Overlapping random self-similar sets on the line

Vilma Orgoványi
joint work with Károly Simon

March 22, 2023

Benoit Mandelbrot

Construction of the (homogeneous) Mandelbrot percolation fractal $\Lambda_{d}(M, p)$ in \mathbb{R}^{d}

- $M \in \mathbb{N} \backslash\{0,1\}$: division parameter
- $p \in(0,1)$: probability

Construction

Construction

Construction

Properties

1 non-empty with positive probability iff $p>1 / M^{2}$;

Properties

The resulting set is $\Lambda_{M, p}$.
1 non-empty with positive probability iff $p>1 / M^{2}$;
2 Falconer, Mauldin-Williams: $\operatorname{dim}_{H} \Lambda_{M, p}=\frac{\log M^{2} p}{\log M}$ a.s. conditioned on non-extinction;
3 Simon-Rams (2-dim), Simon-Vágó (d-dim): If $\operatorname{dim}_{H} \Lambda_{M, p}>1$, then for almost all realizations (conditioned on non-extinction) simultaneously to all lines of \mathbb{R}^{d} the orthogonal projection contains an interval.

Properties

The resulting set is $\Lambda_{M, p}$.
1 non-empty with positive probability iff $p>1 / M^{2}$;
2 Falconer, Mauldin-Williams: $\operatorname{dim}_{H} \Lambda_{M, p}=\frac{\log M^{2} p}{\log M}$ a.s. conditioned on non-extinction;
3 Simon-Rams (2-dim), Simon-Vágó (d-dim): If $\operatorname{dim}_{H} \Lambda_{M, p}>1$, then for almost all realizations (conditioned on non-extinction) simultaneously to all lines of \mathbb{R}^{d} the orthogonal projection contains an interval.
In particular, if $M=3$

- $p>\frac{1}{9} \Lambda_{3, p} \neq \emptyset$ with positive probability;
- $p>\frac{1}{3}$ if we exclude a set of realizations of extinction and further a realizations of 0 measure, for the remaining set of realizations the projection to every line contains an interval.

Homogeneous and inhomogeneous Mandelbrot percolation

We call the Mandelbrot percolation introduced above homogeneous Mandelbrot percolation, where in level- n of the construction we divided each of the level- n retained cubes into M^{d} congruent subcubes and for each of these we tossed a coin to decide wether we retain it or not. As opposed to this in the case of the inhomogeneous Mandelbrot percolation, there are some preselected cubes that we always discard.

Right angled Sierpiński gasket

Sierpiński carpet

Menger sponge

Inhomogeneous Mandelbrot percolation

$\operatorname{dim}_{H}\left(\widetilde{\Lambda}_{p}\right)=\frac{\log (\mathbb{E}(\# \text { retained level } 1 \text { cubes }))}{-\log (\text { contraction ratio })}$ a.s. conditioned on non-extinction.
■ Menger sponge: $\operatorname{dim}_{\mathrm{H}}\left(\mathcal{M}_{p}\right)=\frac{\log 20 \cdot p}{\log 3}$.

- Sierpiński carpet: $\operatorname{dim}_{\mathrm{H}}\left(\mathcal{S}_{p}\right)=\frac{\log 8 \cdot p}{\log 3}$.

1 Dekking-Grimmet (1988), Dekking-Meester (1989), Falconer (1989),Falconer-Grimmett (1992), Barral-Feng (2018): projections to the coordinate axes in the inhomogeneous case.
2 Simon and Vágó: rational projections of the random Sierpiński carpet.

Orthogonal projection of the random Menger sponge

\mathcal{M}_{p} : random Menger sponge with parameter p; proj: projection to the space diagonal of the unit cube; $\operatorname{proj}_{\underline{\alpha}}$: projection of the form $\underline{x} \rightarrow \underline{\alpha} \underline{x}$.

$$
\begin{aligned}
& \operatorname{dim}_{H}\left(\mathcal{M}_{p}\right)>1 \text { a.s.* } \quad \operatorname{Int}\left(\operatorname{proj}\left(\mathcal{M}_{p}\right)\right)=\emptyset \text { a.s. } \\
& \text { but } \\
& \text { but } \\
& \forall \underline{\alpha} \operatorname{Int}\left(\operatorname{proj}_{\underline{\alpha}}\left(\mathcal{M}_{p}\right)\right) \neq \emptyset \\
& \operatorname{dim}_{H}\left(\operatorname{proj}\left(\mathcal{M}_{p}\right)\right)<1 \text { a.s. } \mathcal{L} \operatorname{Leb}_{1}\left(\operatorname{proj}\left(\mathcal{M}_{p}\right)\right)>0 \text { a.s.* a.s.* } \\
& 0.15 \quad B_{1} \stackrel{?}{=} \quad B_{2} \quad 0.166 \ldots \quad 0.25 \\
& p \\
& \operatorname{dim}_{\mathrm{H}}\left(\mathcal{M}_{p}\right)<1 \quad \operatorname{dim}_{\mathrm{H}}\left(\operatorname{proj} \mathcal{M}_{p}\right)=1 \text { a.s.* } \operatorname{Int}\left(\operatorname{proj}\left(\mathcal{M}_{p}\right)\right) \neq \emptyset \text { a.s. } * \\
& \text { a.s. but } \\
& \mathcal{L} e b_{1}\left(\operatorname{proj}\left(\mathcal{M}_{p}\right)\right)=0 \text { a.s. }
\end{aligned}
$$

*=conditioned on non-extinction
$0.15<B_{2}<0.1514 \ldots$
$0.15=\frac{3}{20}$,
$0.166 \cdots=\frac{1}{6}$,
$0.25=\frac{1}{4}$.

Construction of the matrices

$$
A_{0}=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)
$$

Construction of the matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & x \\
x & x
\end{array}\right)
$$

Construction of the matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
x & x
\end{array}\right)
$$

Construction of the matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & x
\end{array}\right)
$$

Construction of the matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right)
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
2 & x \\
x & x
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
2 & 1 \\
x & x
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
& A_{2}=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
& A_{2}=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Construction of the matrices

$$
\begin{aligned}
A_{0} & =\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
A_{1} & =\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
A_{2} & =\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
A_{1} \cdot A_{1} & =\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)
\end{aligned}
$$

Construction of the matrices 2 .

$$
\begin{aligned}
\mathcal{S}= & \left\{S_{i}(x)=\frac{1}{L} x+t_{i}\right\}_{i=0}^{M-1}, \\
\square & L \in \mathbb{N} \backslash\{0,1\}, \\
& t_{i} \in \mathbb{Q} .
\end{aligned}
$$

Lyapunov exponent and Lower spectral radius

$$
\text { For } \begin{aligned}
& \mathcal{A}=\left\{A_{0}, \ldots, A_{L-1}\right\} \\
& \Sigma:=\{0, \ldots, L-1\}^{\mathbb{N}} \\
& \boxed{ } \quad \\
& =\left(\frac{1}{L}, \ldots, \frac{1}{L}\right)^{\mathbb{N}} . \\
& \|\cdot\| \text { denote a submultiplicative matrix norm. }
\end{aligned}
$$

Definition (The Lyapunov exponent of \mathcal{A})

$$
\lambda(\mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{i_{1}} \cdots A_{i_{n}}\right\| \text { for } \mu \text { a.e. }\left(i_{1}, \ldots, i_{n}, \ldots\right)
$$

Definition (The Lower spectral radius of \mathcal{A})

$$
\underline{\rho}(\mathcal{A}):=\lim _{n \rightarrow \infty} \min \left\{\left\|A_{i_{1}} \cdots A_{i_{n}}\right\|^{1 / n}, A_{i_{j}} \in \mathcal{A}\right\}
$$

Positivity of Lebesgue measure

$\square \mathcal{S}:=\left\{S_{i}(x)=\frac{1}{L} x+t_{i}\right\}_{i=0}^{M}, t_{i} \in \mathbb{Q}, L \in \mathbb{N}-\{0,1\}$.
■ $\mathcal{A}_{\mathcal{S}}=\left\{A_{0}, \ldots, A_{L-1}\right\}$, such that $\mathcal{A}_{\mathcal{S}}$ consists of allowable matrices and $\exists i_{1}, \ldots, i_{n} \in[L]^{n}$ such that $A_{i_{1}} \ldots A_{i_{n}}$ has only positive elements.

- Random attractor: $\Lambda_{\mathcal{S}, p}$.

Theorem (Károly Simon, V.O.)

- for $p>e^{-\lambda\left(\mathcal{A}_{\mathcal{S}}\right)}, \mathcal{L e} e b\left(\Lambda_{\mathcal{S}, p}\right)>0$ for almost every realization conditioned on non-extinction,
- for $p<e^{-\lambda\left(\mathcal{A}_{\mathcal{S}}\right)}, \mathcal{L e b}\left(\Lambda_{\mathcal{S}, p}\right)=0$ almost surely.
$\lambda(\mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{i_{1}} \cdots A_{i_{n}}\right\|$ for μ a.e. $\left(i_{1}, \ldots, i_{n}, \ldots\right)$

Positivity of Lebesgue measure

■ $\mathcal{S}:=\left\{S_{i}(x)=\frac{1}{L} x+t_{i}\right\}_{i=0}^{M}, t_{i} \in \mathbb{Q}, L \in \mathbb{N}-\{0,1\}$.
$\square \mathcal{A}_{\mathcal{S}}=\left\{A_{0}, \ldots, A_{L-1}\right\}$, such that $\mathcal{A}_{\mathcal{S}}$ consists of allowable matrices and $\exists i_{1}, \ldots, i_{n} \in[L]^{n}$ such that $A_{i_{1}} \ldots A_{i_{n}}$ has only positive elements.

- Random attractor: $\Lambda_{\mathcal{S}, p}$.

Theorem (Károly Simon, V.O.)

- for $p>e^{-\lambda(\mathcal{A})}, \mathcal{L e b}\left(\Lambda_{\mathcal{S}, p}\right)>0$ for almost every realization conditioned on non-extinction,
- for $p<e^{-\lambda(\mathcal{A})}, \mathcal{L e b}\left(\Lambda_{\mathcal{S}, p}\right)=0$ almost surely.

Checkable condition: Let $C S(i, j)=\sum_{k} A_{i}(k, j)$. If $p>\max _{j}\left(\prod_{i} C S(i, j)\right)^{-\frac{1}{L}}$, then $\mathcal{L} e b\left(\Lambda_{\mathcal{S}, p}\right)>0$ a.s. conditioned on non-extinction.
$\lambda(\mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{i_{1}} \cdots A_{i_{n}}\right\|$ for μ a.e. $\left(i_{1}, \ldots, i_{n}, \ldots\right)$

Existence of interior points

■ $\mathcal{S}:=\left\{S_{i}(x)=\frac{1}{L} x+t_{i}\right\}_{i=0}^{M}, t_{i} \in \mathbb{Q}, L \in \mathbb{N}-\{0,1\}$.

- $\mathcal{A}_{\mathcal{S}}=\left\{A_{0}, \ldots, A_{L-1}\right\}$, such that $\exists i_{1}, \ldots, i_{n} \in[L]^{n}$ such that $A_{i_{1}} \ldots A_{i_{n}}$ has a row with only positive elements,
- $C S(i, j)=\sum_{k} A_{i}(k, j)$.
- Random attractor: $\Lambda_{\mathcal{S}, p}$.

Theorem (Károly Simon, V.O.)

■ for $p>\left(\min _{i, j} C S(i, j)\right)^{-1}$, then $\wedge_{\mathcal{S}, p}$ contains an interval for almost every realization conditioned on non-extinction,

- for $p<\underline{\rho}(\mathcal{A})^{-1}$, then $\wedge_{\mathcal{S}, p}$ does not contain an interval almost surely.
$\underline{\rho}(\mathcal{A}):=\lim _{n \rightarrow \infty} \min \left\{\left\|A_{i_{1}} \cdots A_{i_{n}}\right\|^{1 / n}, A_{i_{j}} \in \mathcal{A}\right\}$

Thank you for your attention!

