(k, l,m) ∈ E1 : Uk,l,m ⊂ Ci,j} for U ∈ {A,B,C},

that is XU counts the retained U shapes in C〉,|. P(XA > 0 and XB >

0 and XC > 0) > 0 if and only if E(XA ·XB ·XC) > 0. The random variables

XA, XB and XC are independent, because they are counting shapes in the

13
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Figure 2.2: The shapes of C1,1 in case of p = 1 from different angles.(Purple,

yellow an green denotes shape A, B and C respectively.)

same column, all the shapes are coming from different level one cubes, which

are independent, hence

E(XA ·XB ·XC) = E(XA) · E(XB) · E(XC)

= eTi M(j)e1 · eTi M(j)e2 · eTi M(j)e3 > 0.

The last inequality follows from the fast that eTi M(j) > 0.

Denote

p0 := P(XA > 0 and XB > 0 and XC > 0) > 0. (2.5)

Fact 2.4. For the non negative m×m matrices A and B

min
i
eT (A ·B)ei ≥ min

i
eT (A)ei ·min

i
eT (B)ei

where e = (1, . . . , 1) ∈ Rm, and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm with a 1 at

the ith position.

It follows from the Fact above, that the column sums of M(kn) are greater

or equal to γn, as the column sums of M(k) k ∈ {0, 1, 2} are greater or equal

than γ.

14
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Lemma 2.5. Assume that Condition 1 holds. Then for any n :

P(ZA(kn) ≥ γn and ZB(kn) ≥ γn and ZC(kn) ≥ γn, ∀kn ∈ {0, 1, 2}n) > 0

Proof. This proof is an adaptation of that of Dekking and Simon [4]. We

would like to count the number of level n A and B and C shapes in columns

C0,kn
, C1,kn

, C2,kn
together that are retained with positive probability. To do

this we consider the deterministic case, when p̂i,j,k = 0 if pi,j,k = 0 and

1 otherwise. Let M̂(k) denote the expectation matrix with respect to the

probability vector p̂. Then the column sums of M̂(kn) counts the shapes in

∪i∈{0,1,2}Ci,kn that we keep with positive probability.

eTM̂(kn) ≥ eTM(kn) ≥ γn · eT

Hence for one kn the probability is positive. The events for different kns are

not independent, but they are not mutually exclusive, hence their intersection

also has positive probability.

Without loss of generality we may assume that in Lemma 2.3, i = j = 1.

Let

N(kn) = min
U∈{A,B,C}

{ZU(11kn)}

, and An be the event that this minimum grows exponentially in n for all kn,

namely

An = {N(kn) ≥ ηn, ∀kn ∈ {0, 1, 2}n}

where 1 < η < min{2, γ}. By Lemma 2.5 and Lemma 2.3, P(An) > 0 for all

n.

First we prove that

P(An holds for all n ≥ r) ≥ P(Ar)
∞∏

k=r+1

(1− 3k+2δη
k

) for some 0 < δ < 1.

15
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And from that P(N(kn) > 0, ∀kn ∈ {0, 1, 2}n, ∀n) > 0 follows, with the

right choice of r.

From the Azuma-Hoeffding inequality it follows that for independent

ZU
1 (k), . . . , ZU

m(k); ZU
1 (k) ∼ ZU(k):

P(ZU
1 (k) + · · ·+ ZU

m(k) ≤ mη) ≤ δm for some 0 < δ < 1. (2.6)

We will use this large deviation bound to give an upper bound on P(An+1|An),

where An+1 is the complement of the event An+1, as usual. For this we would

like to have a similar situation as in (2.6). We start with a given level n+1

column C1,1,kn
, and then we will use the union bound multiple times to be

able to use (2.6) and later to upper bound P(An+1|An) we again use the union

bound.

P(∃k s.t. N(knk) < ηn+1 | N(kn) ≥ ηn)

= P(N(kn0) < ηn+1 or N(kn0) < ηn+1 or N(kn0) < ηn+1 | N(kn) ≥ ηn)

≤
2∑

k=0

P(N(knk) < ηn+1 | N(kn) ≥ ηn)

P(N(knk) < ηn+1 | N(kn) ≥ ηn)

= P(ZA(11knk) < ηn+1 or ZB(11knk) < ηn+1 or ZC(11knk) < ηn+1 | N(kn) ≥ ηn)

≤
∑

U∈{A,B,C}

P(ZU(11knk) ≤ ηn+1 | N(kn) ≥ ηn).

For the next step we show that we can use large deviation theory. As ZU(knk)

is the number of U shapes in C(11knk) and we conditioned the event on

N(kn) ≥ ηn, we know that:

16
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• In C(kn) we have at least ηn of every shape, i.e. we have at least ηn

ABC triplets.

• Coming from A, B and C together the expected number of retained

shapes of a given shape in the next level is greater than η for all shapes.

• In the ABC triplets the number of retained U shapes in a column k has

the same distribution as ZU(k), and what happens in different shapes

and triplets are independent for a given k.

Thus for any U ∈ {A,B,C} using (2.6):

P(ZU(11knk) ≤ ηn+1 | N(kn) ≥ ηn) ≤ P(ZU
1 (k) + · · ·+ ZU

ηn(k) ≤ ηηn) ≤ δη
n

.

Hence

P(∃k s.t. N(knk) ≤ ηn+1 | N(kn) ≥ ηn)

≤
∑
U

∑
k

P(ZU(11knk) < ηn+1 | N(kn) ≥ ηn) ≤ 32δη
n

.

hence

P(An+1 | An) = P
( ⋃

kn
∈{0,1,2}n

{∃k s.t. N(knk) ≤ ηn+1} |
⋂
kn

∈{0,1,2}n

{N(kn) ≥ ηn}
)

And because #{0, 1, 2}n = 3n, using the union bound:

P(An+1 | An) ≤ 3n+2δη
n

,

therefore

P(An+1 | An) ≥ (1− 3n+2δη
n

)

17
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and

P(Ar ∩ · · · ∩ An) ≥ P(Ar)
n∏
i=r

(1− 3n+2δη
n

).

As P(Ar) > 0 ∀r, we can choose r in a way, that
∏n

i=r(1− 3i+2δη
i
) > 0.

This means that with positive probability the projection of I∩Λ contains

an interval, denote this probability with θ. Thus for a level n cube Iln,mn,jn
the

probability that Iln,mn,jn
∩ Λ contains an interval conditioned on Iln,mn,jn

⊂

Λn is θ, because the percolation starting from Iln,mn,jn
(conditioned on the

event that the cube is retained) has the same distribution as the original

Mandelbrot percolation. Using the fact that the number of level n cubes #En
tends to infinity as n tends to infinity conditioned on Λ being non empty, and

that the processes runs independently in every level-n retained cube, we can

conclude that the projection of Λ contains an interval a.s. conditioned on

Λ being non empty, because the projection contains no interval if and only

if for every retained level n cube the projection of the intersection with Λ

contains no interval.Let Int(A) denote the interior of the set A, then by the

above reasoning:

P(Int(proj(Λ)) = ∅ | Λ 6= ∅) ≤ P(#En < N | Λ 6= ∅) + (1− θ)N ,

then let n→∞ and N →∞ gives the desired result.

2.2 The existence of intervals in the projec-

tion of Mp

In this subsection first we verify that for p > 1
6

the projection proj of the

random Menger sponge Mp contains an interval. Then we prove that for

18
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p < 1
6

the projection proj of the random Menger sponge does not contain

any intervals.

For the random Menger sponge Mp (see Definition 1.4) the expectation

matrices (for the general case see (2.4)) are the following:

M(0) =


p 0 0

p 3p 3p

6p 3p 3p

 ,M(1) =


3p 0 p

0 3p p

3p 3p 6p

 ,M(2) =


3p p 3p

0 p 0

3p 6p 3p

 .
(2.7)

First we prove that for p > 1
6

Int(proj(Mp)) is not empty almost surely

conditioned on non-extinction. As for i ∈ {0, 1, 2} γi denotes the column

sums of the expectation matrices, we can see that γ0 = 8p and γ1 = γ2 = 6p.

For p > 1/6 Condition 1 holds, because in that case γ = mini∈{0,1,2} γi > 1,

and Condition 2 also holds, because for example the third row of M(1) is

strictly positive, hence for p > 1/6 the projection of the random Menger

sponge contains an interval almost surely conditioned on non-extinction.

Now assume p < 1
6
, we will prove that the projection does not contain an

interval almost surely following the ideas of [4]. The eigenvalues of M(0) are

λ1(M(0)) = 0, λ2(M(0)) = p, λ3(M(0)) = 6p. M(0) and M(2) are similar

matrices, hence they have the same eigenvalues. p < 1
6
, hence the spectral

radius of M(0) (and also M(2)) is smaller than 1, which means that the powers

of M(0) and M(2) tends to 0. Hence for any matrix norm (therefore specially

for the 1-norm) limn→∞ ||M(0)|| = limn→∞ ||M(2)|| = 0. Thus, for any n,

for any (k1, . . . , kn) ∈ {0, 1, 2}n, by Lemma 2.1 and the submultiplicativity
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of the 1-norm:

lim
j→∞
||M(k1 . . . kn 000 . . . 0︸ ︷︷ ︸

j times

)||1 = lim
j→∞
||M(k1 . . . kn)M(000 . . . 0︸ ︷︷ ︸

j times

)||1 ≤

lim
j→∞
||M(k1 . . . kn)||1 ||M(000 . . . 0︸ ︷︷ ︸

j times

)||1 = ||M(k1 . . . kn)||1︸ ︷︷ ︸
<∞

lim
j→∞
||M(000 . . . 0︸ ︷︷ ︸

j times

)||1

= 0.

For any interval J ⊂ {te | t ∈ R} ∩ [0, 1]3 we can find an n and k1, . . . , kn

such that J ⊂ proj(C(k1, . . . , kn)). We will show that for this C(k1, . . . , kn):

∞⋂
m=0

proj(C(k1, . . . , kn, 0, . . . , 0︸ ︷︷ ︸
m times

))

is not contained in the projection almost surely. That is let Zm denote the

number of retained shapes in C(k1, . . . , kn, 0, . . . , 0︸ ︷︷ ︸
m times

), then Zm is the sum of

the number of shapes A, B and C in C(k1, . . . , kn, 0, . . . , 0︸ ︷︷ ︸
m times

). The expected

number of these are the column sums of M(k1 . . . kn 000 . . . 0︸ ︷︷ ︸
m times

) respectively

(the first column sum is the expected number of shapes A, and so on), hence

the expectation of the sum of shapes which is the sum of the expectation of

the shapes, is smaller than 3 times the maximum number of shapes, i.e. the

1 norm of M(k1 . . . kn 000 . . . 0︸ ︷︷ ︸
m times

):

E(Zm) ≤ 3||M(k1 . . . kn 000 . . . 0︸ ︷︷ ︸
m times

)||1

and by Markov’s inequality

P(Zm ≥ 1) ≤ E(Zm)→ 0 as m→∞.
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CHAPTER 2. INTERVAL IN THE PROJECTION

Figure 2.3: The parameter intervals for p in the case of the random Menger

sponge.

Hence for one given interval the probability that this interval is contained in

the projection is 0. To prove that this hold simultaneously for all the intervals

of {te|t ∈ R} ∩ [0, 1]3, observe that for any J interval of {te|t ∈ R} ∩ [0, 1]3

we can find a sub-interval Ja,b with rational endpoints a and b such that

Ja,b ⊂ J , hence if the projection contains J than it also contains Ja,b. Since

there are only countably many rational numbers we can use the union bound

to prove the statement.

P(∃ an interval J ⊂ proj(Λ))

≤ P
( ⋃
a,b∈proj(I)
a,b∈Q
a<b

Ja,b ⊂ proj(Λ)

)
≤
∑
b

∑
a

P(Ja,b ⊂ proj(Λ)) = 0.

We know that the three-dimensional homogeneous Mandelbrot percola-

tion contains an interval a.s. conditioned on non extinction in the case when

it’s Hausdorff dimension is greater one. We can see that this is not the case

here because conditioned on non extinction the random Menger sponge has

Hausdorff dimension dimH(Mp) = log(20p)
log(3)

with probability 1, which is greater

than 1 iff p > 3
20

= 9
60
< 10

60
= 1

6
. In Figure 2.3 one can see our knowledge
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CHAPTER 2. INTERVAL IN THE PROJECTION

of the projection with different choice of the values of p at this point. When

p > 1
6
, we are in the red interval, the projection contains an interval a.s.

conditioned on non extinction. Whenever p < 1
6

a.s. the projection does not

contain an interval, at the purple interval we don’t know more, but in the

green interval, when p < 3
20

, we know that a.s. the projection of the Menger

sponge has zero Lebesgue measure, since dimH(Mp) ≥ dimH(proj(Mp)),

hence the Hausdorff dimension of the projection is less than one, meaning

it’s Lebesgue measure is 0. In the next chapters we turn our attention to the

purple interval in Figure 2.3.
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Chapter 3

The Lebesgue measure of the

projection

In this chapter we will give a condition under which the projection of the

three-dimensional Mandelbrot percolation has positive Lebesgue measure al-

most surely conditioned on non extinction. The proof in this chapter follows

the lines of [6], although we can not use the results of the article, because the

argument is concentrated on the sum of two independent one-dimensional

Mandelbrot percolations, but the proof can almost entirely be used in our

case too. At some points we simplified the arguments since our situation is

somewhat less complicated because of the lack of dependence, but the main

ideas remained the same. In this chapter we will use the same notations

as we did in the previous chapters.The main idea of the proof is to use the

theory of Branching processes in random environments (in short, B.P.R.E.),

hence we start with a brief overview of the relevant parts.
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CHAPTER 3. THE LEBESGUE MEASURE OF THE PROJECTION

3.1 Branching processes in random environ-

ment

In this section we briefly summarize the relevant parts of [1]. Assume that

θt is a discrete time stochastic process on some probability space where the

set of elementary event is Θ, this will be the environmental process. For

each θ ∈ Θ there is an associated probability generating function: ϕθ(s) =∑∞
j pj(θ)s

j. For the realizations of θ = (θ0, θ1, . . . ) a branching process

Zn evolves, namely: let Z0 = 1, and Z1 =
∑Z0

i=1X1,i, where the random

variables X1,i are independent and distributed according to the p.g.f. ϕθ0 ,

similarly: Z2 =
∑Z1

i=1X2,i, where the random variables X2,i are independent

and distributed according to ϕθ1 , and so on. We denote the probability and

expectation corresponding to this branching process by Prob and E . Assume

that {θi(ω)}i=1,2,... is a stationary and ergodic process. Let B denote the event

of extinction and we define the extinction probabilities q, q(θ) as follows:

B := {ω : Zn(ω) = 0 for some n}

q := Prob(B)

q(θ) := Prob(B|σ(θ0, θ1, . . . )).

Further let a− = −min(a, 0) and a+ = max(a, 0). Then

Theorem 3.1 (Theorem 3 from [1]). If

E [− log(1− ϕθ0(0))] <∞ (3.1)

and

E [log(ϕ′θ0(1))]− < E [log(ϕ′θ0(1))]+ ≤ ∞. (3.2)
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Then

Prob(q(θ) < 1) = 1.

3.2 Conditions, theorem and proof

Condition 3. Γ = γ0γ1γ2 > 1 (for the definition of γi see (2.2))

Remark. Assume that Condition 3 holds, then for

D := {(i, j, k) ∈ {0, 1, 2}3 : pi,j,k > 0}

we have #D ≥ 3. Otherwise, it follows from (2.2) that at least one of γ0, γ1,

γ2 has to be 0. Observe that∑
(i,j,k)∈D

pi,j,k ≥ #D #D

√ ∏
(i,j,k)∈D

pi,j,k > 3.

Namely, the first inequality follows from the inequality of arithmetic and

geometric means and the second one follows Condition 3. Thus the a.s.

value of the Hausdorff dimension under non-extinction:

dimH Λ =
log(

∑
(i,j,k)∈D pi,j,k)

log(3)
>

log(3)

log(3)
= 1.

Condition 4. For all i ∈ {0, 1, 2} the expectation matrix M(i) has a

positive row.

The geometric meaning of Condition 4 is that for every first level column

C.,k1 we can find a 0-level shape U (in other words a zero level column Ci)

such that with positive probability at the next level we retain all three kind

of shapes in Ci,k1 coming from U .
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Theorem 3.2. Assume that Conditions 3, 4 holds, than the projection of

the three-dimensional Mandelbrot percolation, proj(Λ), has positive Lebesgue

measure almost surely conditioned on non-extinction.

Proposition 3.3. If Conditions 3,4 hold than there exist a Borel set K ⊂

[0,
√

3] of positive measure such that for Lebesgue almost all x ∈ K we have

P(x ∈ proj(Λ)) > 0.

First we verify Theorem 3.2 assuming Proposition 3.3. Namely, first

we show that the projection has positive Lebesgue measure with positive

probability if Proposition 3.3 holds, then using statistical self-similarity as in

the proof of Theorem 2.2 we will show that the positive measure property is

a 0-1 property, which completes the proof.

Proof of Theorem 3.2 assuming Proposition 3.3. First we will prove that with

positive probability the Lebesgue measure of Λ is greater than 0. E(L(proj(Λ)))

≥ 0 hence E(L(proj(Λ))) > 0 if and only if P(L(proj(Λ)) > 0) > 0. Hence

it is enough to prove that E(L(proj(Λ))) > 0.

E(L(proj(Λ))) =

∫
Ω

L(proj(Λ(ω))) dP(ω)

=

∫
Ω

∫
[0,
√

3]

1[x ∈ proj(Λ(ω))] dx dP(ω) ≥
∫

Ω

∫
K

1[x ∈ proj(Λ(ω))] dx dP(ω)

=

∫
K

∫
Ω

1[x ∈ proj(Λ(ω))] dP(ω) dx =

∫
K

P(x ∈ proj(Λ))dx > 0

Now we will prove that P(L(proj(Λ)) > 0) = 1 under non extinction. Let

ε := P(L(proj(Λ)) > 0) > 0. For (im, jm, km) ∈ Em, the Mandelbrot percola-

tions starting from Iim,jm,km are realizations of independent copies of the origi-

nal Mandelbrot percolation Λ, hence P(L(proj(Λ)) = 0 | En ≥ N) ≤ (1−ε)N .
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Also we know that under non extinction, if the Hausdorff dimension is

greater than 1, the number of retained squares grows exponentially, hence

P(En < N)→ 0 as n→∞ for any N.

P(L(proj(Λ)) = 0|Λ 6= ∅) = P(L(proj(Λ)) = 0|En ≥ N)P(En ≥ N)

+ P(L(proj(Λ)) = 0|En < N)P(En < N) ≤ (1− ε)N + P(En < N).

The second part tends to 0 as n→∞ as we argued above, and ε > 0 hence

(1 − ε)N also tends to 0 as N → ∞. Thus indeed P(L(proj(Λ)) = 0|Λ 6=

∅) = 0.

Proof of Proposition 3.3. We can use Lemma 2.3, because Condition 4 im-

plies Condition 2. Hence there is an i, j ∈ {0, 1, 2} such that with positive

p0 probability Ci,j contains a level-1 A, B and C shape, and let E denote this

event: E := {∃ a level-1 A,B,C ⊂ Ci,j ∩ Λ1}. Without loss of generality we

may assume that Ci,j = C1,1. Let

K = proj(C1,1) =

[
4
√

3

9
,
5
√

3

9

]
,

and U ∼ Uniform(K), and Prob be the distribution of U and E be the

corresponding expectation. Then U has a triadic expansion:

U =
4
√

3

9
+

√
3

9

(
∞∑
j=1

ij
3j

)

If we can prove, that

Prob(P(U ∈ proj(Λ)) > 0) = 1, (3.3)

then beacuse p0 > 0, and K is a Borel set of positive Lebesgue measure we

can conclude that Proposition 3.3 holds.
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To prove (3.3) above, we will use the theory of branching processes with

random environment. Namely we will define a B.P.R.E, the triadic decom-

position will provide the environment, and the branching process will be the

counting process of the {A,B,C} triplets in the columns given by the envi-

ronment. First we fix a large N to be defined later (see (3.8)). Conditioned

on the event E fix A0, B0, C0 such that A0 is an A shape, B0 is a B shape and

C0 is C shape, and they are contained in C1,1 ∩ Λ1. Now we define Tripletk

inductively for a given i = (i0, i1, . . . ) ∈ {0, 1, 2}N:

Triplet0 = {(A0, B0, C0)}

and if we have Tripletk−1 = {(Ak−1
1 , Bk−1

1 , Ck−1
1 ), . . . , (Ak−1

m , Bk−1
m , Ck−1

m )},

then Tripletk will contain all the level kN + 1 triplets in C1,1,i0,...,ikN ∩ΛkN+1

conditioned on E, more precisely a triplet (A,B,C) is in Tripletk if

1. A is of shape A, B is of shape B, C is of shape C.

2. A, B and C are level kN + 1 shapes.

3. None of A, B and C is contained in other triplet from Tripletk.

4. A, B, C ⊂ C1,1,i0,...,ikN ∩ ΛkN+1.

5. A,B and C are descendants of some shapes of one triplet in Tripletk−1.

Then for θ = (θ0, θ1, . . . ), where θk = (ikN+1, . . . , i(k+1)N), let

Z0(θ) = 1

Zk(θ) = #Tripletk

Zn is B.P.R.V, because Zk+1(θ) =
∑Zk(θ)

i=1 Xk,i(θ), where Xk,i(θ) is the num-

ber of triplets coming from the ith triplet of Tripletk. The random variables
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Figure 3.1: The explanation of the selection of the triplets: In this figure

we show a possible realization. The initial triplet is A,B,C under the text

”Level 1”. In column 1 shape A gives birth to two shapes (this is denoted

with the pink arrow), one is of type A (denoted with color pink) and on is of

type C (denoted with color green). In the same column shape C gives birth

to two shapes, both is of type B, and the last – the level-1 B shape gives

birth to one shape of type C. The process goes on for the next N-2 levels,

and the N th level shapes coming from the second level shapes are below the

text ”Level N”, for example the second level A shape N-2 levels later only

has a descendant of shape A. The second level C shape, which comes from

the first level A shape, has two descendant both of shape B, and so on. The

shapes with blue border forms triplet, and the shapes with burgundy border

forms another one, and we don’t have any other triplets.
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Xk,i(θ) are independent, because for a given mth level column, and mth level

retained shapes U and V , what happens in U and V at later levels are inde-

pendent of each other, since in a column the shapes are from different mth

level retained squares. Also they are identically distributed because they are

independent realizations of scaled copies of the first triplet. θ0, θ1, . . . are

independent and identically distributed, hence the environmental process is

indeed a stationary ergodic process. Further if {Zn(θ)} does not die out for

θ = (θ0, θ1, . . . ) = (i1, . . . , iN , . . . , ikN+1, . . . , i(k+1)N , . . . ), then conditioned

on E:
4
√

3

9
+

√
3

9

(
∞∑
j=1

ij
3j

)
∈ proj(Λ).

Now we will use Theorem 3.1 to prove equation 3.3, but first we introduce

some more notations. Let q(k, V ) denote the probability, that a level 0 shape

V has descendant of at least one from each of the shapes in the kth column:

q(k, V ) = P(∃ a level one A,B and C shape ⊂ Ci,k ∩ Λ1,

where i=0 if V=A, i=1 if V=C and i=2 if V=B.).

Also

q = min
k∈{0,1,2}

max
V ∈{A,B,C}

q(k, V ).

Lemma 3.4. Under Condition 4: q > 0.

Proof. We prove that for any k ∈ {0, 1, 2} maxV ∈{A,B,C} q(k, V ) > 0. Fix

k. Then by Condition 4 M(k) has a strictly positive row, assume that it is

the jth row and let U=A if j=1, U=B if j=2, and U=C if j=3. Let XW =

#{W is a retained level one W shape in U in the column k}. We would like

to prove that P(XA > 0 and XB > 0 and XC > 0) > 0, which is equivalent
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to E(XA · XB · XC) > 0. As the events that we retain shapes in the same

columns are independent E(XA · XB · XC) = E(XA) · E(XB) · E(XC) =

M(k)j,1 ·M(k)j,2 ·M(k)j,3 > 0.

Also let

U(k) = arg max
V ∈{A,B,C}

q(k, V ) =


A if maxV ∈{B,C} < q(k,A),

B if maxV ∈{A,C} < q(k,B),

C otherwise,

Now we examine the assumptions of Theorem 3.1, starting with (3.1).

E [− log(1− ϕ(0))] =
1

3N

∑
(i1,...,iN )

∈{0,1,2}N

− log(1− ϕ(i1,...,iN )(0))

=
1

3N

∑
(i1,...,iN )

∈{0,1,2}N

− log(1− ϕ(i1,...,iN )(0))

=
1

3N

∑
(i1,...,iN )

∈{0,1,2}N

− log(1− P(Z1(θ0) = 0|θ0 = (i1, . . . , iN))

That is if P(Z1(θ0) = 0|θ0 = (i1, . . . , iN)) < 1 for all (i1, . . . , iN) ∈ {0, 1, 2}N

then the above expression is less than infinity. By the definition of q(k, V )

and q:

P(Z1(θ0) > 0|θ0 = (i1, . . . , iN)) ≥ p0q
N > 0,

hence the first assumption is satisfied. Take a look at the second assumption

of Theorem 3.1, (3.2):

E(log(ϕ′θ0(1))) =
1

3N

∑
(i1,...,iN )

∈{0,1,2}N

log(E(Z1(θ)|θ0 = (i1, . . . , iN)).
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To verify that the second assumption also holds, we need to prove that

1

3N

∑
(i1,...,iN )

∈{0,1,2}N

log(E(Z1(θ)|θ0 = (i1, . . . , iN)) > 0. (3.4)

In order to do so recall the defintion of ZV (k) (equation (2.3)), using math-

ematical induction we show that for any V ∈ {A,B,C}:

E [log(E(ZV (in)))] ≥ n log
3
√

Γ, (3.5)

where Γ = γ0 · γ1 · γ2. For n=1, regardless of the choice of V:

E [log(E(ZV (i0)))] =
1

3
(log(E(ZV (0))) + log(E(ZV (1))) + log(E(ZV (2))))

=
1

3
(log(γ0) + log(γ1) + log(γ2)) = log

3
√

Γ.

Now assume that it holds for n = k− 1, we show that it holds for n = k. For

a given ik = (i1, . . . , ik) and shape V , let aU = E(ZU,V (ik)), then
∑

U aU =

E(ZV (ik)) = γj for some j. It follows from Lemma 2.1, that

E[ZV (ik)] =
∑

U∈{A,B,C}
aU 6=0

aUE[ZU(ik−1)] =
∑

U∈{A,B,C}
aU 6=0

aU
γj
γjE[ZU(ik−1)]

hence, by the concavity of the logarithm function:

log(E(ZV (ik))) ≥
∑

U∈{A,B,C}
aU 6=0

aU
γj

log(γjE(ZU(ik−1)))

=
aA + aB + aC

γj
log(γj) +

∑
U∈{A,B,C}

aU 6=0

aU
γj

log(E(ZU(ik−1))).

First we calculate the expectation of the first part:

E
[aA + aB + aC

γj
log(γj)

]
= E [log(γj)] =

1

3
log(Γ), (3.6)
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and now we lower bound the more complicated second part:

E

[ ∑
U∈{A,B,C}

aU 6=0

aU
γj

log(E(ZU(ik−1)))

]

=
∑

U∈{A,B,C}
aU 6=0

E
[aU
γj

]
E [log(E(ZU(ik−1)))]

≥
∑

U∈{A,B,C}
aU 6=0

E
[aU
γj

]
(k − 1) log(

3
√

Γ)

where the first equality follows from the fact, that the choice of the next

column is independent of the choice of the earlier columns, and the second

inequality follows from the induction hypothesis.

∑
U∈{A,B,C}

aU 6=0

E
[aU
γj

]
(k − 1) log(

3
√

Γ) = (k − 1) log(
3
√

Γ)E

[
1

γj

∑
U∈{A,B,C}

aU 6=0

aU

]

= (k − 1) log(
3
√

Γ). (3.7)

Consequently adding up (3.6) and (3.7) leads to:

E [log(E(ZV (ik)))] ≥ log(
3
√

Γ) + (k − 1) log(
3
√

Γ) = k log(
3
√

Γ).

Hence we verified (3.5). The next step is to show that (3.4) holds. Observe

that Z1(θ)|θ0 = (i1, . . . , iN) is the number of level N triplets coming from the

first level 1 triplet in the column C1,1,i1,...,iN . This can be lower bounded with

the number of level N triplets coming from the level N − 1 U(iN) shapes in

the column C1,1,i1,...,iN . Therefore

E(Z1(θ)|θ0 = (i1, . . . , iN)) ≥ E(ZU(iN )(i1, . . . , iN−1)) · q(iN , U(iN))

≥ E(ZU(iN )) · q
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hence by the previous inequality and (3.5):

E(log(E(Z1(θ)|θ0 = (i1, . . . , iN))))

≥ E(log(E(ZU(iN )))) + log(q) ≥ (N − 1) log(
3
√

Γ) + log(q).

We know that Γ > 1, hence log( 3
√

Γ) > 0 and q > 0, hence we can choose N

such that

(N − 1) log(
3
√

Γ) + log(q) > 0. (3.8)

In this way (3.4) is satisfied, hence from Theorem 3.1 it follows that with

positive P probability the process does not die out with Prob probability

1.

3.3 The case of the random Menger sponge

It follows from the definitions (see (2.7)) of the matrices M(i), i = 0, 1, 2 that

for the Menger sponge, Condition 4 holds whenever p > 0, because the third

row of the matrices are positive in that case. We have seen at the beginning

of Section 2.2 that γ0 = 8p and γ1 = γ2 = 6p, hence γ0 · γ1 · γ2 = 8p · 6p · 6p.

Thus Condition 4 is satisfied if p > (8 ·6 ·6)−
1
3 . It follows that the parameter

interval can be subdivided into four subintervals, as in Figure 3.2, the first

and the last was already introduced in the previous chapter. The two middle

intervals have the following properties:

•
(

3
20
, (8 · 6 · 6)−

1
3

)
, in this thesis we don’t cover this interval, but it

is worth mentioning, that in an article which is under preparation we

verified that for some p̂ > 3
20

if 3
20

< p < p̂, then proj(Mp) has 0
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Figure 3.2: The parameter intervals for p in the case of the random Menger

sponge.

Lebesgue-measure almost surely despite the fact thatMp has Hausdorff

dimension greater than 1 almost surely conditioned on non extinction.

•

(
(8 · 6 · 6)−

1
3 , 1

6

)
, choosing p from this interval give rise to having an

almost sure positive measure projection conditioned on non-extinction,

however with probability one the projection does not contain an inter-

val, as it was shown in the previous chapter.
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Conclusions

In this Thesis we had been proven two theorems about the projection of the

three-dimensional inhomogeneous Mandelbrot percolation fractal, although

the most interesting part is the example – the Menger sponge. In [9] Károly

Simon and Lajos Vágó proved (among other things) that in three dimension

(and in two also, see [7]) in the homogeneous case whenever dimH Λ > 1 the

projection contains an interval almost surely conditioned in non extinction,

and when dimH Λ ≤ 1 the projection has zero Lebesgue measure almost

surely. We had seen in two dimensions ([8]) that this is not the case when

we have inhomogeneous probabilities, that is the two authors had shown

that for the random Sierpiński carpet, it is possible that dimH(Λ) > 1 (a.s.

conditioned on non extinction) and concurrently the projection to one of the

coordinate axes does not contain an interval. What we know of the Menger

sponge is more, we mentioned – although not proved – that it is possible

that dimH(Mp) > 1 and the Lebesgue measure of the projection is zero, we

also proved that it is possible that the Lebesgue measure of the projection is
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Figure 4.1: The projection of the Menger sponge, level 1. The notation is

Name of the interval: number of cubes which projection is the given interval.

not zero, but it does not contain an interval. This second phenomenon is of

further interest as we explain.

It is an open question whether or not there exists a (deterministic) self-

similar set on the line with positive Lebesgue measure and empty interior,

for more details see [2]. We now show an example of such a set, although

not in the deterministic but the random case. Instead of the random Menger

sponge we turn our attention to the projected IFS (see Figure 4.1), namely:

p̃roj : R3 → R, p̃roj(x, y, z) = x+ y + z (4.1)

and

S̃i,j,k = p̃roj ◦ Si,j,k ◦ p̃roj
−1
, for i, j, k ∈ {0, 1, 2} (4.2)

Si,j,k was defined in (3.4). Now consider the random attractor (denote it

Λ̃p) of the IFS S̃ = {p̃roj ◦ Si,j,k}(i,j,k)∈J (for the definition of J see (see

(1.4)), which we get by applying the rules of the homogeneous Mandelbrot

percolation with a parameter p ∈ [0, 1]. Λ̃p has the same distribution as
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proj(Mp), hence using the results of this thesis for p ∈
(

(8 · 6 · 6)−
1
3 , 1

6

)
:

Λ̃p has empty interior almost surely, and positive Lebesgue measure almost

surely conditioned on non-extinction.

38



Bibliography

[1] Krishna B. Athreya and Samuel Karlin. “On Branching Processes with

Random Environments: I: Extinction Probabilities”. In: The Annals

of Mathematical Statistics 42.5 (1971), pp. 1499–1520. issn: 00034851.

url: http://www.jstor.org/stable/2240275.
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