Vilma Orgoványi joint work with Károly Simon

June 13, 2022

Hausdorff dimension of a set (definition)

Definition

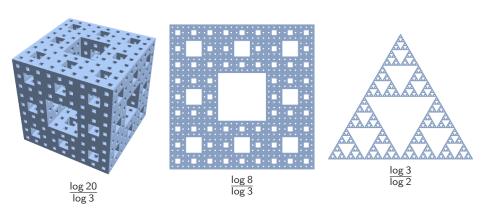
$$\mathcal{H}^{t}(E) := \lim_{\delta \to 0} \left\{ \underbrace{\sum_{i=1}^{\infty} |A_{i}|^{t} : E \subset \bigcup_{i=1}^{\infty} A_{i}, |A_{i}| \leq \delta}_{\mathcal{H}^{t}_{\delta}(E)} \right\}$$

|A| := diameter(A)

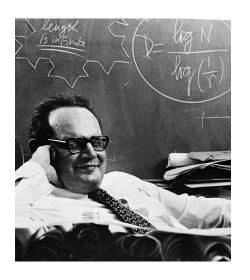
Definition

$$\dim_H(E) := \inf\{t : \mathcal{H}^t(E) > 0\} = \sup\{t : \mathcal{H}^t(E) < \infty\}$$

Hausdorff dimension of a set (examples)



Benoit Mandelbrot

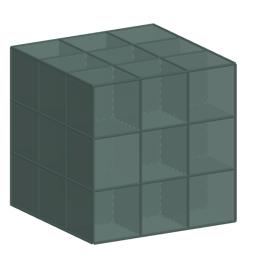


éskdf

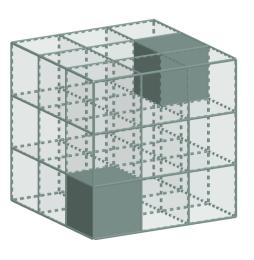
Construction of the (homogeneous) Mandelbrot percolation fractal $\Lambda_d(M, p)$

- $d \in \mathbb{N} \setminus \{0\}$: dimension
- $M \in \mathbb{N} \setminus \{0,1\}$: I don't know yet
- $p \in [0,1]$: probability

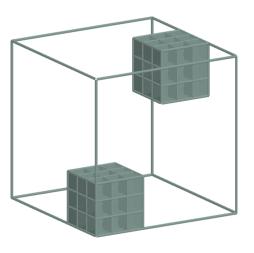
$$\mathbb{P}(\mathbb{Q}) = p$$
 and $\mathbb{P}(\mathbb{Q}) = 1 - p$.



- Unit cube.
- Division into 3³ congruent cubes.

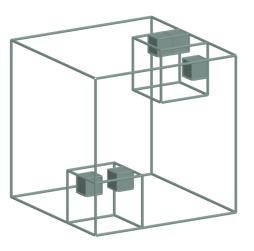


- Unit cube.
- Division into 3³ congruent cubes.
- Toss the coin for each independently.
 Heads → retain.
 Tails → discard.



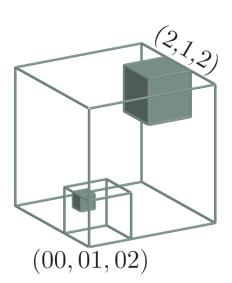
- Unit cube.
- Division into 3³ congruent cubes.
- Toss the coin for each independently.

 Heads \rightarrow retain.
 - $\mathsf{Tails} \to \mathsf{discard}.$
- Repetition ad infinitum or until we do not have any retained cubes left.



- Unit cube.
- Division into 3³ congruent cubes.
- Toss the coin for each independently. Heads \rightarrow retain.
 - $\mathsf{Tails} \to \mathsf{discard}.$
- Repetition ad infinitum or until we do not have any retained cubes left.

Some notations



$$Q_n := \{0, \dots, M-1\}^{3n}$$

 $\mathcal{I} := [0, 1]^3$ and for $(\underline{i}, \underline{j}, \underline{k}) \in Q_n$:

$$\boxed{\mathcal{I}_{(\underline{i},\underline{j},\underline{k})}} := \left[\sum_{\ell=1}^{n} i_{\ell} 3^{-\ell}, \sum_{\ell=1}^{n} i_{\ell} 3^{-\ell} + 3^{-n} \right] \\
\times \left[\sum_{\ell=1}^{n} j_{\ell} 3^{-\ell}, \sum_{\ell=1}^{n} j_{\ell} 3^{-\ell} + 3^{-n} \right] \\
\times \left[\sum_{\ell=1}^{n} k_{\ell} 3^{-\ell}, \sum_{\ell=1}^{n} k_{\ell} 3^{-\ell} + 3^{-n} \right]$$

$$\mathcal{E}_n := \{(\underline{i}, \underline{j}, \underline{k}) \in \mathcal{Q}_n :$$
 the cube of index $(\underline{i}, \underline{j}, \underline{k})$ is retained at level $n\}$

Size of $\Lambda_d(M, p)$

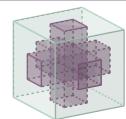
- Q1 $\dim_{\mathsf{H}}(\Lambda_d(M,p)) = ?$ Falconer: $\dim_{\mathsf{H}}(\Lambda_d(M,p)) = \frac{\log \mathbb{E}(\#\mathcal{E}_1)}{\log M} = \frac{\log M^d p}{\log M}$ a.s. conditioned on non-extinction.
- Simon and Rams (2-dim), Simon-Vágó (d-dim): $\dim_H(\Lambda_d(M,p)) > 1 \quad (\longleftrightarrow p > M^{d-1}) \longrightarrow$ for almost all realizations, simoultaneously to all lines of \mathbb{R}^d the orthogonal projection contains an interval.

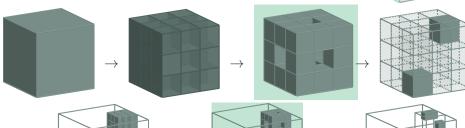
Size of the orthogonal projections to lines?

Example: Random Menger sponge

Construction of the random Menger sponge \mathcal{M}_p $\mathfrak{D} := \{ \ (1,1,2), \\ (1,0,1), (0,1,1), (1,1,1), (2,1,1), (1,2,1),$

(1,1,0)



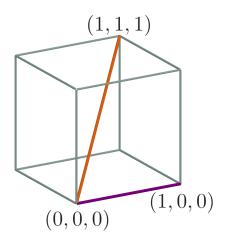


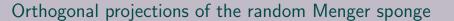
Inhomogeneous Mandlebrot percolation continued

- Q1 $\dim_H(\Lambda_d^{\mathfrak{D}}(M,p)) = \frac{\log(\mathbb{E}(\# \text{retained level 1 cubes}))}{-\log(\text{contraction ratio})} = \frac{\log(M^d \#\mathfrak{D})p}{\log M}$ a.s. conditioned on non-extinction.
- Q2 Simon and Rams and Simon and Vágó (2-dim): It is possible that the dimension is greater than 1 a.s. conditioned on non extinction BUT the projection to some direction does not contains an interval a.s. (different to the homogeneous case)

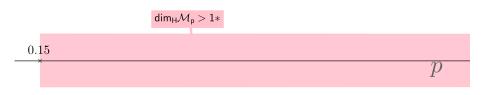
Projections

 $\text{proj}_{(a,b,c)}: \mathbb{R}^3 \to \mathbb{R}, \ \text{proj}_{(a,b,c)}(x,y,z) := ax + by + cz$ $\text{proj}_{(1,1,1)}$ and $\text{proj}_{(1,0,0)}$

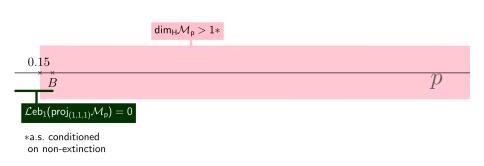




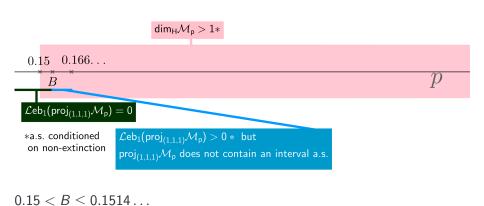
 \overline{p}

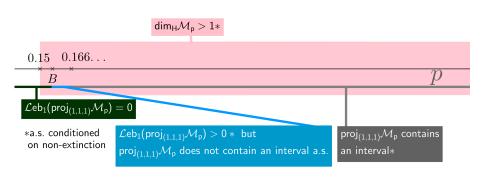


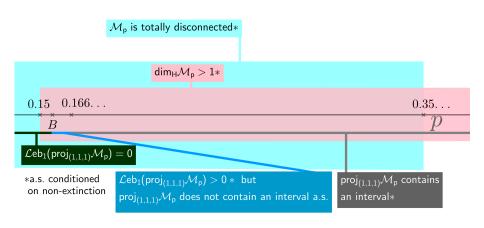
*a.s. conditioned on non-extinction

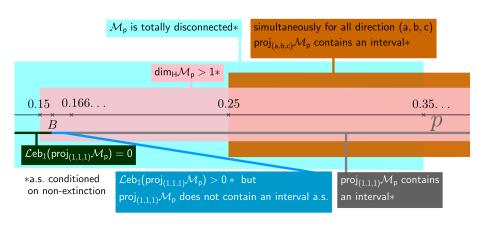


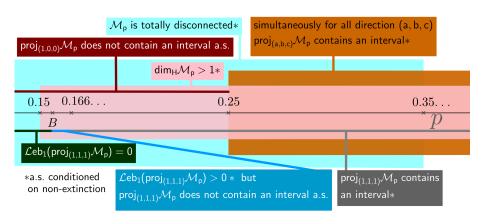
 $0.15 < B \le 0.1514...$











Acknowledgement

The ideas of the proofs are coming from the following papers:

- Falconer and Grimmett: On the Geometry of Random Cantor Sets and Fractal Percolation.
- Simon and Dekking: On the Size of the Algebraic Difference. of Two Random Cantor Sets
-

Idea of the proof

STATEMENT: If $p > \frac{1}{6} = 0.166...$, then $\text{proj}_{(1,1,1)}(\mathcal{M}_p)$ contains an interval almost surely conditioned on \mathcal{M}_p being not empty.

part 1 $\mathbb{P}(\operatorname{Int}(\operatorname{proj}_{(1,1,1)}(\mathcal{M}_p)) \neq \emptyset) > 0$ implies $\mathbb{P}(\operatorname{Int}(\operatorname{proj}_{(1,1,1)}(\mathcal{M}_p)) \neq \emptyset | \mathcal{M}_p \neq \emptyset) = 1.$

part 2 Show $\mathbb{P}(\operatorname{Int}(\operatorname{proj}_{(1,1,1)}(\mathcal{M}_p)) \neq \emptyset) > 0.$

Part 1

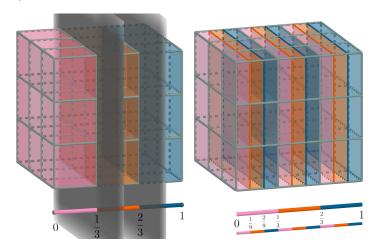
$$\begin{split} \mathbb{P}(\mathsf{Int}(\mathsf{proj}_{(1,1,1)}(\mathcal{M}_{\rho})) \neq \emptyset) > 0 \\ & \mathsf{implies} \\ \mathbb{P}(\mathsf{Int}(\mathsf{proj}_{(1,1,1)}(\mathcal{M}_{\rho})) \neq \emptyset | \mathcal{M}_{\rho} \neq \emptyset) = 1. \end{split}$$

Ingredients:

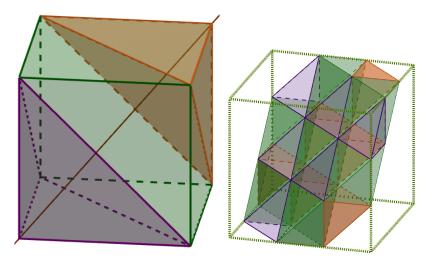
- A Statistical self-similarity.
- B With probability 1 conditioned on non extinction $\#\mathcal{E}_n$ (the number of retained level n squares) tends to infinity.
- The projection does not contain an interval if and only if for every n its intersection with every level *n* retained squares it does not contain an interval.

Part 2, Main idea, projection to the coordinate axes

Let $p > \frac{1}{4}$.



Part 2, Main idea, generalization



Thank you for your attention!