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Abstract

These notes discuss the material for the Probability course at Budapest Semesters
in Mathematics. The course textbook, Ross: A first course in probability, is frequently
referred.

1 Probability spaces

The mathematical framework for probability is the probability space, which is a triple
(Ω,F ,P). Let us consider first the first ingredient, the sample space Ω, the collection of
possible outcomes of our random experiment. Elements ω ∈ Ω are called outcomes, while
(certain) subsets A ⊂ Ω are called events.

Examples of sample spaces.

I Horse race with three horses, Apple, Banana and Coconut. An outcome describes the
order of the horses at the end of the race.

ΩI = {(a, b, c), (a, c, b), . . . (c, b, a)}; |ΩI | = 3! = 6

where |E| denotes the cardinality of a set. An example of an event is

AI = {Apple wins} = {(a, b, c), (a, c, b)}; |AI | = 2.

Note that we have not claimed anything about the “probability” of this event.

II Two fair dice are rolled, a white die and a yellow die. An outcome is an ordered pair
of the values rolled on the two dice, thus

ΩII = {(1, 1), (1, 2), . . . (6, 6)}; |ΩII | = 36.

Note that (1, 2) and (2, 1) are two different outcomes. Examples of events are

AII = {The sum of the values is 5} = {(1, 4), (2, 3), (3, 2), (4, 1))},
BII = {The sum of the values is 4} = {(1, 3), (2, 2), (3, 1)},
CII = {The same values are rolled on the two dice} = {(1, 1), (2, 2), . . . (6, 6)}.
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III Keep on flipping a fair coin until a Head occurs. Then

ΩIII = {(H), (T,H), (T, T,H), (T, T, T,H), ....}

which has infinite cardinality. An example of an event is

AIII = {There is an even number of flips} = {(T,H), (T, T, T,H), ....}

IV Darts on a table which is a circular disc of radius 10 inches. The outcome corresponds
to the point of impact of the dart. Then

ΩIV = {(x, y) ∈ R2 |x2 + y2 ≤ 100}

and an example of an event is

AIV = {Score 50 points} = {(x, y) ∈ R2 |x2 + y2 ≤ 1}.

In this framework, the usual set theoretic operations and notations make sense. E ∪ F
means that at least one of the two events occur, while E∩F means that both of them occur.
In particular, in Example II above

BII ∪ CII = {(1, 3), (3, 1), (1, 1), . . . , (6, 6)},
BII ∩ CII = {(2, 2)}.

If E ∩ F = ∅ then the two events are mutually exclusive, which is the case of AII and CII
in Example II. Ec = Ω \ E is the complement of the event E. If E ⊂ F then the event E
implies the event F .

Usual laws of set theoretic operations apply, see the Ross book for a summary. It is
useful to point out the de Morgan laws:

(E ∩ F )c = Ec ∪ F c,

(E ∪ F )c = Ec ∩ F c.

The second ingredient is the sigma algebra F . It is the collection of subsets of Ω that
are considered as events. F has to satisfy the following properties:

- Ω ∈ F ,

- if E ∈ F , then Ec ∈ F ,

- if E1, E2, · · · ∈ F , then
∞⋃
i=1

Ei ∈ F .

In examples I, II and III above, F can be chosen as the collection of all subsets of Ω. In
example IV (if, in accordance with intuition, probability is proportional to area) certain
subsets of Ω have to be excluded from F for deeper measure theoretic reasons, yet, it is
hard to construct such subsets.
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Axioms of probability

The third ingredient is probability itself, P : F → R, which is thus a function that assigns
a number to an event. It has to satisfy the following axioms.

First Axiom P(E) ≥ 0; ∀E ∈ F ;

Second Axiom P(Ω) = 1;

Third Axiom Given a sequence of mutually exclusive events E1, E2, · · · ∈ F (that is,
Ei ∩ Ej = ∅ whenever i 6= j) we have

P

(
∞⋃
i=1

Ei

)
=
∞∑
n=1

P(En).

These axioms are in accordance with our intuition about probability. Yet, it should
be noted that the third axiom applies not only to finite, but also to countably infinite
collections of mutually exclusive sets. In this case the sum on the RHS is a limit – thus
sigma additivity is actually a continuity property of P.

Here we discuss some direct consequences of the axioms. As whenever A ∩ B = ∅ we
have P(A ∪B) = P(A) + P(B), we have

P(Ac) = P(Ω)− P(A) = 1− P(A), ∀A ∈ F , and in particular

P(∅) = 1− P(Ω) = 0.

Note, however, that P(E) = 0 does not necessarily imply E = ∅ – consider example IV
(with probability proportional to area) and the event E = {(0, 0)}.

Inclusion–exclusion formula

Consider now A ∩B 6= ∅. Then, by the third axiom:

P(A ∪B) = P(A ∩Bc) + P(A ∩B) + P(Ac ∩B) = P(A) + P(B)− P(A ∩B).

With a similar reasoning, for arbitrary A,B,C ∈ F :

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C).

In words, to get the probability of the union, the probabilities of the events have to be
added, then the probabilities of all possible pair intersections have to be subtracted, then
the probabilities of all triple intersections added... This generalizes to an arbitrary number
of sets: the probability of the union can be computed by adding up all odd-fold intersec-
tions and subtracting all even-fold intersections. This is expressed in a concise form in the
following Proposition, which can be proved by induction on n.

Proposition 1.1 (Inclusion–exclusion formula). Let n ≥ 1, and E1, E2, . . . En ∈ F .
Then

P(E1 ∪ E2 ∪ · · · ∪ En) =
n∑
r=1

(−1)r+1
∑

1≤i1<···<ir≤n

P(Ei1 ∩ · · · ∩ Eir).
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2 Finite sample spaces with equally likely outcomes

Let us fix an integer N ≥ 1, and consider probability spaces such that

Ω = {ω1, ω2, . . . , ωN},
P({ω1}) = P({ω2}) = · · · = P({ωN}).

Then, by the axioms of probability

1 = P(Ω) = P({ω1}) + · · ·+ P({ωN}) = NP({ω1}), =⇒ P({ωi}) =
1

N
, ∀i = 1, . . . , N.

Furthermore, for any subset A ⊂ Ω, (|A| = K ≤ N), we have

A ={ωj1 , ωj2 , . . . , ωjK},

P(A) =P({ωj1}) + · · ·+ P({ωjK}) =
K

N
,

=
|A|
|Ω|

=
number of favored outcomes

total number of outcomes
.

This formula may be familiar from high school, however, it has to be applied carefully.
Before making computations, decide what is your sample space. Several choices may be
suitable for the same problem, nonetheless, once Ω has been chosen, use it consistently.

Example 2.1. There are 11 balls in a urn, 6 red and 5 blue balls. 3 balls out of this 11 are
drawn (without replacement). What is the probability that there are exactly 2 red balls and
1 blue ball among the 3 balls drawn?

Solution #1. Label the balls such that 1, . . . , 6 are red, while 7, . . . , 11 are blue. Con-
struct Ω by noting the labels of the balls at the three consecutive draws – that is, the order
is taken into account. We have

Ω = {(i1, i2, i3) | i1, i2, i3 ∈ {1, . . . , 11}, i1 6= i2, i1 6= i3, i2 6= i3}
|Ω| = 11 · 10 · 9.

Also
E = {Exactly one blue ball among the three drawn} = E1 ∪ E2 ∪ E3,

where the sets

Ek = {The kth draw is blue, the other two draws are red}; k = 1, 2, 3

are mutually exclusive. In particular

E1 = {(i1, i2, i3) ∈ Ω | i1 ∈ {7, . . . , 11}; i2, i3 ∈ {1, . . . , 6}};
|E1| = 5 · 6 · 5,
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and similar computations yield

|E2| = |E3| = 6 · 5 · 5.

We arrive at

P(E) = P(E1) + P(E2) + P(E3) =
|E1|+ |E2|+ |E3|

|Ω|
=

3 · 6 · 5 · 5
11 · 10 · 9

=
5

11
.

Solution #2. The same labeling is used as in the previous solution, however, this time
the order of choice is not taken into account, only the collection of the three balls drawn is
considered as an outcome. Thus

Ω = {U ⊂ {1, . . . , 11} | |U | = 3};

|Ω| =
(

11

3

)
,

while

E = {U1 ∪ U2 ∈ Ω | |U1| = 2, U1 ⊂ {1, . . . , 6}; |U2| = 1, U2 ⊂ {7, . . . , 11}};

|E| =
(

6

2

)
· 5.

We arrive at

P(E) =
|E|
|Ω|

=

(
6
2

)
· 5(

11
3

) =
5

11
.

Example 2.2 (The matching problem). Consider a a great party with N people involved.
The following morning, people leave one-by-one, and take one of the cell phones at random.
What is the chance that noone picks her/his own phone?

The sample space Ω is the set of all permutations of the phones labeled 1, . . . , N . If
the permutation is ω = (i1, . . . , iN), then person #k gets the cellphone of person #ik,
k = 1, . . . N . Let

Ak = {person #k picks her own phone} = {(i1, . . . , iN) ∈ Ω | ik = k},

then
B = {No matches} = Ac1 ∩ Ac2 ∩ · · · ∩ AcN = (A1 ∪ · · · ∪ An)c,

and we use the inclusion-exclusion formula to compute P(A1 ∪ · · · ∪ An). Now

|Ak| = |A1| = (N − 1)! and thus

P(Ak) = P(A1) =
(N − 1)!

N !
,
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as the labels can be freely permuted at the remaining N−1 positions. Similarly, for arbitrary
fixed 1 ≤ i1 < i2 < · · · < r ≤ N :

|Ai1 ∩ · · · ∩ Air | = (N − r)! and thus

P(Ai1 ∩ · · · ∩ Air) =
(N − r)!
N !

.

Using this along with the inclusion-exclusion formula:

P(A1 ∪ A2 ∪ · · · ∪ AN) =
N∑
r=1

(−1)r+1
∑

1≤i1<···<ir≤N

P(Ai1 ∩ · · · ∩ Air)

=
N∑
r=1

(−1)r+1

(
N

r

)
(N − r)!
N !

=
N∑
r=1

(−1)r+1

r!
.

Now

P(B) = 1− P(A1 ∪ A2 ∪ · · · ∪ AN) =
N∑
r=0

(−1)r

r!

which tends to e−1 as N →∞.

3 Conditional probability

Introductory question. Roll two fair dice, a white die and a yellow die. What is the
chance that the sum of the two values rolled is 10? By the previous section the answer to
this question is 3

36
= 1

12
.

Now imagine that the two dice are not simultaneously, but consecutively rolled. The
first die has been rolled and turned up 6; the yellow die is yet to be rolled, what is the
probability (given the information on the white die) that the sum of the values will be 10?
This happens if an only if the yellow die turns up 4, that is, with 1

6
chance.

An alternative approach to this: the information that

A = {The white die turns up 6}

occurs is given. What is the chance (conditioned on A occurring) that

B = {The sum of the values is 10}

occurs, too? Now

A = {(6, 1), . . . , (6, 6)} |A| = 6 P(A) =
1

6
;

A ∩B = {(6, 4)} |A ∩B| = 1 P(A ∩B) =
1

36
;

P(A ∩B)

P(A)
=

1

6
.
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Definition 3.1. Fix an event A with P(A) > 0, the conditional probability of any other
event E ∈ F given A is

P(E|A) =
P(E ∩ A)

P(A)
.

The following proposition can be verified by direct inspection. It shows that conditional
probability generalizes the notion of probability.

Proposition 3.2. Fix A with P(A) > 0. Then P(·|A) : F → R; F 3 E 7→ P(E|A) satisfies
the axioms of probability.

This conditional probability can be computed using either the definition, or the reduced
sample space, as in the introductory example. Nonetheless, it should be clearly formulated
on which event the conditioning takes place, as demonstrated in the following example.

Example 3.3. Andrew and Bob play for the college basketball team. They get two T shirts
each in closed bags. Any T shirt can be either black or white with equal chance. Andrew
says:“If I have a black T shirt, I will have this one on.” Bob says:“I do not have any
preference regarding the color of the T shirt.” At the next training, Andrew shows up with a
black T shirt on. What is the probability that his other T shirt is black, too? (And consider
the same question for Bob.)

For Andrew, initially, there are four options of equal probability

Ω = {(W,W ), (W,B), (B,W ), (B,B)}

where the first and the second entry of the pair describes the color of the T shirt in his first
and second bag, respectively. Now given what Andrew says, we condition on the reduced
sample space

{(W,B), (B,W ), (B,B)}

As he has a black T shirt on, there is only one out of these three options when his other T
shirt is black, too. Hence the answer is 1

3
.

How about Bob? By common sense, the fact that he has a black T shirt, does not
influence the color of his other T shirt. Accordingly, the expected answer to the question
is 1

2
in Bob’s case. But why is it that the logic applied in Andrew’s case does not work for

Bob’s case?
Let us introduce the following events:

A1 = {Andrew has a least one black T shirt} B1 = {Bob has a least one black T shirt}
A2 = {Both of Andrew’s T shirts are black} B2 = {Both of Bob’s T shirts are black}
A3 = {Andrew has a black T shirt on} B3 = {Bob has a black T shirt on}

Note that A1 = A3, and in fact, we have computed P(A2|A1) above. However, B1 ⊃ B3,
but B1 6= B3. To distinguish B1 from B3, we have to work with an extended sample space.
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Bob decides randomly which bag to open, say by flipping a fair coin; in the extended sample
space below, all previous outcomes are doubled, and boldface refers to the bag that Bob
has picked. Let

ΩBob = {(W,W ), (W,W), (W, B), (W,B), (B,W ), (B,W), (B, B), (B,B)}

while
B3 = {(W,B), (B,W ), (B, B), (B,B)}; B2 = {(B, B), (B,B)}

so that P(B2 |B3) = 2
4

= 1
2
, as anticipated.

Multiplication rule

It follows immediately from the definition of conditional probability that given two events
A and B we have

P(A ∩B) = P(B|A) · P(A),

which reflects a useful point of view; often, it is easier and more natural to compute P(A∩B)
this way than directly. By induction, for events E1, E2, . . . En

P(En ∩ · · · ∩ E1) = P(En|En−1 ∩ · · · ∩ E1) · P(En−1|En−2 ∩ · · · ∩ E1) · · · · · P(E2|E1)P(E1).

This can be particularly handy if the events E1, . . . , En (may) occur consecutively.

Example 3.4 (Pólya’s urn model). Initially, there are two balls in the urn, a blue and a
red ball. At each round, a ball in the urn is picked at random. The color of the ball picked
is checked, and then this ball and an additional ball of the same color is put back into the
urn. This way, the number of balls in the urn keeps growing with the number of the draws.

Question: What is the probability that the first three balls are blue, red, blue, in this
order? We may use the multiplication rule to answer this question as follows. For k ≥ 1,
let Bk denote the event that the kth ball drawn is blue. Similarly, let Rk denote the event
that the kth ball drawn is red. Then

P(B3 ∩R2 ∩B1) = P(B3|R2 ∩B1) · P(R2|B1) · P(B1) =
2

4
· 1

3
· 1

2
=

1

12
.

4 Bayes formula

Definition 4.1. The finite collection of events A1, . . . , An is a partition of the sample space
if

Ai ∩ Aj = ∅ whenever i 6= j; and A1 ∪ A2 ∪ · · · ∪ An = Ω.
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You may think of A1, . . . , An as pizza slices. Given a partition, the probability of an
arbitrary event B can be computed as

P(B) =
n∑
i=1

P(B ∩ Ai) =
n∑
i=1

P(B|Ai)P(Ai)

where we have used the axioms of probability and the multiplication rule. The above formula
is called the law of total probability. Now, for any index k = 1, . . . n fixed, we have

P(Ak|B) =
P(B ∩ Ak)

P(B)
=

P(B|Ak)P(Ak)
n∑
i=1

P(B|Ai)P(Ai)

which is called Bayes formula. It can be interpreted as follows. The Ai can be thought
of as various, mutually exclusive possibilities, that have some a priori chances P(Ai). Then
some information are gained, namely, that B has occurred. Given this information, the
probabilities of the Ai have to be updated, and it is precisely Bayes formula that gives the
new, a posteriori chances. Here are two examples to demonstrate this.

Example 4.2. Initially, there is just one blue ball in a box. First, a fair die is rolled. Then,
if the number rolled is odd, one red ball is put in the box; if the number rolled is 2 or 4, 3
red balls are put in the box; and if the number rolled is 6, 5 red balls are put into the box.
After that, a ball is drawn from the box. When entering the room at the end of this process
you are informed that the ball drawn is red. What do you think is the chance that 6 was
rolled on the die?

Introduce the following events:

A1 = {odd number rolled} = {one red ball and one blue ball in the box};
A2 = {2 or 4 rolled} = {3 red balls and one blue ball in the box};
A3 = {6 rolled} = {5 red balls and one blue ball in the box};
B = {Eventually, a red ball is drawn}.

Then

P(A1) =
1

2
P(B|A1) =

1

2
;

P(A2) =
1

3
P(B|A2) =

3

4
;

P(A3) =
1

6
P(B|A3) =

5

6
;

thus

P(A3|B) =
P(B|A3)P(A3)

P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)
=

5
6
· 1

6
1
2
· 1

2
+ 3

4
· 1

3
+ 5

6
· 1

6

=
5

23
.

In the next example there are just two events, denoted by A and Ac(= Ω \ A), which
make the partition.
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Example 4.3 (Medical test). Consider a blood test for a disease with the following char-
acteristics. The test is 95% effective, that is, it is positive with 0.95 chance if the person
tested is ill. However, with 1% chance it is false positive, that is, with 0.01 chance positive
if the person tested is healthy. Also, the disease is known to effect 0.5% – that is, 0.005
proportion – of the population. What is the chance that someone tested positive is indeed
ill?

Introduce the following events:

A = {the person tested is ill};
Ac = {the person tested is healthy};
B = {the test is positive}.

Then

P(A) = 0.005 P(B|A) = 0.95;

P(Ac) = 0.995 P(B|Ac) = 0.01;

thus

P(A|B) =
0.95 · 0.005

0.95 · 0.005 + 0.995 · 0.001
≈ 0.323

which may be surprisingly small at first sight. Note, however, that the a priori chance
(before the test) of the person being ill was 0.005, which is updated to 0.323 with one
positive test. Still, 0.323 may not be convincing enough. We will discuss how to proceed,
but let us introduce the notion of independence before that.

5 Independence

Definition 5.1. Two events A and B are independent if

P(A ∩B) = P(A) · P(B).

Example 5.2. Draw one card from an ordinary deck of 52 cards. Let

A = {the card drawn is a spade};
B = {the card drawn is an ace};
C = {the card drawn is a heart}.

We have

P(A) = P(C) =
13

52
=

1

4
;

P(B) =
4

52
=

1

13
;

A ∩B = {the card drawn is the ace of spades}, hence

P(A ∩B) =
1

52
=

1

4
· 1

13
= P(A) · P(B)
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which shows that A and B are independent. Similarly, B and C are independent. Note,
however

A ∩ C = ∅, hence

P(A ∩ C) = 0 6= P(A) · P(C)

so A and C are not independent. This is a warning that “mutually exclusive” and “inde-
pendent” are very different notions. In a sense, mutually exclusive events are as far from
being independent as possible, as the following Lemma shows. It can be proved by direct
inspection using the definitions and the multiplication rule.

Lemma 5.3. Consider two events E and F such that P(E) > 0. Then E and F are
independent if and only if

P(F |E) = P(F ).

In words: the independence of E and F means that the occurrence of E does not shift,
that is, does not provide additional information on the chances of the occurrence of F .

To proceed, let us revisit the example with the two fair dice by considering the following
events.

Example 5.4. Roll two fair dice, a white and a yellow die. Let

A = {the white die turns up 6};
B = {the sum of the two values rolled is 7};
C = {the yellow die turns up 1}.

Direct inspections shows

P(A) = P(B) = P(C) =
1

6
;

A ∩B = A ∩ C = B ∩ C = A ∩B ∩ C = {(6, 1)}.

Then P(A ∩ B) = 1
36

= P(A) · P(B), the event A and B are independent. Similarly A and
C are independent, and also, B and C are independent. That is, the events A,B and C are
pairwise independent. Yet, if both A and B occur, we can be certain that C occurs, too.
This is reflected in

P(A ∩B ∩ C) =
1

36
6= P(A) · P(B) · P(C).

Definition 5.5. The events A1, A2, . . . , An are independent as a collection if for any r =
1, . . . , n and any indices 1 ≤ i1 < · · · < ir ≤ n we have

P(Ai1 ∩ · · · ∩ Air) = P(Ai1) · P(Ai2) · · · · P(Air).

In particular, in the above example, the evens A,B and C are pairwise independent
but they are not independent as a collection. From now on, unless otherwise stated, by
independence we mean independence as a collection.
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Independent trials

Let n ≥ 1 and p ∈ (0, 1) be fixed parameters. Consider an experiment, where one particular
outcome, considered as “success” has probability p. Then this experiment is performed n
times, and we are interested in the number of successes. An examples for that: a fair die is
rolled 100 times, and a success is when the value 6 is rolled (n = 100, p = 1/6).

A mathematical model for that: to start, consider some sample space Ω0 with an event
A ⊂ Ω0 with P(A) = p. Let the sample space of the trial sequence be the n-fold Cartesian
product

Ω = Ω0 × Ω0 × · · · × Ω0

and for any i = 1, . . . , n let

Ai = Ω× · · · × Ω× A× Ω× · · · × Ω

where the A is at the ith factor. Then P (Ai) = p and the events A1, . . . , An are independent
(as a collection). Using this we arrive at the following formulas

P(all trials succeed) = pn;

P(there is at least one success) = 1− (1− p)n;

P(there are exactly ksuccesses) =

(
n

k

)
pk(1− p)n−k (k = 0, 1, . . . , n).

Conditional independence

Definition 5.6. The events B1 and B2 are conditionally independent given A if

P(B1 ∩B2|A) = P(B1|A) · P(B2|A)

Recall Example 4.3 with the following extension: after the first test, a second “indepen-
dent” test is performed. Let

B1 = {The first test is positive},
B2 = {The second test is positive}.

Then B1 and B2 are not independent; as if B1 occurs, we are getting more suspicious that
the person tested is actually ill, and the chances that B2 occurs are higher than without
any information whatsoever. Yet, B1 and B2 are independent given the status of the person
tested. That is, B1 and B2 are conditionally independent given either A or Ac (where the
notations of Example 4.3 are used).
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A natural question that arises is what the chances of the person being ill are given that
both tests have turned out to be positive.

P(A|B1 ∩B2) =
P(A ∩B1 ∩B2)

P(B1 ∩B2)
=

P(B1 ∩B2|A)P(A)

P(B1 ∩B2|A)P(A) + P(B1 ∩B2|Ac)P(Ac)
=

=
P(B1|A) · P(B2|A) · P(A)

P(B1|A) · P(B2|A) · P(A) + P(B1|Ac) · P(B2|Ac) · P(Ac)
=

=
(0.95)2 · 0.005

(0.95)2 · 0.005 + (0.01)2 · 0.995
≈ 0.98,

where we have used conditional independence.

6 Discrete random variables

Definition 6.1. A random variable is a (measurable) function X : Ω→ R.

In words, a random variable is a quantity the value of which depends on randomness (on
the outcome of the random experiment). Random variables are usually denoted by capital
letters (X, Y, Z, . . . ) or greek letters (ξ, η, ζ...) Measurability means that for every interval
I ⊂ R the set

{ω ∈ Ω|X(ω) ∈ I}

is an event, that is, it is included in the sigma-algebra F . This ensures that it makes sense
to consider the probability P(X ∈ I).

Definition 6.2. A random variable is discrete if its range is a countable set. That is, X
is discrete if the values it can take can be listed:

x1, x2, . . . , xk, · · · ∈ R.

The probability mass function of a random variable is p(= pX) : R→ R defined by

p(x) =

{
P(X = xk) if x = xk for some k = 1, . . .

0 otherwise.

The characteristic properties of probability mass functions are

pk ≥ 0, ∀k ≥ 1;
∞∑
k=1

pk = 1.

Consider the following examples:
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• Flip three fair coins. Let Y denote the number of coins that turn up Head. Then Y
can take the values 0, 1, 2 and 3, and P(Y = 0) = P(Y = 3) = 1

8
while P(Y = 1) =

P(Y = 2) = 3
8
.

• Keep rolling a fair die until the value 6 shows up for the first time. Let Z denote the
number of rolls. Then Z can take any positive integer value, and P(Z = k) = (5

6
)k−1 · 1

6
.

We will se later that Y and Z are examples of binomially and geometrically distributed
random variables, respectively.

Expected value

Definition 6.3. The expected value of the discrete random variable X is defined as

E(X) =
∞∑
k=1

xkP (X = xk)

if the series is absolutely convergent.

Some comments:

• Note that E(X) is fixed number (in contrast with X, which is a random quantity).
It can be regarded as the “center of mass” of the probability mass function. Another
interpretation is related to the law of large numbers, to be discussed later.

• If the series converges converges only conditionally, but not absolutely, than we say
that the expected value does not exist. Recall that in this case the sum of the series
depends on the order in which the terms are added which is certainly to be avoided.

Expectation of a function of a random variable

Introductory example. Let X take values 0, 1 and −1 with probabilities P(X = 0) = 0.5,
P(X = 1) = 0.2 and P(X = −1) = 0.3, and let Y = X2. Then P(Y = 0) = P(Y = 1) = 0.5
and thus EY = 0.5. Here we give an alternative way to compute EY .

Lemma 6.4. Let X be a random variable with EX < ∞, and let g : R → R be such that,
for Y = g(X), EY <∞. Then

EY = E(g(X)) =
∞∑
k=1

g(xk)P(X = xk)

The lemma shows that if we are interested only in E(g(X)), then we do not have to
determine the distribution of g(X).

14



Proof. Let y`; ` = 1, . . . denote the values that Y can take. As g may fail to be one-to-one,
several xk may be mapped to the same y`. We group the values xk accordingly.

∞∑
k=1

g(xk)P(X = xk) =
∞∑
`=1

∑
k:g(xk)=y`

g(xk)P(X = xk) =

=
∞∑
`=1

y`

 ∑
k:g(xk)=y`

P(X = xk)

 =
∞∑
`=1

y`P(Y = y`) = EY.

In the introductory example, EX = −0.1 so (EX)2 = 0.01, while E(X2) = 1. This
shows that, in general, E(g(X)) 6= g(EX). However, for a, b ∈ R:

E(aX + b) =
∞∑
k=1

(axk + b)P(X = xk) = a
∞∑
k=1

xkP(X = xk) + b
∞∑
k=1

P(X = xk) = aEX + b.

For r ≥ 1, E(Xr) (if exists) is called the rth moment of the random variable X.

Variance

Given a random variable X, let us denote (for brevity) the notation µ = EX, and let us
define the variance of X by

V arX = E((X − µ)2) =
∞∑
k=1

(xk − µ)2P(X = xk).

This measures how strongly X fluctuates about its mean. Alternative Formula:

V arX =
∞∑
k=1

(x2
k − 2µxk + µ2)P(X = xk) =

=
∞∑
k=1

x2
kP(X = xk)− 2µ

∞∑
k=1

xkP(X = xk) + µ2

∞∑
k=1

P(X = xk) =

= E(X2)− µ2 = E(X2)− (EX)2.

DX =
√
V arX is called the standard deviation of X. For linear transformations we

have

V ar(aX + b) = E(aX + b− E(aX + b))2 = E(aX + b− (aµ+ b))2 =

= E(a(X − µ))2 = a2E(X − µ)2 = a2 V ar(X),

and thus
D(aX + b) = |a|DX.
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7 The binomial distribution

Recall the setting of independent trials. A random variable that arises naturally in this
context is the number of successes out of n trials.

Definition 7.1. Let n ≥ 1 be an integer and p ∈ (0, 1) a real parameter. The random
variable X is binomially distributed with parameters n and p (notation X ∼ Binom(n, p))
if it can take values k = 0, 1, . . . , n and

P(X = k) =

(
n

k

)
pk(1− p)n−k (k = 0, 1, . . . , n).

Let us compute the expected value and the variance of the binomial distribution. Con-
sider first n = 1. This case is called an indicator random variable as we have just one trial,
and X indicates whether a success occurs. We have

EX = 0 · (1− p) + 1 · p = p;

EX2 = 02 · (1− p) + 12 · p = p;

V arX = EX2 − (EX)2 = p− p2 = p(1− p).

Now let us move on the the case n ≥ 2. Let t be a real parameter. We have, for any
integer k ≥ 1,

d

dt

∣∣∣∣
(t=1)

(tk) = (ktk−1)
∣∣
(t=1)

= k.

Moreover, if k ≥ 2, then

d2

dt2

∣∣∣∣
(t=1)

(tk) = (k(k − 1)tk−2)
∣∣
(t=1)

= k(k − 1).

Using this, linearity of differentiation and the binomial theorem, we have

EX =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k =

n∑
k=1

(
d

dt

∣∣∣∣
(t=1)

(tk)

)(
n

k

)
pk(1− p)n−k =

=
d

dt

∣∣∣∣
(t=1)

(
n∑
k=1

(
n

k

)
(tp)k(1− p)n−k

)
=

d

dt

∣∣∣∣
(t=1)

((tp+ 1− p)n) =

=
(
np(tp+ 1− p)n−1

)∣∣
(t=1)

= np.

With a similar computation

E(X(X − 1)) =
n∑
k=0

k(k − 1)

(
n

k

)
pk(1− p)n−k =

n∑
k=1

(
d2

dt2

∣∣∣∣
(t=1)

(tk)

)(
n

k

)
pk(1− p)n−k =

=
d2

dt2

∣∣∣∣
(t=1)

(
n∑
k=1

(
n

k

)
(tp)k(1− p)n−k

)
=

d2

dt2

∣∣∣∣
(t=1)

((tp+ 1− p)n) =

=
(
n(n− 1)p2(tp+ 1− p)n−2

)∣∣
(t=1)

= n(n− 1)p2,
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which then implies

E(X2) = E(X(X − 1)) + EX = n(n− 1)p2 + np;

V ar(X) = E(X2)− (EX)2 = np− np2 = np(1− p),

and thus
DX =

√
np(1− p).

In what follows, we investigate two important asymptotics of the binomial distribution.

Bernoulli’s Law of Large Numbers

Let us fix some p ∈ (0, 1), and consider a sequence of random variables X(= Xn) ∼
Binom(n, p), with this fixed value of p, but n→∞. That is, we keep performing the same
trial many times. Note that as EX = np→∞, so does the mass associated to X, hence, it
is more appropriate to consider X

n
instead of X, which is the proportion of successes among

the n trials.

Proposition 7.2 (Bernoulli’s Law of Large Numbers). Let X be as above. Then, for any
ε > 0, we have

P
(∣∣∣∣Xn − p

∣∣∣∣ > ε

)
→ 0 as n→∞.

Bernoulli’s Law of Large Numbers expresses, in a mathematically correct way, our ex-
perience that the proportion of successes approaches, as the number of trials grows, to the
individual success rate p. It can be proved by analysing the binomial mass function. This
is not included here, as Proposition 7.2 will follow as a particular case of the Weak Law of
Large Numbers, which is stated and proved in section 23. Note, however, that{∣∣∣∣Xn − p

∣∣∣∣ > ε

}
= {|X − EX| > nε}

and, as n → ∞, no matter how small ε is, nε is asymptotically much larger than the
standard deviation DX =

√
np(1− p).

The Poisson limit of the binomial distribution

Here we study an asymptotic regime of the binomial which is quite different from the case of
the Bernoulli Law of Large Numbers. In particular, let n→∞, however, do not keep p fixed,
instead, let p(= pn) → 0, in such a way that n · p → λ, where λ > 0 is a fixed parameter.
Note that this way EX remains uniformly bounded, and accordingly, it is reasonable to
consider the asymptotic behavior of the mass function of X.
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Proposition 7.3. Let us fix λ > 0 and let n→∞, p(= pn)→ 0 such that np→ λ. Then,
for any fixed integer k ≥ 0, we have(

n

k

)
pk(1− p)n−k −→ e−λ

λk

k!
.

Proof. Recall from Calculus that

lim
x→+∞

(
1− 1

x

)x
= e−1,

which implies

lim
n→∞

(1− p)n = lim
n→∞

((
1− 1

p−1

)p−1
)p·n

= (e−1)λ = e−λ. (7.1)

Now (
n

k

)
pk(1− p)n−k =

n(n− 1) . . . (n− k + 1)

k!
pk(1− p)−k(1− p)n =

=
1

k!
· (np)((n− 1)p) . . . ((n− k + 1)p) · (1− p)−k · (1− p)n

and the last factor tends to e−λ by (7.1). As p → 0 and k is fixed, (1 − p)−k → 1. 1
k!

is
constant, and as np→ λ, we have also (n− 1)p→ λ and similarly the further factors up to
(n− k + 1)p→ λ, so

(np)((n− 1)p) . . . ((n− k + 1)p)→ λk

which completes the proof of the Proposition.

8 The Poisson distribution

Definition 8.1. Given a parameter λ > 0, the random variable X is Poisson distributed
with parameter λ (notation X ∼ Poi(λ)) if

P(X = k) = e−λ
λk

k!
; k = 0, 1, 2, ...

We have seen that the Poisson distribution arises in a particular asymptotic regime of
the binomial distribution, when n → ∞, p = p(n) → 0 such that np → λ. In words,
the Poisson distribution is a good model for the number of successes when having many
independent trials such that the individual success rate is small. This is a very frequent
scenario – here are some Poisson distributed quantities:

• the number of calls received by the call center of a large bank within an hour. (There
are many customers, but for each of them the chance of calling within that hour is
small.)
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• the number of accidents within a month at some busy junction. (There are many cars
passing, but for each particular car the chance of a crash is very small.)

• the number of typos in a book chapter. (There are many characters, and for each
character the chance of being misspelt is small.)

Here we compute the expected value of a variable X ∼ Poi(λ):

E(X) =
∞∑
k=0

ke−λ
λk

k!
= e−λλ

∞∑
k=1

λk−1

(k − 1)!
= e−λλ

∞∑
m=0

λm

m!
= e−λλeλ = λ

where we changed the index of summation to m = k − 1. You may say this is obvious,
as we obtained the Poisson as a limit of the binomial – the expected value of which is np,
and we had np → λ. Yet, what we see here is that the order of taking the limit and the
infinite summation (or in a related context, the integration) can be swapped, which is a
highly nontrivial issue. We may proceed to compute the variance by noting E(X(X− 1)) =
E(X2)− EX, and

E(X(X − 1)) =
∞∑
k=0

k(k − 1)e−λ
λk

k!
= e−λλ2

∞∑
k=2

λk−2

(k − 2)!
= e−λλ2

∞∑
m=0

λm

m!
= e−λλ2eλ = λ2

thus

V ar(X) = EX2 − (EX)2 = E(X(X − 1)) + EX − (EX)2 = λ2 + λ− λ2 = λ.

Example 8.2. How many chocolate chips should you plan per muffin to ensure that no
more than one percent of customers get upset?

What I mean is that a customer gets upset if she/he finds no chocolate chips at all in
her/his muffin. Let X denote the number of chocolate chips in one particular muffin. Claim:
X is Poisson distributed.

Assuming that the claim holds, given many customers, by Bernoulli’s Law of Large
Numbers we have that

#{customers who get no muffin}
total number of customers

−→ P(X = 0)

hence we want that e−λ = P(X = 0) < 0.01, which implies the following lower bound on
the parameter of the Poisson distribution: λ > ln 100 ≈ 4.6.

Now let us argue why the claim holds. To bake the muffins, a large amount of dough
is prepared. This will be later chopped into M � 1 portions of equal size, where each
portion corresponds to one muffin. But before splitting it up, N � 1 chocolate chips are
put evenly into the dough. For any particular chip, the chance of landing in the portion that
corresponds to my muffin is 1/M . Hence we have many (N) trials with a small individual
success rate (1/M), and the number of successes (chocolate chips in my muffin) is Poisson
distributed. Moreover, λ ≈ N/M , the number of chocolate chips planned per muffin.

You may skip the somewhat lengthy Example 7d on the length of the longest run in the
Ross book. However, the material of pages 155–157 (ninth edition) on the Poisson process
is definitely relevant for us.
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8.1 The Poisson process

In many of the examples of quantities that are Poisson distributed, there is a time scale
involved. This opens the perspectives to an exciting branch of probability: the theory of
stochastic processes, which studies random phenomena evolving in time.

For the particular case of the Poisson process, we have a point process, a countable
random subset of the halfline [0,+∞). Here the halfline is typically interpreted as time.
The points in the random set will be referred as impacts, which may correspond to the calls
at the call center, the accidents at the junction etc.

The Poisson process is defined by three characteristic properties. To formulate these,
we need some terminology, which will be useful for future reference as well.

• Consider a continuous function f : [0,+∞) → R, which we study for small values
h→ 0+. f(h) = o(h) (“little o of h”) if

f(h) = o(h) ⇐⇒ lim
h→0+

f(h)

h
= 0.

In particular h2 = o(h), but 0.01 · h 6= o(h). Also,
√
h 6= o(h), however, h = o(

√
h).

• Consider two discrete random variables X and Y , taking values x1, x2, ... and y1, y2, ...,
respectively. X and Y are independent if for any pair of values xk and y` the events
{X = xk} and {Y = y`} are independent. Given random variables X1, X2, ...Xm, their
independence (as a collection) is defined analogously.

Definition 8.3. Fix some positive parameter λ. A point process on the positive halfline
[0,+∞) is a Poisson process of intensity λ if

P1 (Independence) Consider I1, I2, ...Im, an arbitrary finite collection of non-overlapping
intervals in [0,+∞), and let X1, ..., Xm denote the number of impacts in the intervals
I1, ...Im, respectively. The random variables X1, ..., Xm are independent.

P2 (Homogeneity) Let I be an (infinitesimally small) interval of length h. Then

P(There is at least one impact in I) = λ · h + o(h)

P3 (No Accumulation) Let I be an (infinitesimally small) interval of length h. Then

P(There are at least two impacts in I) = o(h)

Remark. Do not confuse λ, the intensity of the process with the various λ-s that appeared
previously as parameters of a Poisson distribution. In particular, the intensity of the process
has dimensions 1

time
. If time is measured in different units, λ has to be rescaled.

Proposition 8.4. Consider a Poisson process of intensity λ, and let It ⊂ [0,+∞) be an
interval of length t. Let N(t) denote the number of impacts inside It. Then N(t) ∼ Poi(λt).
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For the proof of this proposition we refer to the Ross book.

Example 8.5. This is a variation on Example 7e from Ross. Let us assume that on a
highway the average number of accidents is 3 per month. We start inspecting that highway
on a particular day.

(a) What is the chance that there are at least two accidents in the next twenty days?

(b) What is the chance that at least t days elapse until the first accident?

The number of accidents is a Poisson process of intensity λ = 3 1
month

= 0.1 1
day

. To solve

part (a), let us measure time in days, then

N(20) ∼ Poi

(
0.1

1

day
· 20days

)
= Poi(2).

Hence

P(N(20) > 2) = 1− P(N(20) = 0)− P(N(20) = 1) = 1− e−2 − 2

2!
e−2 =

= 1− 2e−2 ≈ 1− 2 · 0.135 = 0.73.

To solve part (b), let T denote the random variable that measures the time (in days)
that elapses until the first accident. Then

P(T > t) = P(N(t) = 0) = e−λt = e−0.1·t.

9 Further discrete distributions

Here we discuss the material of section 4.8 from the Ross book.

9.1 The geometric distribution

Let p ∈ (0, 1), the individual success rate in a sequence of independent trials (for example,
p = 1

6
for subsequent rolls of a fair die). The random variable X is geometrically distributed

with parameter p (i. e. X ∼ Geom(p)) if it can take the values k = 1, 2, ... and

{X = k} ⇐⇒ The first success is at the kth trial.

For brevity, let us introduce q = 1− p. Then, as X = k means there are k − 1 failures in a
row, followed by a success, the mass function is

P(X = k) = qk−1p.

Note
∞∑
k=1

qk−1p = p

∞∑
m=0

qm = p · 1

1− q
= 1
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where we have summed up a geometric series, which is the reason for the name of this distri-
bution. To compute expected value and variance, introduce the function g(q) =

∑∞
k=0 q

k =
1

1−q . As q ∈ (0, 1), this power series converges. Hence, denoting differentiation w.r. to q by
prime,

∞∑
k=1

kqk−1 = g′(q) =
1

(1− q)2
,

∞∑
k=2

k(k − 1)qk−2 = g′′(q) =
2

(1− q)3
.

Now

E(X) =
∞∑
k=1

kqk−1p = pg′(q) =
p

(1− q)2
=

1

p
.

In particular, in subsequent rolls of a fair die, the expected time when the first 6 occurs is
at the 6th roll. Also,

E(X(X − 1)) =
∞∑
k=2

k(k − 1)qk−1p = pqg′′(q) =
2pq

(1− q)3
=

2q

p2
,

thus

V ar(X) = EX2 − (EX)2 = E(X(X − 1)) + EX − EX2 =
2q

p2
+

1

p
− 1

p2
=

q

p2
,

where we have used q + p = 1. Then D(X) =
√
q

p
.

The geometric distribution has another remarkable feature, the memoryless property.
Let k and n be arbitrary positive integers.

P(X ≥ k) = qk−1, P(X > n) = qn

P(X ≥ k + n|X > n) =
qk+n−1

qn
= qk−1 = P(X ≥ k).

In words: if there was no success in the first n trials, the probability that we have to make
another k trials for the first success is independent of n. (What has happened previously
does not change the distribution of the additional time needed for the first success.)

9.2 The negative binomial distribution

Fix two parameters, an integer r ≥ 1 and a success rate p ∈ (0, 1). Consider again a sequence
of independent trials. Then X has a negative binomial distribution with parameters r and
p (i. e. X ∼ NegBinom(r, p)) if

{X = k} ⇐⇒ The rth success is at the kth trial.

Apparently, X can take values r, r + 1, ... Try to figure out the mass function! (PP (X =
k) =

(
k−1
r−1

)
prqk−r.)

Claim: EX = r
p

and V arX = rq
p2

. The proof is postponed to the next section.
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9.3 The hypergeometric distribution

This distribution will be familiar from problems on sampling without replacement (eg. draw-
ing cards, capturing tagged elk etc.). Setting: there are N balls in a box, M blue balls and
N −M red balls. n balls are drawn. Let X denote the number of blue balls among the n
balls drawn. Then

P(X = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) .

Claim: EX = nM
N

. The proof is postponed to the next section.

10 Expected values of sums of random variables

Here we discuss the content of section 4.9 from Ross and some related material.

Lemma 10.1. Let X and Y be arbitrary (discrete) random variables. We have E(X+Y ) =
EX + EY .

Proof. Let X and Y take values x1, x2, ... and y1, y2, ..., respectively. Let p(xk, yl) = P({X =
xk} ∩ {Y = y`}) (this is called the joint mass function, to be discussed later). Note that
the events {X = xk}, k = 1, 2, ... make a partition of the phase space. Similarly, the events
{Y = y`}, ` = 1, 2, ... make a partition of the phase space. Hence∑

`

p(xk, yl) = P(X = xk),
∑
k

p(xk, yl) = P(Y = y`)

Now

E(X + Y ) =
∑
k,`

(xk + y`)p(xk, y`) =
∑
k,`

xkp(xk, y`) +
∑
k,`

y`p(xk, y`) =

=
∑
k

xk
∑
`

p(xk, y`) +
∑
`

y`
∑
k

p(xk, y`) =

=
∑
k

xkP(X = xk) +
∑
`

y`P(Y = y`) = EX + EY.

By induction, for arbitrary random variables X1, X2, ...XN we have

E(X1 +X2 + ...+XN) = EX1 + EX2 + ...+ EXN . (10.1)

Lemma 10.2. Let X and Y be independent (discrete) random variables. We have V ar(X+
Y ) = V arX + V ar Y .
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Proof. We keep using the notation from the proof of Lemma 10.1. Note that as X and Y
are independent,

p(xk, y`) = P(X = xk)P(Y = y`).

This implies:

E(X · Y ) =
∑
k,`

xky`p(xk, y`) =

(∑
k

xkP(X = xk)

)
·

(∑
`

y`P(Y = y`)

)
= (EX) · (EY ).

(10.2)
Now, using Lemma 10.1 and (10.2)

E((X + Y )2) = EX2 + EY 2 + 2E(X · Y ) = EX2 + EY 2 + 2(EX)(EY ). (10.3)

On the other hand, using again Lemma 10.1,

(E(X + Y ))2 = (EX)2 + (EY )2 + 2(EX)(EY ). (10.4)

Subtracting (10.4) from (10.3) completes the proof of the Lemma.

By induction, for independent random variables X1, X2, ...XN we have

V ar(X1 +X2 + ...+XN) = V arX1 + V arX2 + ...+ V arXN . (10.5)

Simple as they may seem, Formulas (10.1) and (10.5) have loads of useful applications.

10.1 Indicator variables

Given an event A, the indicator variable associated to A is

ηA =

{
1 if A occurs,

0 otherwise.

Note that for an indicator random variable, if p = P(A), we have

EηA = 1 · P(A) + 0 · (1− P(A)) = p,

E(η2
A) = 12 · P(A) + 02 · (1− P(A)) = p, (10.6)

V ar(ηA) = E(η2
A)− (EηA)2 = p− p2 = p(1− p).

In many cases, it turns out to be a very useful idea to split up a random variable as a
sum of indicators.
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The binomial distribution

Let X ∼ Binom(n, p). Introduce, for i = 1, 2, ..., n

ηi =

{
1 if the ith trial is a success,

0 if the ith trial is a failure.

Then

• X = η1 + η2 + ... + ηn. To see this, think of someone who observes the sequence of
independent trials, and puts a tick on a piece of paper each time a trial succeeds. Then,
after the sequence has terminated, the number of ticks will be exactly the number of
successes, the actual value that X takes.

• The random variables η1, η2, ..., ηn are independent, as they correspond to independent
trials.

• By (10.6), Eηi = p and V ar ηi = p(1− p), for i = 1, ..., n.

This way

EX = E(η1 + ...ηn) = Eη1 + ...+ Eηn = np,

V ar X = V ar(η1 + ...ηn) = V ar η1 + ...+ V ar ηn = np(1− p). (10.7)

We have seen this before, but, actually, this argument describes what is going on.

The hypergeometric distribution

Let X have hypergeometric distribution, as in subsection 9.3. Let us think of the balls as
if they were labeled with 1, ..., N , in such a way that the blue balls have the labels 1, ...,M
(and thus the red balls carry the labels M + 1, ..., N). For i = 1, ...,M we introduce the
following indicator variables:

ηi =

{
1 if ball #i is among the n balls drawn,

0 otherwise.

Now:
X = η1 + · · ·+ ηM .

To see this, note that there are exactly as many blue balls among the n balls drawn, as
many indicators η1, . . . , ηM “fire” (are equal to 1). Now, for any i = 1, . . . ,M , we have:

Eηi = P(ηi = 1) = P(ball #i is drawn) =
n

N
.

To see this, think of the process as if it did not stop after selecting n balls, we keep on
drawing until all the N balls are drawn. This way, the outcome of our random experiment
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is a permutation of the balls. We consider the first n items of this permutation as being
selected. Any specific ball, hence in particular ball #i, has an equal chance of taking any
of the N possible positions, so the chance it takes one of the first n positions – it is selected
– is n/N .

Now using (10.1) we arrive at

EX = E(η1 + . . . ηM) = M
n

N
,

which is what we stated back in subsection 9.3.
Note that the indicators ηi are not independent this time, so (10.5) does not apply.

The elevator problem

5 people board the elevator on the first floor of an 11-storied building. Each of them picks
one of the floors 2, 3, . . . , 11 as a destination, evenly, and independently of each other. Let
X denote the number of times the elevator stops. Let us introduce the following indicator
variables:

ηi =

{
1 if the elevator stops on floor #i,

0 otherwise,

where i = 2, 3, . . . , 11. We have to compute Eηi = P(ηi = 1). Now {ηi = 0} means that
none of the 5 passengers pick floor #i, that is, all of them select one of the other 9 possible
destination floors. Since they act independently, the chance of that is ( 9

10
)5. We arrive at

Eηi = 1− P(ηi = 0) = 1− (0.9)5,

and thus by (10.1) at

EX = E(η2 + · · ·+ η11) = 10(1− (0.9)5) = 4.0951.

The indicators ηi are not independent this time either, so (10.5) does not apply.

10.2 Stopping times

Here the idea is to split up a random variable, which measures the time until a particular
event, as a sum of geometric random variables (cf. subsection 9.1). These geometrically
distributed terms correspond to the random intervals that elapse between consecutive in-
termediate stops, hence the name.

The negative binomial distribution

Let X ∼ NegBinom(r, p), as in subsection 9.2. Recall that X is the number of trials needed
for the rth success. Let us introduce the random variables T1, T2, . . . , Tr, where:

• T1 is the number of trials needed for the first success;
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• T2 is obtained by counting the number of trials after the first success until the second
success;

• and so on: Ti is the number of trials made after the (i − 1)st success, until the ith
success.

Then

• X = T1 + T2 + · · ·+ Tr;

• for any i = 1, . . . , r; the random variable Ti is geometrically distributed with parameter
p;

• as we consider a sequence of independent trials, the variables T1, ..., Tr are independent.

In short, X arises as a sum of i.i.d. (independent, identically distributed) – in fact, geomet-
rically distributed – random variables. Also, by subsection 9.1, ETi = 1

p
and V ar(Ti) = q

p2
.

Thus, by Formulas (10.1) and (10.5), we have:

EX = E(T1 + T2 + · · ·+ Tr) = r
1

p
=
r

p
,

V ar X = V ar(T1 + T2 + · · ·+ Tr) = r
q

p2
=
rq

p2
,

which is what was stated back in subsection 9.2.

The coupon collector problem

We have already introduced this problem back in February: a certain product (chocolate bar,
soda...) can be any of M different types. Any item purchased is of a type i (i = 1, . . . ,M),
with chance 1/M , independently of other items. Let the random variable S denote the
number of items one has to purchase to collect all M types. (Analogy: collecting state
quarters.)

Think about splitting up S as a sum of stopping times, to find its expected value and
variance. This is similar to the case of the negative binomial discussed above, but not
entirely the same.

As discussed in class, S = T1 + T2 + · · · + TM , where Ti (i = 1, . . .M) is the number
of items one has to purchase, after the (i− 1)th type has been collected, to collect the ith
type. Then Ti ∼ Geom(Mi+1

M
), since, after i− 1 types have been collected, I am happy if a

new item is any of the remaining M − (i− 1) types. So

E(S) = E(T1 + · · ·+ TM) = 1 +
M

M − 1
+

M

M − 2
+ · · ·+M.
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11 Cumulative distribution functions

From now on, the random variables are not necessarily discrete.

Definition 11.1 (Cumulative distribution function). Let X be an arbitrary random vari-
able. Then the (cumulative) distribution function of X is

FX : R→ R, FX(x) = P(X ≤ x).

Comments:

• Do not confuse X, which is a random variable with x, which is a real number.

• If there is no risk of confusion, the subscript X is often dropped and the distribution
function is written as F (x).

Our fist example is a discrete random variable.

Example 11.2. Let us flip three fair coins (say a quarter, a nickel and a dime), and let X
denote how many of them turns up Head. Determine the distribution function FX(x).

X is a familiar, binomially distributed random variable, it takes the values 0 and 3 with
probability 1/8 each; and the values 1 and 2 with probability 3/8 each. To determine FX(x):

• let x < 0. Then F (x) = P(X ≤ x) = 0, as X cannot take negative values.

• F (0) = P(X ≤ 0), and X ≤ 0 can only occur for this particular random variable if
X = 0. Hence F (0) = 1/8. Similarly, for x ∈ [0, 1), X ≤ x can only occur if X = 0,
hence F (x) = 0 on this interval.

• we have that, for this particular random variable, X ≤ 1 if either X = 0 or X = 1.
Hence

F (1) = P(X ≤ 1) = P(X = 0) + P(X = 1) =
1

8
+

3

8
=

1

2
.

Arguing as before, for x ∈ [1, 2), X ≤ x can only occur if X = 0 or X = 1, hence
F (x) = 1

2
on this interval.

• proceeding analogously with this reasoning we arrive at the function depicted on
Figure 1.

This example demonstrates the general fact that for a discrete random variable ξ, Fξ(x)
is a step function, the jumps of which are at the values that ξ can take, and the heights
of these jumps are the probabilities with which the particular values are taken. Now let us
consider a very different example.

Example 11.3. Let us consider a Poisson process of intensity λ, and let T denote the time
that elapses until the first impact, as in Example 8.5, part (b).
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Figure 1: Cumulative distribution function for Example 11.2

Apparently T ≥ 0, hence for any t < 0 we have F (t) = 0. Now let us consider t ≥ 0.
Then, as already computed in Example 8.5:

FT (t) = P(T ≤ t) = 1− P(T > t) = 1− P(N(t) = 0) = 1− e−λt.

Hence we arrive at

F (t) =

{
0 if t < 0,

e−λt it t ≥ 0.

See also Figure 2. This function, as opposed to the one depicted on Figure 1, is not a
step function, it is continuous, actually, differentiable except for the single point 0.

Figure 2: Cumulative distribution function for Example 11.3

Properties of cumulative distribution functions

Let F (x) be the distribution function of some random variable X.

1. F (x) is nondecreasing: for x1 < x2, we have F (x1) ≤ F (x2). Indeed, the events
E1 = {X ≤ x1} and E2 = {X ≤ x2} satisfy E1 ⊂ E2, hence F (x1) = P(E1) ≤
P(E2) = F (x2).

2. lim
x→+∞

F(x) = 1. By monotonicity (1. above), it is enough to show lim
n→∞

F (n) = 1 and

refer to the sandwich principle. To this end, let An = {X ≤ n}. We have

lim
n→+∞

F (n) = lim
n→+∞

P(An) = P(
∞⋃
n=1

An) = P(Ω) = 1,

29



since the An make an increasing sequence of events.

3. lim
x→−∞

F(x) = 0. It is enough to show lim
n→∞

F (−n) = 0 and refer to the sandwich

principle. To this end, let Bn = {X ≤ −n}. We have

lim
n→∞

F (−n) = lim
n→+∞

P(Bn) = P(
∞⋂
n=1

Bn) = P(∅) = 0,

since the Bn form a decreasing sequence of events.

4. F (x) is right continuous. Again referring to monotonicity (1. above), it is enough
to show that, for any fixed x0 ∈ R, lim

n→∞
F (x0 + 1

n
) = F (x0). Let Cn = {X ≤ x0 + 1

n
},

which is a decreasing sequence and

∞⋂
n=1

Cn = {X ≤ x0} ⇒ lim
n→+∞

P(Cn) = P(X ≤ x0) = F (x0).

Comments:

• The above four properties characterize distribution functions. This means that, on
the one hand, for any random variable X the distribution function FX(x) has these
properties. On the other hand, it holds true that for any F (x) that has the above four
properties, there exist a random variable X such that F (x) = FX(x).

• F (x) is, in general, not continuous from the left. For any x0 ∈ R fixed, let us introduce
the notations

F (x0 − 0) = lim
x→x0−0

F (x), F (x0 + 0) = lim
x→x0+0

F (x)

for the left and right limits of F (x) at x0, respectively. Then 4. above states that
F (x0 + 0) = F (x0), for any x0 ∈ R. On the other hand,

F (x0 − 0) = lim
n→∞

P(X ≤ x0 −
1

n
) = P(

∞⋂
n=1

{X ≤ x0 −
1

n
}) = P(X < x0).

In particular:

F (x0)− F (x0 − 0) = P(X ≤ x0)− P(X < x0) = P(X = x0).

So, FX(x) has a jump at some point x0 ∈ R if and only if P(X = x0) > 0. Accordingly,
if FX(x) is continuous on its entire domain R, this means that no fixed value is taken by
X with positive probability. In other words, X does not have any discrete component.

The significance of the distribution function is that any information on the distri-
bution of X can be expressed in terms of FX(x). Let, in particular a < b be arbitrary.
Then:

P(X ∈ (a, b]) = P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a). (11.1)
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12 Absolutely continuous random variables

Definition 12.1. The random variable X is absolutely continuous if there exists an inte-
grable function fX : R→ R such that

FX(a) =

∫ a

−∞
fX(x)dx, ∀a ∈ R. (12.1)

In this case fX(x) is the density function of X.

Recall from calculus that in this case F (x) is (one of) the antiderivative(s) of f(x).
Accordingly, building upon (11.1):

P(a < X ≤ b) = F (b)− F (a) =

∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx =

∫ b

a

f(x)dx

in accordance with the fundamental theorem of calculus. This then generalizes to

P(X ∈ B) =

∫
B

f(x)dx

for any Borel measurable set B ⊂ R. In particular, for any x0 ∈ R,

P(X = x0) =

∫ x0

x0

f(x)dx = 0,

that is, no fixed value is taken by X with positive probability. Recall that this is equivalent
to the continuity of F (x). In fact, F (x) is not only continuous, it is (almost everywhere)
differentiable: dF

dx
|x=x0 = f(x0) for almost every x0 ∈ R.

Comment: The range of an absolutely continuous random variable X is not restricted
to a countable set, the probability is “smeared all over the place”. As no fixed number is
taken with positive probability, one may wonder how to interpret fX(x0) for some x0 ∈ R.
Now let consider some ε > 0 infinitesimally small. Then, assuming that f(x) is continuous
at x0:

P(x0 ≤ X ≤ x0 + ε) =

∫ x0+ε

x0

fX(x)dx ≈ fX(x0)ε,

accordingly, fX(x0) can be interpreted as the rate with which the probability of falling into
a small interval about x0 scales down as the size of the interval tends to 0.

Density functions have the following characteristic properties:

• f(x) ≥ 0 for (almost) every x ∈ R,

•
+∞∫
−∞

f(x)dx = 1.
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Compare these with what we have learned about the probability mass function of a
discrete random variables! In a nutshell, in the absolutely continuous case we will have the
same formulas as in the discrete case, just summation will be replaced by integration. You
will have to recall what you learned in calculus!

Example 12.2. The density function of a random variable X is

fX(x) =

{
0 if x < 1,
A
x3

if x ≥ 1.

(a) A =?

(b) P(2 ≤ X ≤ 3) =?

To find A, we have to check that X satisfies the two characteristic properties of density
functions. f(x) ≥ 0 holds for every x ∈ R if A ≥ 0. For the other property:

1 =

∫ +∞

−∞
f(x)dx =

∫ ∞
1

A

x3
dx = lim

L→∞

[
− A

2x2

]L
1

=

= lim
L→∞

(
− A

2L2
+
A

2

)
=
A

2
, =⇒ A = 2.

To solve part (b):

P(2 ≤ X ≤ 3) =

∫ 3

2

f(x)dx =

∫
2

x3
dx =

[
1

x2

]3

2

= −1

9
+

1

4
=

5

36
.

There are several further examples of similar character in section 5.1 of the Ross book.
Also, Homework set #7 (to be posted soon) will contain several such exercises.

Expected values

Definition 12.3. The expected value of an absolutely continuous random variable is defined
as

EX =

∞∫
−∞

xf(x)dx.

Convergence issues analogous to the ones discussed in the discrete case may arise. In
particular, it is required that the integral is absolutely convergent, otherwise, there are three
possibilities, EX = +∞, EX = −∞, or the expected value does not exist.

Proposition 12.4. If X is an absolutely continuous random variable, and g : R → R is
measurable, then Y = g(X) is another random variable. We have

EY = E(g(X)) =

∞∫
−∞

g(x)fX(x)dx

if the integral on the RHS is absolutely convergent.
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For the proof, see section 5.2 of the Ross book. Let me just mention that the argument
we had for the analogous statement in the discrete case does not work here.

From here the general formalism runs pretty much parallel to the discrete case. Let us
keep our variable X fixed. It is a common notation to write µ = µX := EX (the subscript
is dropped if there is no ambiguity).

Definition 12.5. The variance of the variable X is defined by

V arX = E((X − µ)2) =

∞∫
−∞

(x− µ)2fX(x)dx.

The standard deviation of X is DX =
√
V arX.

The following properties are proved exactly the same way as in the discrete case, just
replace summation by integration:

• alternative Formula for the variance:

V arX = E(X2)− µ2 = E(X2)− (EX)2,

• generally, E(g(X)) and g(EX) are different,

• linear rescaling: for a, b ∈ R we have

E(a·X+b) = a·E(X)+b, V ar(a·X+b) = a2·V ar(X), D(a·X+b) = |a|·D(X).
(12.2)

13 Uniform distribution

Definition 13.1. Let α < β two real numbers. The random variable X is uniformly dis-
tributed on the interval [α, β] if its density fX(x) is equal to some positive constant c on the
interval [α, β], and vanishes outside the interval. Notation: X ∼ UNI[α, β].

Note that the requirement
∞∫
−∞

fX(x)dx = 1 fixes the constant c and we have:

fX(x) =

{
1

β−α if α ≤ x ≤ β,

0 otherwise ,

and, by (12.1)

FX(x) =


0 if x < α,
x−α
α−β if α ≤ x ≤ β,

1 if x > β.
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Figure 3: Density and distribution function for the uniform distribution

See also Figure 3.
Here we compute the expected value and the variance for the uniform distribution. Let

us consider first the special case Y ∼ UNI[0, 1], then fY (x) = 1 for x ∈ [0, 1] and fY (x) = 0
otherwise. Hence

EY =

∞∫
−∞

xfY (x)dx =

∫ 1

0

xdx =
1

2
;

E(Y 2) =

∞∫
−∞

x2fY (x)dx =

∫ 1

0

x2dx =
1

3
,

V ar(Y ) = E(Y 2)− (EY )2 =
1

3
− 1

4
=

1

12
.

Now let X ∼ UNI[α, β], then X = (β − α)Y + α, and using (12.2):

EX = (β − α)EY + α =
α + β

2
,

V ar(X) = (β − α)2 V ar Y =
(β − α)2

12
.

For problems on the uniform distribution, a useful formula is as follows. Let α ≤ α1 < β1 ≤
β, then

P(α1 ≤ X ≤ β1) =

∫ β1

α1

fX(x)dx =
β1 − α1

β − α
=

length of “useful” interval

total available length
. (13.1)

This is analogous to the formula we had in combinatorial problems. Some applications:

• Let X ∼ UNI[0, 5]. What is the chance that the integer part of X is an odd number?

P(integer part odd) = P(X ∈ [1, 2)) + P(X ∈ [3, 4)) =
1

5
+

1

5
=

2

5
= 0.4.
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• Let Y ∼ UNI[0, 1]. What is the chance that the numbers Y , 1−Y and
1

2
arise as the

sidelengths of a triangle?

Y + 1− Y >
1

2
=⇒ always,

Y +
1

2
> 1− Y =⇒ Y >

1

4
,

1− Y +
1

2
> Y =⇒ Y <

3

4
,

(13.2)

hence

P (can from a triangle) = P
(

1

4
< Y <

3

4

)
=

1

2
.

See Example 3c in section 5.3 of the Ross book for another application. Also, such problems
are included in Homework set #7.

Although we do not discuss multidimensional distributions in this section, it is worth
mentioning that Formula (13.1) has a natural generalization to higher dimensions. For
example, if the random point P is uniformly distributed on some bounded domain D ⊂ R2,
then for D1 ⊂ D,

P(P ∈ D1) =
Area(D1)

Area(D)
.

As an application, recall the Bertrand’s paradox, Example 3d in section 4.3 of Ross, which
we discussed on the very first class of this course, back in Budapest.

Distributions that are neither discrete, nor absolutely continuous

Discrete and absolutely continuous are two major classes of random variables, however,
there are distributions that do not belong to any of these two categories. This can happen
in different ways.

Distributions that have a discrete and an absolutely continuous component. This is
Example 10a in section 4.10 of the Ross book. See also Figure 9 there. Such a random
variable can be realized as follows. Flip a fair coin. If the coin turns up Head, let X
be uniformly distributed on the interval [0, 0.5]. If the coin turns up Tail, let X follow a
discrete distribution. In particular the conditional probabilities are P(X = 1|Tail) = 1/3,
P(X = 2|Tail) = 1/2 and P(X = 3|Tail) = 1/6.

Distributions that have neither discrete, nor absolutely continuous components. This is
a different scenario, more interesting mathematically, and related to fractals. Watch the
“devil’s staircase” video on this, linked from piazza.
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14 Normal (Gaussian) random variables

This is probably the most important class of continuous distributions. We start with the
case of the standard normal distribution.

The standard normal distribution

Definition 14.1. A random variable Z has standard normal distribution (notation: Z ∼
N (0, 1)) if its density function is

fZ(x) = ϕ(x) =
1√
2π
e−x

2/2.

Accordingly, the cumulative distribution function of Z is

FZ(z) = Φ(z) =

z∫
−∞

ϕ(x)dx.

The graph of the function ϕ(x) is the well known bell curve, see Figure 4. The function
Φ(x) cannot be expressed in terms of elementary functions. It is an analytic function,
see Figure 5 for its graph. Its values are given in the standard normal table, available for
instance in the resources section of piazza. When solving homeworks or taking exams, you
may use this table.

Figure 4: The standard normal density ϕ(x)

Note that ϕ(x) is an even function – this precisely means that the distribution of Z ∼
N (0, 1) is symmetric about the origin. This implies in particular

Φ(0) =
1

2
, Φ(−x) = 1− Φ(x).
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Figure 5: The standard normal distribution function Φ(x)

We still need to check that ϕ(x) is a proper density function. ϕ(x) ≥ 0 is obvious. Now
let

I =

∞∫
−∞

e−x
2/2dx.

We still need to verify
∞∫

−∞

ϕ(x)dx ⇔ I =
√
π ⇔ I2 = 2π.

Now:

I2 =

∞∫
−∞

e−x
2/2dx ·

∞∫
−∞

e−y
2/2dy =

∫
R2

e−
x2+y2

2 dxdy =

=

2π∫
θ=0

+∞∫
r=0

e−
r2

2 rdrdθ = (2π)
[
−e−

r2

2

]∞
r=0

= 2π.

where we have used polar coordinates.
Now we compute the expected value and the variance of Z ∼ N (0, 1). First note that

there are no issues with convergence: since there exists C > 0 such that

e−x
2/2 ≤ Ce−|x|

and, for arbitrary k ≥ 1,
+∞∫
0

xke−xdx is absolutely convergent, so is
∞∫
−∞

xke−x
2/2dx. This

37



means in particular that limits to ±∞ can be taken in an arbitrary manner. Now

E(Z) =

∞∫
−∞

xϕ(x)dx = (2π)−1/2

∞∫
−∞

xe−x
2/2dx = 0,

since the function is odd, and the interval is symmetric about the origin. To proceed,

V ar(Z) = E(Z2)− (EZ)2 = E(Z2) =

∞∫
−∞

x2ϕ(x)dx = (2π)−1/2

∞∫
−∞

x2e−x
2/2dx,

and to compute
∞∫
−∞

x2e−x
2/2dx we use integration by parts with u = x and dv = xe−x

2/2dx.

Then du = dx and v = −e−x2/2, so

∞∫
−∞

x2e−x
2/2dx =

[
−xe−x2/2

]+∞

−∞
+

∞∫
−∞

e−x
2/2dx = I =

√
2π

as the first term vanishes by L’Hospital’s rule. We arrive at

V ar(Z) = 1.

To define normal distributions with other parameters, it is convenient to introduce some
further terminology.

Standardization

Definition 14.2. A random variable Y is standard if EY = 0 and V ar(Y ) = 1. Let X be
an arbitrary random variable, and let µ = EX and σ2 = V ar(X). The standardization of
X is

Y =
X − µ
σ

⇐⇒ X = σY + µ.

It is easy to check that Y is indeed a standard random variable:

EY = E
(
X − µ
σ

)
=

1

σ
(EX − µ) = 0

V ar Y = V ar

(
X − µ
σ

)
=

1

σ2
V ar(X) = 1.

Let FX(x) and FY (x) denote the cumulative distribution functions of X and Y , respectively.
Then

FX(x) = P(X ≤ x) = P(σY + µ ≤ x) = P
(
Y ≤ x− µ

σ

)
= FY

(
x− µ
σ

)
.
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In the absolutely continuous case let fX(x) and fY (x) denote the density functions of X
and Y , respectively. Differentiation gives:

fX(x) =
1

σ
fY

(
x− µ
σ

)
.

General normal distributions

Definition 14.3. Fix µ ∈ R and σ2 > 0. X is normally distributed with expected value µ
and variance σ2 (notation X ∼ N (µ, σ2)) if there exists Z ∼ N (0, 1) such that X = σZ+µ.

If X ∼ N (µ, σ2), by the above Formulas

FX(x) = Φ

(
x− µ
σ

)
,

fX(x) =
1

σ
ϕ

(
x− µ
σ

)
=

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,

where exp(t) = et. See also Figure 6.

Figure 6: The density function of N (µ, σ2)

By construction, the class of normal distributions is invariant under rescaling. That is, if
X ∼ N (µ, σ2) and a, b ∈ R then for X ′ = aX+b we have X ′ ∼ N (µ′, (σ′)2) with µ′ = aµ+b
and (σ′)2 = a2σ2.

Normally distributed random variables arise in many situations. The main reason for
this is the central limit theorem. Computations of probabilities of normally distributed
random variables are based on the standard normal table, as in the example below.

Example 14.4. The amount of beer served in a pub is normally distributed with expected
value 1 pint and standard deviation 2 oz.

(a) What is the chance that I get less than 13 oz?

(b) I have a tolerance level a oz, which means that I complain iff I get less than a oz. If
this happens on the average once out of 20 occasions, what is my tolerance level?
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Let X denote the amount of beer measured in oz. Then X ∼ N (16, 4). (Watch out
when it is σ and when σ2!) This means Z = X−µ

σ
= X−16

2
is standard normal. For part (a):

P(X ≤ 13) = P
(
X − 16

2
≤ −3

2

)
≈ P(Z ≤ −1.66) = Φ(−1.66) = 1− Φ(1.66) ≈

≈ 1− 0.9515 = 0.0485,

using the standard normal table.
For (b), we have to search backwards in the table.

0.05 = P(X ≤ a) = P
(
X − 16

2
≤ a− 16

2

)
= P

(
Z ≤ a− 16

2

)
= Φ

(
a− 16

2

)
Hence, using the relation Φ(−x) = 1− Φ(x) we get

Φ

(
16− a

2

)
= 0.95 = Φ(1.65)

which, by monotonicity (hence invertibility) of Φ implies

16− a
2

= 1.65 ⇐⇒ a = 16− 2 · 1.65 = 12.7.

Further problems of similar character are included in Homework #7.

15 The de Moivre-Laplace Central limit theorem

Let X(= X(n)) ∼ Binom(n, p) with p fixed and n→∞. (For example, we keep rolling the
same die (p = 1

6
) many times (n→∞).)

In such an asymptotic regime (which is, it is important to emphasize, quite different
from the Poisson regime!), the distribution is so much “stretched out” that we can hardly
observe anything about it if we want to study it directly. In particular EX = np also tends
to ∞. As a first step, let us center X and consider:

X − EX = X − np

Now the expected value is moved to the origin, yet, the mass function remains stretched
out, both along the positive and along the negative semi-axis.

We have discussed earlier Bernoulli’s law of large numbers, which concerns a rescaled
version of our (centered) variable, namely

Y = (Y (n)) =
X

n
− p =

X − np
n

; =⇒ P(|Y | ≥ ε)→ 0
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for any ε > 0. This means that if we divide by n, all the randomness is scaled out, the
distribution of Y gets concentrated on 0 in the limit. In other words, dividing by n is an
overkill.1 This is not a surprise, as

D(X) =
√
npq (q = 1− p)

and thus D(X) = o(n) (recall the little o notation).
The de Moivre-Laplace theorem concerns the standardization of X. The idea is to

consider, instead of Y , the variable

Z = (Z(n)) =
X − EX
D(X)

=
X − np
√
npq

. (15.1)

The theorem states that Z is not only standard, actually, it can be regarded as standard
normal in the asymptotic as n→∞. So here is the statement of the theorem.

Theorem 15.1 (de Moivre-Laplace CLT). Let X(= X(n)) ∼ Binom(n, p) with p fixed and
n→∞. Let us consider the standardization (15.1). Then, for any a < b we have

P
(
a <

X − np
√
npq

≤ b

)
−→ Φ(b)− Φ(a) as n→∞. (15.2)

Although the full proof of this theorem is not provided here, nonetheless, we sketch the
main steps. Formula (15.2), which is our ultimate goal, will be refereed to as the global form
of the de Moivre-Laplace theorem.

Step #1: Stirling’s formula. This is to approximate n! for large values of n.

n! ≈ nn

en
·
√

2πn, more precisely
n! · en

nn ·
√
n

= C +O

(
1

n

)
,

where C =
√

2π. Here, given two functions u, v : N → R, u(n) = O(v(n)) (u is big O
of v) means that there exists some K > 0 such that u(n) ≤ Kv(n) (cf. with little o we
discussed at the Poisson process). The argument below proves that the (logarithm of the)
sequence converges to some constant C, with the error term O(1/n). The fact that C =

√
2π

follows form the de Moivre-Laplace theorem itself (namely, the limit has to be a probability
distribution, which fixes the constant).

Stirling’s formula relies on the observation that for any k ≥ 1

0 ≤ ak =

k+1∫
k

lnxdx− ln k + ln (k + 1)

2
≤ 1

k2
. (15.3)

This arises by comparing the integral with the area of the trapezoid. The bound form
below follows as the function ln(x) is concave down. The bound from above follows when
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Figure 7: The idea behind Stirling’s formula

computing the error term of the trapezoidal rule – the second derivative of ln(x) is − 1
x2

.
See also Figure 7.

Now let us sum up the expression in (15.3) on k = 1, ..., (n− 1). we have:

Sn =
n−1∑
k=1

ak =

n∫
1

lnxdx−
(

ln 1

2
+ ln 2 + · · ·+ ln(n− 1) +

ln(n)

2

)
=

= [x lnx− x]n1 −
(

ln(2 · 3 · . . . (n− 1) · n)− ln(n)

2

)
=

= n ln(n)− ln(n)− ln(n!) + ln(
√
n) = ln

(
nn ·
√
n

en · n!

)
.

Also, (15.3) implies that Sn is a series with positive terms, bounded from above by:

Sn ≤
n−1∑
k=1

1

k2

which is a convergent series. Hence there exists some S > 0 such that

S = lim
n→∞

Sn = lim
n→∞

ln

(
nn ·
√
n

en · n!

)
Also, by the tail estimate on

∑
1
k2

:

0 ≤ S − Sn ≤
∞∑
k=n

1

k2
= O

(
1

n

)
.

1Let us note, nonetheless, that in this setting X
n , the empirical success frequency, is definitely a very

reasonable quantity to consider. See the applications further down in this section.
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Step #2: The local form of the de Moivre-Laplace theorem. To appreciate this, recall
that

X ∼ Binom(n, p); Z =
X − np
√
npq

.

Accordingly, X can take the values k = 0, 1, . . . , n, with probabilities

P(X = k) =

(
n

k

)
pkqn−k; k = 0, 1, . . . , n.

Since the standardization Z is an affine linear rescaling of X, for any k there exists exactly
one zk ∈ R such that X = k iff Z = zk:

values of X : 0 , 1 , . . . , k , . . . , n

m, m, . . . , m, . . . , m
values of Z : z0, z1, . . . , zk, . . . , zn.

In fact, zk = k−np√
npq

. The local form of the de Moivre Laplace theorem states that

P(Z = zk) = P(X = k) =

(
n

k

)
pkqn−k =

ϕ(zk)√
npq

+ O

(
1

n

)
(15.4)

for any k ≥ 1 such that |k − np| = O(
√
n). (15.4) follows from Stirling’s formula by some

computation, which we do not detail here.
Step #3: Local form implies global form. We use the notation from Step #2. Note that

∆z = zk − zk−1 =
1
√
npq

, k = 1, 2, . . . , n.

Now, using (15.4):

P(a < Z ≤ b) =
∑

k:a<zk≤b

P(Z = zk) =
∑

k:a<zk≤b

ϕ(zk)√
npq

+ O

(
1√
n

)
, (15.5)

The bound of the second term here follows as there are O(
√
n) terms of magnitude O(1/n).

Consequently, the second term is O
(

1√
n

)
, which tends to 0 as n→∞.

On the other hand, the first term in the RHS of (15.5) is a Riemann sum, in particular

∑
k:a<zk≤b

ϕ(zk)√
npq

=
∑

k:a<zk≤b

ϕ(zk) ·∆z −→
∫ b

a

ϕ(z)dz = Φ(b)− Φ(a),

as n→∞, which is precisely (15.2).
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Applications

Example 15.2. A fair coin is flipped 40 times. What is the chance that there are exactly
20 Heads?

It may be argued that n = 40 is not that large, yet, we will see that the approximation
given by the de Moivre-Laplace CLT is not that far from the actual probability. Let X
denote that number of Heads. Then:

X ∼ Binom(n, p) = Binom(40, 0.5)

hence
EX = 40 · 0.5 = 20; D(X) =

√
40 · 0.5 · 0.5 =

√
10,

hence the standardization is Z = X−20√
10

It is important to point out that we approximate a
discrete distribution with a continuous distribution. Hence, literally speaking, for any k the
chance of P(X = k) is 0 by this approximation. To handle this issue, we assign to each of
the values X = k, the interval X ∈ (k−0.5, k+0.5]. This is called the continuity correction.
Now

P(X = 20) = P(19.5 < X ≤ 20.5) = P
(
− 0.5√

10
<
X − 20√

10
≤ 0.5√

10

)
≈

≈ Φ

(
0.5√

10

)
− Φ

(
− 0.5√

10

)
= 2Φ

(
0.5√

10

)
− 1 ≈

≈ 2Φ(0.16)− 1 ≈ 2 · 0.5636− 1 = 0.1272.

In fact

P(X = 20) =

(
40

20

)(
1

2

)40

= 0.1254...

so the approximation is pretty good. It is worth noting for future reference:

Z ∼ N (0, 1) =⇒ P(|Z| ≤ a) = P(−a ≤ Z ≤ a) = Φ(a)− Φ(−a) = 2Φ(a)− 1, (15.6)

for any a > 0, by Φ(−a) = 1− Φ(a).

Example 15.3. Consider a college with 400 students. Each of the students are expected
to show up at a lecture with 0.6 chance, independently of each other. How many seats are
needed to ensure, with 99% probability, that every student who shows up at the lecture can
take a seat?

It is important to observe how this question is formulated. If we wanted to ensure that
all attendees can take a seat with 100% probability, then apparently 400 seats would be
needed. There is a possibility that all the 400 students show up, however, the probability
of this is tiny. If we want to go only for 99%, that changes the picture significantly. Let X
denote the number of students who attend the lecture. Then

X ∼ Binom(n, p) = Binom(400, 0.6)
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hence
EX = 400 · 0.6 = 240; D(X) =

√
400 · 0.6 · 0.4 =

√
96 ≈ 9.8,

and we are looking for the smallest k ≥ 1 such that

P(X ≤ k) ≥ 0.99.

Now

P(X ≤ k) = P
(
X − 240

9.8
≤ k − 240

9.8

)
= Φ

(
k − 240

9.8

)
So we want

Φ

(
k − 240

9.8

)
≥ 0.99 = Φ(2.32)

which, by monotonicity of Φ is equivalent to

k − 240

9.8
≥ 2.32 ⇐⇒ k ≥ 262.736;

so 263 seats will do!

Example 15.4. How many times a fair coin has to be flipped to ensure that the proportion
of Heads is between 0.49 and 0.51, with 0.95 probability?

Again, observe how the question is formulated. By the Law of Large Numbers, the
proportion of Heads converges to 0.5 in the following sense. Given any precision level ε, as
the number of trials n grows, the proportion of Heads will lie in the ε neighborhood of 0.5,
with higher and higher certainty (or probability) 1 − δ. The de Moivre-Laplace CLT this
way provides a quantitative refinement of the Bernoulli Law of Large Numbers. We can
never be 100% sure, no matter how many trials are made, there is always a tiny-tiny chance
that all flips are Tails (for instance).

There are three quantities in relation here, the number of trials n, the precision ε and
the certainty 1 − δ. If two of these are given, the third can be determined. The question
above is formulated in such a way that we are looking for a lower bound on the number of
trials n that ensures a particular precision with a particular certainty.

Let X denote the number of Heads. Then

X ∼ Binom(n, p) = Binom(n, 0.5)

hence
EX = n · 0.5; D(X) =

√
n · 0.5 · 0.5 =

√
n · 0.25 = 0.5

√
n.

Now n is unknown, and we want that

0.95 ≤ P
(

0.49 ≤ X

n
≤ 0.51

)
= P(|X − 0.5n| ≤ 0.01n)

P
(∣∣∣∣X − 0.5n

0.5
√
n

∣∣∣∣ ≤ 0.02
√
n

)
= 2Φ(0.02

√
n)− 1,
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where we have used (15.6). This is equivalent to

Φ(0.02
√
n) ≥ 0.975 = Φ(1.96) ⇐⇒ 0.02

√
n ≥ 1.96 ⇐⇒ n ≥ 9604.

I will comment in class how this relates to survey making (cf. Homework #7B).

16 The exponential distribution

Let λ > 0. The random variable X is exponentially distributed with parameter λ (notation:
X ∼ Exp(λ)) if

FX(x) =

{
0 if x < 0,

1− e−λx if x ≥ 0,

and, accordingly

fX(x) =

{
0 if x < 0,

λe−λx if x ≥ 0.

See also Figure 8. Note that we have already seen this distribution in Example 8.5, part
(b): this is the distribution of the time that elapses until the first impact in the Poisson
process. The exponential distribution arises frequently as a model for various waiting times.

Figure 8: Distribution function and density for X ∼ Exp(λ).

Computing moments is an exercise on integration by parts:

EX =

∞∫
0

xλe−λxdx =
[
−xe−λx

]∞
0

+
1

λ

∞∫
0

λe−λxdx =
1

λ
;

and for any k ≥ 2

EXk =

∞∫
0

xkλe−λxdx =
[
−xke−λx

]∞
0

+
k

λ

∞∫
0

λxk−1e−λxdx =
k

λ
EXk−1.
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The recursion gives, in particular

EX2 =
2

λ2
, thus V ar(X) =

1

λ2
and D(X) =

1

λ
.

A remarkable feature of the exponential distribution is the memoryless property (cf. the
analogous property we have seen for the geometric random variable). Let t > 0 and s > 0
be arbitrary. Then

P(X > s) = e−λs;

P(X > t+ s |X > t) =
P(X > s+ t)

P(X > t)
=
e−λ(s+t)

e−λt
= e−λs = P(X > s).

In words: no matter how long we have already been waiting, the chance that we have to
wait for at least another s units of time remains the same.

17 The distribution of a function of a random variable

Example 17.1. Let X ∼ Exp(λ), and let Y = X2. Determine the density fY (y) of Y .

We determine first the cumulative distribution function of Y . Note first that as P(X ≥
0) = 1, we have P(Y ≥ 0) = 1, hence FY (y) = 0 for y < 0. Let us now consider y ≥ 0:

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y) = 1− e−λ
√
y.

Now differentiation with respect to y gives:

fY (y) =

{
0 if y ≤ 0,
λ

2
√
y
· e−λ

√
y if y > 0.

Proposition 17.2. Let X have density function fX(x) and let us consider Y = k(Y ) such
that k : R→ R is

• continuously differentiable

• strictly monotonic (either strictly decreasing, or strictly increasing).

Note that in this case k : R → R is invertible – let us denote its inverse by k−1(y). The
density function of Y can be computed by the following formula:

fY (y) = fX(k−1(y)) ·
∣∣∣∣d(k−1(y))

dy

∣∣∣∣ (17.1)

Comments :
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• The support of X is the set

suppX = {x ∈ R | fX(x) > 0}.

We have P(X ∈ suppX) = 1. For Proposition 17.2, it is enough that k : R → R is
strictly monotonic restricted to suppX. This is the case in Example 17.1.

• Instead of the formal proof, we give a heuristic argument (which, actually, can be
made rigorous) to explain Formula (17.1). Recall that the value fX(x) is the scaling
factor by which the probability of falling in an interval of length dx about x decays as
dx→ 0. Now the preimage of some small interval [y, y + dy] by k : R→ R is another
small interval [x, x+ dx] where

y = k(x) ⇔ x = k−1(y);
dy

dx
=

∣∣∣∣dk(x)

dx

∣∣∣∣ ⇔ dx

dy
=

∣∣∣∣d(k−1(y))

dy

∣∣∣∣ .
Accordingly

fY (y)dy ≈ P(y ≤ Y ≤ y + dy) = P(x ≤ X ≤ x+ dx) ≈ fX(x)dx

and division by dy yields (17.1). See Figure 9 for the case when Y = X2, and X is
supported on the positive halfline.

Figure 9: Density transform formula.

Example 17.3 (Standard Cauchy distribution). Let Θ ∼ UNI
[
−π

2
, π

2

]
and X = tan Θ.

We have

fΘ(ϑ) =

{
1
π

if ϑ ∈
(
−π

2
, π

2

)
,

0 otherwise,
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and

x = k(ϑ) = tan(ϑ) ⇔ ϑ = k−1(x) = tan−1(x) so
d(tan−1(x))

dx
=

1

1 + x2

and thus

fX(x) =
1

π(1 + x2)
.

See section 6.3, in particular Figure 7 in the Ross book for a geometric problem in which
the standard Cauchy distribution arises. An interesting feature of this random variable is
that EX does not exist.

18 Independent random variables

Recall that we have already introduced the notion of independence for discrete random
variables when we discussed the Poisson process. Here this is generalized to arbitrary
random variables.

Definition 18.1. Let X and Y be arbitrary random variables. X and Y are independent
if for any pair of intervals I1 and I2 we have

P(X ∈ I1 and Y ∈ I2) = P(X ∈ I1) · P(X ∈ I2).

Independence means that

P(Y ∈ I2 |X ∈ I1) = P(Y ∈ I2).

That is, no matter how we fix the value of X, the conditional distribution of Y remains
unaffected. This behavior is in strong contrast with the case of Y = k(X) studied in the
previous section, when fixing the value of X determined Y entirely. There is a large scale of
intermediate cases. In other words, the joint distribution of X and Y contains much more
information than just the distributions os X and Y separately (the marginal distributions).
Unfortunately, we do not have the time to elaborate on joint distributions in detail.

From now on, we mostly (but not entirely) focus on the independent case. If the vari-
ables X and Y are independent, then their marginal distributions determine their joint
distribution, and questions on their joint behavior can be addressed in terms of them. For
example, let X and Y have cumulative distribution functions FX(x) and FY (x), respectively,
and let W = max(X, Y ). Then, for any x ∈ R:

FW (x) = P(W ≤ x) = P(X ≤ x and Y ≤ x) = P(X ≤ x) · P(Y ≤ x) = FX(x) · FY (x).
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Sums of independent random variables

In this section the following question is studied: if the distributions of the independent
random variables X and Y are known, how is their sum Z = X + Y distributed? Let us
consider first a discrete example.

Proposition 18.2. Let X and Y be independent, X ∼ Poi(λ) and Y ∼ Poi(µ). Then
X + Y ∼ Poi(λ+ µ).

For any k ≥ 0 we have:

P(X + Y = k) =
∞∑

i=−∞

P(X + Y = k|X = i)P(X = i) =

=
∞∑

i=−∞

P(Y = k − i|X = i)P(X = i) =
∞∑

i=−∞

P(Y = k − i)P(X = i) =

=
k∑
i=0

e−λ
λi

i!
e−µ

µk−i

(k − i)!
=

= e−(λ+µ) 1

k!

k∑
i=0

(
k

i

)
λiµk−i = e−(λ+µ) (λ+ µ)k

k!
.

Hence we see that the one parameter family of Poisson distributions is closed under
adding independent copies. The terminology is that the family of Poisson distributions is
stable, which is rather exceptional (see the case of uniform distributions below).

Now we move on to absolutely continuous examples. In this case X and Y have some
density functions fX(x) and fY (y), respectively. The density function of X + Y is given by
the Formula:

fX+Y (z) =

∞∫
−∞

fX(x)fY (z − x)dx.

In real analysis, this is called the convolution of the two functions fX and fY . See Ross,
section 6.3 for a proof. As an application, we have (see again Ross, section 6.3 for the
computation):

Example 18.3. Let X and Y be independent, both X ∼ UNI[0, 1] and Y ∼ UNI[0, 1].
Then the density of X + Y is:

fX+Y (t) =


t if t ∈ [0, 1],

2− t if t ∈ [1, 2],

0 otherwise.

See Figure 10.
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Figure 10: Convolution of two i.i.d. UNI[0, 1].

Finally, as most important application, let us consider the sums of independent normally
distributed random variables.

Proposition 18.4. Let X1 and X2 be independent, X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2).

Then
X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2).

Recall Lemmas 10.1 and 10.2, which extend from the discrete case to general random
variables. Hence it is not surprising that E(X1 + X2) = µ1 + µ2 and V ar(X1 + X2) =
σ2

1 + σ2
2. What is, however, specific to normal distributions is that this family is stable

under convolutions. See Ross, section 6.3.3 for the computation.
In the context of Proposition 18.4 we have −X2 ∼ N (−µ2, σ

2
2), and thus

X1 −X2 = X1 + (−X2) ∼ N (µ1 − µ2, σ
2
1 + σ2

2); (18.1)

that is, the expected values are subtracted, but the variances add.
Proposition 18.4 has many applications, which may easily come up in Homework and

Exam problems. Here is an example.

Example 18.5. In a bottle of mineral water the amount of sodium has expected value 35 mg
and standard deviation 3 mg, while the amount of calcium has expected value 55 mg and
standard deviation 4 mg. The amounts of these minerals can be regarded independent and
normally distributed. What is the probability that in my bottle (a) the total amount of the
two minerals exceeds 100 mg; (b) there is more sodium than calcium?

Let X denote the amount of sodium, and Y denote the amount of calcium in my bottle,
measured in miligrams. ThenX ∼ N (35, 9) while Y ∼ N (55, 16), and they are independent.
Hence, by Proposition 18.4 and (18.1)

X + Y ∼ N (90, 25) and X − Y ∼ N (−20, 25).
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To solve (a):

P(X + Y ≥ 100) = 1− P(X + Y ≤ 100) = 1− P
(
X + Y − 90

5
≤ 2

)
=

= 1− Φ(2) = 1− 0.9772 = 0.0228.

To solve (b):

P(X > Y ) = P(X − Y > 0) = 1− P(X − Y ≤ 0) =

= 1− P
(
X − Y + 20

5
≤ 4

)
= 1− Φ(4) ≈ 0.

19 Further indicator problems

Recall the problems discussed in section 10.1. Here we include some further examples.
Indicator variables are useful for some problems in Homework #8 and may occur on the
Final Exam as well. Recall that the idea is to represent some discrete random variable X
as X = η1 + · · ·+ ηK , where the ηi are indicators. Then EX =

∑
Eηi. If, furthermore, the

indicators are independent, then V ar(X) =
∑
V ar(ηi).

Example 19.1. Let us recall the matching problem: N phones are distributed among N
people. Let X denote the number of people who are matched with their phones. Let us
determine EX and V ar(X).

Recall that at the beginning of the semester we determined P(X = 0) by the inclusion-
exclusion formula. Now let

ηi =

{
1 if person #i is matched with her/his phone,

0 otherwise,
i = 1, . . . N.

Then X = η1 + · · ·+ ηN . Also, for any i = 1, . . . , N we have:

Eηi = Eη1 = P(η1 = 1) =
(N − 1)!

N !
=

1

N

and thus

EX =
N∑
i=1

Eηi = N
1

N
= 1.

To proceed to V ar(X), note that these indicators are not independent. So we rely on
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the following pattern:

V ar(X) = EX2 − (EX)2 (= EX2 − 1);

X2 =
N∑
i=1

η2
i +

∑
i<j

2ηiηj;

Eη2
i = Eηi (= 1/N); (i = 1, . . . , N) (19.1)

E(ηiηj) = P(ηi = 1 and ηj = 1); i < j

EX2 =
N∑
i=1

Eη2
i +

∑
i<j

2Eηiηj
(

= 1 + 2

(
N

2

)
P(η1 = 1 and η2 = 1)

)
.

Here
∑
i<j

is the sum on all pairs such that i < j, so there are
(
N
2

)
terms. Now

{ηi = 1 and ηj = 1} = {both #i and #j are matched with their phones},

so

Eηiηj = P(ηi = 1 and ηj = 1) =
(N − 2)!

N !
=

1

N(N − 1)

and thus, using (19.1)

EX2 = 1 + 2

(
N

2

)
1

N(N − 1)
= 2; =⇒ V arX = EX2 − 1 = 2− 1 = 1.

Example 19.2. A fair coin is flipped 100 times. The outcome of this experiment is a
sequence of the type THHTTTHTTHHT . . . A run of Heads is a maximal subsequence of
consecutive symbols H. Let X denote the number of runs in the sequence. Determine EX.

Let

ηi =

{
1 if a run of Heads starts at position #i,

0 otherwise,
i = 1, . . . 100.

Then

Eη1 = P(η1 = 1) = P(the first symbol is H) =
1

2
,

however, for i = 2, . . . , 100:

Eηi = P(ηi = 1) =

= P (the symbols at positions #(i− 1) and #i are TH, respectively) =
1

4
,

So:

EX =
100∑
i=1

Eηi = Eη1 +
100∑
i=2

Eηi =
1

2
+

99

4
= 25.25.

See sections 7.2, 7.3 and 7.4 of the Ross book for further applications of indicator vari-
ables.
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20 Covariance

Definition 20.1 (Covariance). Consider two random variables X and Y , and let us denote
by µX = EX and µY = EY their expected values. The covariance of X and Y is defined as

Cov(X, Y ) = E ((X − µX)(Y − µY )) .

Alternative formula:

Cov(X, Y ) = E(X ·Y −µY ·X−µX ·Y +µX ·µY ) = E(X ·Y )−µX ·µY = E(X ·Y )−EX ·EY.

Lemma 20.2. Let X and Y be independent. Then Cov(X, Y ) = 0.

The proof of Lemma 20.2 is just a reference to (10.2), which extends form discrete
to general random variables. However, it is important to note that the converse of this
statement is, in general, false, as the following counterexample shows.

Example 20.3. Let X take values −1, 0 and +1, each with probability 1
3
, and let Y = X2.

Then Cov(X, Y ) = 0. Yet, Y is a function of X, so they are NOT independent.

To see this, note that apparently EX = 0, while X · Y = X (since Y = 1 if and only if
X 6= 0), hence E(X · Y ) = EX = 0.

Covariance has the following properties:

• symmetric: apparently Cov(X, Y ) = Cov(Y,X);

• positive definite: Cov(X,X) = V ar(X) ≥ 0, moreover V ar(X) = 0 only in the trivial
case when X is deterministically equal to the constant EX.

• bilinear : by symmetry, it is enough to check that, given random variables X1, X2, Y ,
and constants a1, a2, b ∈ R:

Cov(a1X1 + a2X2 + b, Y ) = a1Cov(X1, Y ) + a2Cov(X2, Y ). (20.1)

This follows as
E(a1X1 + a2X2 + b) = a1µ1 + a2µ2 + b

(where µi = EXi, i = 1, 2) and thus

a1X1 + a2X2 + b− E(a1X1 + a2X2 + b) = a1(X1 − µ1) + a2(X2 − µ2)

so (20.1) follows form the definition of covariance and the linearity of expectation.

You may recall from linear algebra that these properties characterize inner products.
Indeed, covariance can be regarded as an inner product on some linear space.

54



A further consequence of bilinearity is that, given arbitrary random variables X1, . . . , Xn,
we have

V ar

(
n∑
i=1

Xi

)
= Cov

(
n∑
i=1

Xi,

n∑
j=1

Xj

)
=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
n∑
i=1

V ar(Xi) + 2
∑
i<j

Cov(Xi, Xj).

Definition 20.4 (Correlation coefficient). The correlation coefficient of two random vari-
ables X and Y is defined as:

ρ(X, Y ) =
Cov(X, Y )

DX · DY
Proposition 20.5. For arbitrary random variables X and Y :

−1 ≤ ρ(X, Y ) ≤ 1.

Moreover |ρ(X, Y )| = 1 if and only if X and Y are in exact linear relation. More precisely:

ρ(X, Y ) = 1 ⇐⇒ Y = m ·X + d for some m > 0 and b ∈ R, (20.2)

ρ(X, Y ) = −1 ⇐⇒ Y = −m ·X + d for some m > 0 and b ∈ R. (20.3)

Proof. Let us introduce σX = DX and σY = DY for brevity. Let, furthermore,

Z =
X

σX
+

Y

σY
; W =

X

σX
− Y

σY
.

Then, by bilinearity of covariance:

V ar(Z) =
V arX

σ2
X

+
V ar Y

σ2
Y

+ 2
Cov(X, Y )

σXσY
= 1 + 1 + 2ρ(X, Y )

hence
ρ(X, Y ) = −1 ⇐⇒ V ar Z = 0 ⇐⇒ Z = const,

which is equivalent to (20.3). Similarly,

V ar(W ) =
V arX

σ2
X

+
V ar Y

σ2
Y

− 2
Cov(X, Y )

σXσY
= 1 + 1− 2ρ(X, Y ),

hence
ρ(X, Y ) = 1 ⇐⇒ V arW = 0 ⇐⇒ W = const,

which is equivalent to (20.2).

Comments :

• So what correlation actually measures is the extent of linear dependence among the
two random variables.

• Note

|ρ(X, Y )| ≤ 1 ⇐⇒ |Cov(X, Y )| ≤
√
V ar(X) ·

√
V ar(Y ), (20.4)

which is the Cauchy-Schwartz inequality.
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21 Tower rule

Given two random variables X and Y , we may consider, for any x0 ∈ R, the conditional
distribution of Y given that X = x0, and accordingly, the conditional expectation E(Y |X =
x0).

E(Y |X = x0) has a double character: on the one hand, it is an average (an expectation),
on the other hand, it depends on x0. In a sense “half of the randomness” is integrated out,
the “other half” associated to the value of X, is still undetermined. Accordingly, we may
just write E(Y |X), which is a random variable, a function of X.

Now, we may take the expected value of this later random variable, which we denote
by E(E(Y |X)). The tower rule states that the expected value EY can be computed in two
steps as

EY = E(E(Y |X)).

An analogy is the law of total probability. There is a lot more to say about the tower rule
and conditional expectations, this topic is to be revisited in the enrichment period. Let us
just include here two applications.

Example 21.1. Let T be uniformly distributed on [0, 10]. A detector is functional for a
random time interval which has length T . During that interval, it detects the impacts of
particles, while no particles are detected before and after this time interval. The particles
arrive according to a Poisson process of intensity 2. Let X denote the number of particles
detected. EX =?

Solution: Note that if T = t, the conditional distribution is X|T = t ∼ Poi(2t). Hence
E(X|T = t) = 2t, or briefly E(X|T ) = 2T . Now, by the tower rule

EX = E(E(X|T )) = E(2T ) = 2ET = 2 · 5 = 10

where we have used that T ∼ UNI[0, 10].

Example 21.2. In a casino, the following game is played: a fair die is rolled until a 6
occurs for the first time, when the player earns 20 dollars. However, each time the value i
is rolled prior to that 6, the player has to pay i dollars. What is the expected gain of the
player in such a game?

Let X denote the gain of the player. Try to find EX using the tower rule with one of
the following two auxiliary random variables:

Solution #1 Introduce N , the number of rolls.

Solution #2 Introduce Y , the value obtained at the first roll.
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22 Moment generating functions

Definition 22.1. Let X be a random variable. The moment generating function of X is
defined as

MX : R→ R; t 7→MX(t) = E(etX).

If there is no ambiguity we may drop the subscript X and simply write M(t).

Comment: The integral may not be finite for all t ∈ R. What we assume is that there
exists some t0 > 0 such that MX(t) < ∞ for t ≤ t0. This is indeed the case of all major
distributions discussed here (eg. Poisson, normal, exponential etc.)
Basic properties :

• M(0) = 1,

• Let prime denote differentiation w.r.t. t. Then

M ′(t) = E(XetX) =⇒ M ′(0) = EX
M ′′(t) = E(X2etX) =⇒ M ′′(0) = E(X2)

and proceeding with this, for the nth derivative at 0:

M (n)(0) = E(Xn).

• Let X and Y be independent. Then

MX+Y (t) = E(et(X+Y )) = E(etX) · E(etY ) = MX(t) ·MY (t). (22.1)

• Let Z be the standardization of X, that is, X = σZ + µ. Then

MX(t) = E(etX) = E(et(σZ+µ)) = etµ · E(eσtZ) = etµMZ(tσ). (22.2)

Let X ∼ Poi(λ). Then

MX(t) =
∞∑
k=0

etke−λ
λk

k!
= e−λ exp(λet) = exp(λ(et − 1)).

Let Z ∼ N (0, 1). Then

MZ(t) =

∞∫
−∞

etxϕ(x)dx =
1√
2π

∞∫
−∞

exp

(
−x

2

2
+ tx− t2

2
+
t2

2

)
dx =

= et
2/2 · 1√

2π

∞∫
−∞

exp

(
−1

2
(x− t)2

)
dx = et

2/2. (22.3)
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This implies, by (22.2):

X ∼ N (µ, σ2) ⇐⇒ MX(t) = eµt · e
t2σ2

2 .

The logarithmic moment generating function of X is defined as

ΨX(t) = ln(MX(t))

and has the following properties:

ΨX(0) = 0,

Ψ′X(t) =
M ′

X(t)

MX(t)
=⇒ Ψ′X(0) =

M ′
X(0)

MX(0)
= EX, (22.4)

Ψ′′X(t) =
M ′′

X(t)MX(t)− (M ′
X(t))2

(MX(t))2
=⇒ Ψ′′X(0) =

M ′′
X(0)− (M ′

X(0))2

1
= V arX.

23 The Weak Law of Large Numbers

23.1 Useful inequalities

Proposition 23.1 (Markov’s inequality). Let X be a nonnegative random variable –
i.e. P(X ≥ 0) = 1 – and let µ = EX. Then, for any a > 0:

P(X ≥ a) ≤ µ

a
.

Proof. Let us fix a > 0, and introduce the indicator variable

ηa =

{
1 if X ≥ a,

0 otherwise.

Then
a · ηa ≤ X =⇒ aP(X ≥ a) = E(a · ηa) ≤ EX = µ,

and division by a results in Markov’s inequality.

Comment. This inequality is void if a ≤ µ, and it is useful for a � µ. For example, it
states that the probability that X takes values ten times greater than EX cannot exceed
0.1. It is remarkable that this bound holds irrespective of the actual distribution of X.

Proposition 23.2 (Chebyshev’s inequality). Let X be an arbitrary random variable and
let µ = EX, σ2 = V ar(X). Then, for any b > 0:

P(|X − µ| ≥ b) ≤ σ2

b2
.
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Proof. Let us introduce Y = (X − µ)2 which is a nonnegative random variable. Hence we
may apply Markov’s inequality with b2 playing the role of a. Note also EY = V ar(X) = σ2.

P(|X − µ| ≥ b) = P((X − µ)2 ≥ b2) ≤ EY
b2

=
σ2

b2
.

Again, Chebyshev’s inequality is useful when b � σ. It is widely applicable as it holds
irrespective of the distribution of X. Accordingly, the bounds are often not very sharp. For
example, by Chebysev’s inequality

P(|X − µ| ≥ 3σ) ≤ 1

9
≈ 0.111.

However, if we know that X is normally distributed (X ∼ N (µ, σ2)) then, using (15.6)

P(|X − µ| ≤ 3σ) = P(|Z| ≤ 3) = 2Φ(3)− 1 = 0.9974 =⇒ P(|X − µ| ≥ 3σ) = 0.0036,

which is far less.

23.2 The Weak Law of Large Numbers

Setting. Let X1, X2, . . . , Xn, . . . be a sequence of independent, identically distributed (in
short: i.i.d.) random variables. This is highly relevant, for example, for (idealized) statistics
applications. As the variables have the same distribution, they also have the same expected
values and variances, which we denote as

µ = EX1(= EXn); σ2 = V ar(X1)(= V ar(Xn)); (∀n ≥ 1).

Another notation:
Sn = X1 +X2 + · · ·+Xn.

Theorem 23.3 (Weak Law of Large Numbers). Let us consider an i.i.d. sequence with
the notations introduced above. Let ε > 0 be arbitrary. Then

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε

)
−→ 0 as n→∞.

Interpretation. In words, the sequence of random variables Sn
n

– the “empirical mean
with growing sample size” – converges to µ in probability. There are other relevant forms
of convergence which are, actually, stronger than convergence in probability. This is the
reason for the terminology “weak law of large numbers”.
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Proof. We have
ESn = EX1 + · · ·+ EXn = nµ

and by independence also

V ar(Sn) = V ar(X1) + · · ·+ V ar(Xn) = nσ2.

We will apply Chebyshev’s inequality to Sn.

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε

)
= P(|Sn − nµ| ≥ nε) ≤ V ar(Sn)

n2ε2
=

σ2

nε2
→ 0

as n→∞.

Comments.

• Consider a sequence of independent trials. Let, for i ≥ 1,

Xi = ηAi =

{
1 if the ith trial is a success,

0 if the ith trial is a failure,

that is, the indicator variable associated to the ith success. These random variables
are i.i.d. Also Sn ∼ Binom(n, p) and EX1(= EXi) = p. Hence, in this special case,
the WLLN states that for any ε > 0:

P
(∣∣∣∣Snn − p

∣∣∣∣ ≥ ε

)
−→ 0, as n→∞,

which is just Bernoulli’s Law of Large Numbers.

• Taking a look at the computation it turns out that we could have proved something
stronger. Namely, instead of

Sn
n
− µ =

Sn − nµ
n

=
Sn − ESn

n

we could have considered

Sn − nµ
nα

, for some α > 0.

Then

P
(∣∣∣∣Sn − nµnα

∣∣∣∣ ≥ ε

)
= P(|Sn − nµ| ≥ nαε) ≤ V ar(Sn)

n2αε2
=

σ2

n2α−1ε2
→ 0

as long as 2α − 1 > 0 ⇐⇒ α > 1
2
. This indicates that the true order of fluctuations

for Sn is
√
n, a fact that we will revisit in the Central Limit Theorem.
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24 The Central Limit Theorem

We will use the notations of the previous section.

Theorem 24.1 (Central limit theorem). Let X1, X2, . . . , Xn, . . . be an i.i.d. sequence, µ =
EX1, σ2 = V arX1, Sn = X1 + · · ·+Xn. Then, for any a ∈ R

P
(
Sn − nµ√

nσ
≤ a

)
−→ Φ(a) =

1√
2π

a∫
−∞

e−x
2/2dx. (24.1)

In words: the sequence of variables Sn−nµ√
nσ

converges in distribution to the standard

normal Z ∼ N (0, 1).
We will prove this theorem for the special case when the random variable X1 (and hence

all the Xk, k ≥ 1) have a finite moment generating function M(t) = MX1(t)(= MXk(t)) for
any t ∈ R. (It would be enough that the variance is finite, but then the proof would require
different tools.) Also, we will rely on the following Lemma, which we include without proof.

Lemma 24.2. Let
Y1, . . . , Yn, . . .

be a sequence of random variables with cumulative distribution functions

F1(x), . . . , Fn(x), . . . ,

and moment generating functions

M1(t), . . . ,Mn(t), . . . ,

respectively. Let, furthermore, W be a random variable (to which the sequence converges)
with cumulative distribution function FW (x) and moment generating function MW (t), re-
spectively. Assume that

Mn(t) −→MW (t), ∀t ∈ R.

Then
Fn(a) −→ FW (a) whenever FW (·) is continuous at a ∈ R. (24.2)

Proof. of Theorem 24.1.
First step: let us assume that µ = 0 and σ = 1, in other words, that the i.i.d. random

variables X1, . . . , Xn, . . . are standard. In this case Sn−nµ√
nσ

reduces to Sn√
n
.

We will apply Lemma 24.2 with Yn = Sn√
n

and W = Z ∼ N (0, 1). Since Z is a continuous

random variable, (24.2) applies to any a ∈ R once we establish that(
M Sn√

n
(t)→MZ(t) = et

2/2; ∀t ∈ R
)
⇐⇒

(
Ψ Sn√

n
(t)→ ΨZ(t) =

t2

2
∀t ∈ R

)
, (24.3)
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as the logarithm is a continuous function (we have used (22.3)).
Now, as the variables X1, . . . , Xn are i.i.d., by (22.1) we have

MSn(t) = MX1+···+Xn(t) = MX1(t) ·MX2(t) . . .MXn(t) = (M(t))n.

Then

M Sn√
n
(t) = E

(
exp

(
t
Sn√
n

))
= MSn

(
t√
n

)
=

(
M

(
t√
n

))n
and thus

Ψ Sn√
n
(t) = n ·Ψ

(
t√
n

)
.

Now as E(X1) = 0 and V ar(X1) = 1, we may use Taylor expansion and (22.4), to obtain,
for small s:

Ψ(s) = 0 + 0 +
s2

2
+O(s3) =

s2

2
+O(s3)

and thus

Ψ Sn√
n
(t) = n ·Ψ

(
t√
n

)
=
t2

2
+O

(
1√
n

)
which readily implies (24.3).

Second step: extend to arbitrary µ and σ. Let us introduce

X̃k =
Xk − µ
σ

, k = 1, 2, . . . , n, . . .

which is an i.i.d. sequence of standard variables and

S̃n = X̃1 + · · ·+ X̃n =
X1 − µ
σ

+ · · ·+ X1 − µ
σ

=
Sn − nµ

σ

and thus
S̃n√
n

=
Sn − nµ√

nσ
.

However, by the first step the convergence (24.1) applies to S̃n√
n
, which this way extends to

the general case.

Applications of the CLT

Example 24.3 (de Moivre-Laplace CLT). Here we discuss the special case of independent
trials as at the WLLN.

Xi = ηAi =

{
1 if the ith trial is a success,

0 if the ith trial is a failure,

Also Sn ∼ Binom(n, p), µ = EX1(= EXi) = p and σ = D(X1)(= DXi) =
√
p(1− p).

Hence Theorem 24.1 reduces to the de Moivre-Laplace CLT (Theorem 15.1) in this special
case.

62



Example 24.4. We would like to measure some quantity (say, the distance of a star, in
light years...). n measurements are made, under identical and independent conditions; the
result is an i.i.d. sequence X1, ..., Xn with unknown µ = EX1. The estimate for µ is Sn

n
, and

the question is how close this is to the true µ, and in what sense. Let us assume σ = 5.

(a) Assume n = 100 measurements are made. Determine the smallest δ > 0 such that
µ differs from the estimation Sn

n
by not more than δ with probability 0.95? (Statistics

terminology: determine the confidence interval of µ at significance level 95%.)

(b) How many measurements are needed to ensure that Sn
n

and µ differ by not more than
0.4 with probability 0.98?

For part (a):

0.95 ≥ P
(∣∣∣∣Snn − µ

∣∣∣∣ ≤ δ

)
= P

(∣∣∣∣Sn − nµ√
nσ

∣∣∣∣ ≤ √nδσ
)
≈ 2Φ

(√
nδ

σ

)
− 1

that is

0.975 = Φ(1.96) ≥ Φ

(√
nδ

σ

)
⇐⇒ δ ≥ 1.96σ√

n
= 0.98.

For part (b), with a similar computation:

0.99 = Φ(2.32) ≥ Φ

(√
nδ

σ

)
⇐⇒ n ≥

(
2.32σ

δ

)2

=

(
2.32 · 5

0.4

)2

= 841.

Example 24.5. Consider 48 real numbers the values of which are rounded off to the closest
integer. The round off errors for these numbers are i.i.d. with uniform distribution on
[−0.5, 0.5]. Let R and T denote the sum of the 48 real numbers, and the sum of the integers
obtained by rounding off the numbers individually, respectively. What is the chance that
rounding off R to the closest integer results in T?

Let X1, . . . , X48 denote the consecutive i.i.d. round off errors, and S48 = X1 + · · ·+X48.
As Xi ∼ UNI[−0.5, 0, 5], we have µ = 0 and σ2 = 1

12
. Also, R = T + S48. Hence

P(|R− T | ≤ 0.5) = P(|S48| ≤ 0.5) = P
(
S48√
nσ
≤ 0.5√

48(
√

12)−1

)
≈ 2Φ(0.25)− 1 = 0.1974
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25 Joint distributions

25.1 Joint cumulative distribution functions

For two random variables X and Y , the joint cumulative distribution function F : R2 → R
is defined by

F (x, y) = P(X ≤ x and Y ≤ y), for (x, y) ∈ R2.

That is, F (a1, a2) is the probability of the event that the random point (X, Y ) lies in the
quadrant with top right corner (a1, a2).

For x0 ∈ R consider

FX(x0) = P(X ≤ x0) = lim
y→+∞

P(X ≤ x0, Y ≤ y) = lim
y→+∞

F (x0, y),

the marginal distribution function of X. Similarly for y0 ∈ R the marginal distribution
function of Y is defined as

FY (y0) = lim
x→+∞

F (x, y0).

Some further limit properties:

lim
y→−∞

F (x0, y) = 0, ∀x0 ∈ R,

lim
x→−∞

F (x, y0) = 0, ∀y0 ∈ R,

lim
x→+∞,y→+∞

F (x, y) = 1.

For a single random variable, another important property was that the cumulative distribu-
tion function is nondecreasing. This generalizes to the bivariate case as follows. Let a1 < b1

and a2 < b2 be arbitrary. Then

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) ≥ 0. (25.1)

Question 25.1. Find a geometric interpretation of the property (25.1).

25.2 Discrete case: joint and marginal mass functions

The pair (X, Y ) is jointly discrete if both X and Y are discrete random variables. This
means that it is possible to enumerate the values that X and Y can take as x1, . . . , xk, . . .
and as y1, . . . , y`, . . . . Accordingly, the planar points the random (X, Y ) may take can be
enumerated as (x1, y1), (x1, y2), . . . , (xk, y`), . . . . Define the joint mass function of (X, Y ) by

p(xk, y`) = P(X = xk and Y = y`).

Obvious properties:

p(xk, y`) ≥ 0, ∀(k, `);∑
k,`

p(xk, y`) = 1.

64



It is useful to think of the joint mass function as a table the entries of which add up to 1.
The marginal mass functions of X and Y are defined as

P(X = xk) =
∑
`

p(xk, y`); and P(Y = y`) =
∑
k

p(xk, y`), (25.2)

respectively, and can be thought of as column sums and row sums of the table, respectively.

Example 25.2. There are 5 balls in a urn, 2 blue balls, 2 red balls and 1 white ball. Two
balls are drawn (without replacement). Let X denote the number of white balls among the 2
balls drawn, and let Y denote the number of red balls among the 2 balls drawn. Determine
the joint mass function and then deduce the marginal mass functions for this example.

25.3 Jointly absolutely continuous case: joint and marginal den-
sities

Definition 25.3. The pair of random variables (X, Y ) has a jointly absolutely continuous
distribution if there exists some f : R2 → R (the joint density) such that, for any (Borel
measurable) set A ⊂ R2 we have

P((X, Y ) ∈ A) =

∫∫
A

f(x, y)dxdy.

Obvious properties:

f(x, y) ≥ 0, ∀(x, y) ∈ R2;∫∫
R2

f(x, y)dxdy = 1.

The joint cumulative distribution function and the joint density function are related as

F (a1, a2) =

a1∫
−∞

a2∫
−∞

f(x, y)dydx

and accordingly

f(x0, y0) =
∂2F

∂x∂y
(x0, y0).

(Recall Formula (25.1) at this point.)
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Marginal densities

Let (X, Y ) be jointly absolutely continuous with joint density f(x, y). Then, for the marginal
distribution function of X:

FX(x0) = P(X ≤ x0) =

x0∫
−∞

∞∫
−∞

f(t, y)dydt =

x0∫
−∞

fX(t)dt,

where

fX(x) =

∞∫
−∞

f(x, y)dy.

In other words, the (marginal) distribution of X is absolutely continuous with marginal
density fX(x). Similarly, the (marginal) distribution of Y is absolutely continuous with
marginal density

fY (y) =

∞∫
−∞

f(x, y)dx.

Instead of summing up the masses along columns and rows as in the discrete case, fX(x)
and fY (y) are obtained by integrating the joint density along vertical lines and horizontal
lines, respectively.

Remark 25.4. So in particular we have seen that if (X, Y ) are jointly absolutely continuous,
then (the marginals of) both X and Y are absolutely continuous. However, the converse of
this statement is, in general, false. Can you think of an example where both X and Y are
absolutely continuous, but they are NOT jointly absolutely continuous?

Example 25.5. Let the joint density of (X, Y ) be given by the formula

f(x, y) =

{
2e−xe−2y if x > 0, y > 0

0 otherwise.

- Determine the marginal densities,

- compute the probability P(X > Y )

for this example.

Two dimensional uniform distribution

Definition 25.6. Let D ⊂ R2 be a bounded domain. The distribution of (X, Y ) is uniform
on D if

f(x, y) =

{
1

Area(D)
if (x, y) ∈ D

0 otherwise.

Example 25.7. Let (X, Y ) be uniformly distributed on the triangle with vertices (0, 0),
(1, 0) and (0, 1). Determine the joint density and the marginal densities.
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25.4 Independence

Recall the notion of independence form Definition 18.1. Note that independence is equivalent
to

F (x, y) = FX(x) · FY (y), ∀(x, y) ∈ R2.

Furthermore, if (X, Y ) are discrete, then they are independent if and only if

p(xk, y`) = P(X = xk) · P(Y = y`), ∀k, `.

If (X, Y ) are jointly absolutely continuous, then they are independent if and only if

f(x, y) = fX(x) · fY (y), ∀(x, y) ∈ R2.

Question 25.8. Check the examples of this section for independence. Some further related
problems are 6.20, 6.21 an 6.22 from the Ross book, which you may find in the file
supplement HW8A.pdf available in the resources section of piazza.

An important special case is when X ∼ UNI[α1, β1], Y ∼ UNI[α2, β2] and they are in-
dependent. Equivalently, the random point (X, Y ) is uniformly distributed on the rectangle
[α1, β1]× [α2, β2].

Question 25.9. A woman and a man decide to meet at some location. If both of them
arrive, independently, at a time uniformly distributed between noon and 1pm, what is the
probability that the first to arrive has to wait more than 10 minutes?

Example 25.10 (Buffon’s needle problem). A table is ruled with equidistant parallel lines
that are 2 inches apart. A needle of length 1 inch is flipped onto the table. What is the
probability that the needle intersects one of the lines?

Let X denote the distance (in inches) of the midpoint of the needle to the closest line, and
let Θ denote the angle that the needle makes with (one of) the lines. Then X ∼ UNI[0, 1],
while Θ ∼ UNI[0, π

2
] and they are independent. Equivalently, the pair (Θ, X) is uniformly

distributed on the rectangle [0, π
2
]× [0, 1]. Hence

P(intersection) = P
(
X ≤ 1

2
sin Θ

)
=

=
1

π/2 · 1

π/2∫
0

1

2
sinϑdϑ =

1

π
. (25.3)

26 Conditional distributions

Discrete case

It is pretty straightforward to define the conditional mass function of X on P(Y = y0) > 0.
For example in this case the conditional mass function of X given Y = 0 is:
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Y \X 0 1

0 0.4 0.2
1 0.1 0.3

P(X = 0|Y = 0) =
0.4

0.6
=

2

3
,

P(X = 1|Y = 0) =
0.2

0.6
=

1

3
.

It is also clear that X and Y are independent if and only if the conditional mass function
is the same for every Y = y0 (and coincides with the marginal mass function).

Jointly absolutely continuous case

Let us fix y0 with fY (y0) > 0 and x0 ∈ R arbitrary. Then, for dy infinitesimally small,
consider

P(X ≤ x0|y0 ≤ Y ≤ y0 + dy) =
F (x0, y0 + dy)− F (x0, y0)

FY (y0 + dy)− FY (y0)
=

=

F (x0,y0+dy)−F (x0,y0)
dy

FY (y0+dy)−FY (y0)
dy

dy→0−→
∂F
∂y

(x0, y0)

F ′Y (y0)
=

x0∫
−∞

∂2F
∂x∂y

(x, y0)dx

fY (y0)
=

x0∫
−∞

fX|Y (x|Y = y0)dx.

This motivates the following definition.

Definition 26.1. Let y0 ∈ R be such that fY (y0) > 0. The conditional density of X given
Y = y0 is defined as

fX|Y (x|Y = y0) =
f(x, y0)

fY (y0)
.

What is remarkable is that we condition on Y = y0, although this has zero probability.
Here are two examples.

Example 26.2. Let the joint distribution of (X, Y ) be uniform on the triangle with vertices
(0, 0), (1, 0) and (1, 1). Determine the conditional densities for X|Y = y0 and Y |X = x0

for all values y0 and x0 that are relevant.

Conclusion: if the joint distribution of (X, Y ) is uniform on some domain D ⊂ R2, then
the conditional distributions are always uniform, on some interval(s) (which depend on the
conditioning). The marginal distributions are, however, typically not uniform.

Example 26.3. Let X ∼ UNI[0, 1] and for any x0 ∈ (0, 1) let Y |X = x0 ∼ UNI[0, x0]
(shortly Y |X ∼ UNI[0, X]). Determine the joint density, and then the marginal density of
Y .
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Conditional expectation

Recall section 21 on the conditional expectation and the tower rule. More generally, we may
consider the conditional expectation of any Z = g(X, Y ) as

E(g(X, Y )|X = x0) =

∞∫
−∞

g(x0, y)fY |X(y|X = x0)dy

which can be regarded as a random variable, as it depends on X = x0. The tower rule is
then

E(E(g(X, Y )|X)) =

∞∫
−∞

E(g(X, Y )|X = x)fX(x)dx =

∞∫
−∞

∞∫
−∞

g(x, y)f(x, y)dxdy = E(g(X, Y )).

Another useful relation is that, when g(x, y) = h1(x) · h2(y), we have

E(h1(X) · h2(Y )|X) = h1(X) · E(h2(Y )|X)

As an application, consider Example 26.3.

EX =
1

2
,

EY = E(E(Y |X)) = E
(
X

2

)
=

1

2
· EX =

1

4
,

E(X · Y ) = E(E(X · Y |X)) = E(X · E(Y |X)) = E
(
X2

2

)
=

1

2
· EX2 =

1

6
,

Cov(X, Y ) =
1

6
− 1

2
· 1

4
=

1

24
.

Conditional variance

For X = x0 fixed, on top of E(Y |X), the variance of the conditional distribution of Y
may be considered. This way the conditional variance V ar(Y |X) is obtained, which, as it
depends on X = x0, is a random variable. If the expected value of this random variable is
taken, then

E(V ar(Y |X)) = E(E(Y 2|X)− (E(Y |X))2) = E(Y 2)− E((E(Y |X))2),

by the tower rule. Swapping roles, we may consider the variance of the conditional expec-
tation:

V ar(E(Y |X)) = E((E(Y |X))2)− (E(E(Y |X)))2 = E((E(Y |X))2)− (EY )2.

Adding the two relations the conditional variance formula is obtained:

V ar Y = E(V ar(Y |X)) + V ar(E(Y |X)).

As an application, let us revisit the following example
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Example 26.4. Let T be uniformly distributed on [0, 10 sec]. A detector is functional for
a random time interval which has length T . During that interval, it detects the impacts of
particles, while no particles are detected before and after this time interval. The particles
arrive according to a Poisson process of intensity λ = 2 sec−1. Let X denote the number of
particles detected. EX =? V arX =?

Solution: Note that if T = t, the conditional distribution is X|T = t ∼ Poi(λt). Hence
E(X|T = t) = λt, or briefly E(X|T ) = λT . Now, by the tower rule

EX = E(E(X|T )) = E(λT ) = λET = 2 sec−1 · 5 sec = 10

where we have used that T ∼ UNI[0, 10 sec]. Also V ar(X|T ) = λT , so

E(V ar(X|T )) = E(λT ) = 10,

V ar(E(X|T )) = V ar(λT ) = λ2 V ar(T ) = 4 sec−2 · 100

12
sec2 =

100

3
,

V ar(X) = E(V ar(X|T )) + V ar(E(X|T )) = 10 +
100

3
.

Conditional expectation and prediction

Let us consider first just a single random variable X (with µ = EX and σ = DX), which
we would like to estimate by a deterministic value c ∈ R. Then in the sense of mean square
displacement, the error of the estimation is

E((X−c)2) = E((X−µ+µ−c)2) = E((X−µ)2)+2(µ−c)E((X−µ))+(c−µ)2 = σ2+(µ−c)2,

which is Steiner’s theorem. In particular, the best estimation for X is µ = EX, for which
the mean square error is σ2.

Now given two random variables X and Y , we may be looking for some functional
relation such that

Y = k(X) + random fluctuations

In other words, given that X takes a specific value, we would like to predict Y in such a way
that minimizes the error arising from random fluctuations. Then, by the above argument,
the best prediction is k(X) = E(Y |X), the mean square error of which is V ar(Y |X).

Example 26.5. A random quantity S ∼ N (µ, σ2) is sent as a signal, and received at the
other end of a channel as another random variable R for which the conditional distribution
is R|S ∼ N (S, 1). If the value R = r is received, what is the best estimate for what has been
sent?

By the above considerations, we want to find E(S|R = r). Now

fS|R(s|R = r) =
f(s, r)

fR(r)
=
fR|S(r|S = s) · fS(s)

fR(r)
=

= C(r) exp

(
−1

2

(
(s− µ)2

σ2
+ (r − s)2

))
.
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where C(r) is some normalizing factor. Then

(s− µ)2

σ2
+ (r − s)2 = s2

(
1 +

1

σ2

)
− 2s

(
r +

µ

σ2

)
+ c1(r) = (26.1)

=
σ2 + 1

σ2

(
s2 − 2s

(
σ2

1 + σ2
r +

1

1 + σ2
µ

)
+ µ2

r

)
+ c2(r)

where µr = σ2

1+σ2 r + 1
1+σ2µ. Hence

fS|R(s|R = r) = C̃(r) exp

(
−1

2
· (s− µr)2

σ2
r

)
,

that is, S|R ∼ N (µR, σ
2
R), with

σ2
R = V ar(S|R) =

σ2

σ2 + 1

which is independent of R, and

µR = E(S|R) =
σ2

1 + σ2
R +

1

1 + σ2
µ

which is a convex combination of R and µ.

Correlation coefficient and indicator variables

As covariance and correlation coefficient came up, let me include one more problem on this.

Problem 26.6. Consider an ordinary deck of 52 cards where each card has one of the 4
possible suits (♠,♥,♣,♦) and one of the 13 possible values (2, 3, . . . , 10, J,Q,K,A). Add
two jokers two get a deck of 54 cards. Shuffle the deck and draw a card. Put the card back
and repeat this procedure 30 times. (So this is sampling with replacement.) Let X denote
the number of times the card drawn is a spade, and let Y denote the number of times the
card drawn is an ace. Determine Cov(X, Y ).

27 Multidimensional transformations

Let (X, Y ) have joint density f(x, y), and let (U, V ) = k(X, Y ), where k : R2 → R2 is

• smooth (continuously differentiable)

• one-to-one
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Comment: it is enough if k has these properties when restricted to the domain U ⊂ R2

on which f is supported.
Our aim is to calculate the joint density g(u, v) of (U, V ). For a domain D1 ⊂ R2, let

D2 = k(D1) (and thus D1 = k−1(D2)). Then

P((U, V ) ∈ D2) = P((X, Y ) ∈ D1) =

∫∫
D1

f(x, y)dxdy =

∫∫
D2

f(k−1(u, v))
∂(x, y)

∂(u, v)
dudv =

=

∫∫
D2

f(k−1(u, v)) · 1

J
dudv;

where

J =
∂(u, v)

∂(x, y)
=

∣∣∣∣det

(
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)∣∣∣∣ ,
the Jacobian of k : R2 → R2.

Hence

g(u, v) = f(k−1(u, v)) · 1

J

for the joint density of (U, V ).
It is important that on top of determining the Jacobian, one has to keep track of the

two dimensional domains, as demonstrated in the following example.

Example 27.1. Let (X, Y ) be independent, X ∼ UNI[0, 1]; Y ∼ UNI[0, 1]. Let U = X ·Y
and V = Y/X. Determine g(u, v), the joint density of (U, V ).

We have

f(x, y) =

{
1 if 0 < x < 1 and 0 < y < 1,

0 otherwise.

We have to determine the image of the unit square by k. y/x = v corresponds to a line
of slope v that goes through the origin, hence the range of this variable is 0 < v < +∞. For
any value of v fixed, we have to determine the range of u.

• if v = 1, we are after the intersection of the line (x, x) with the unit square, which is
a segment between (0, 0) and (1, 1), hence we have 0 < u < 1.

• if 0 < v < 1,we are after the intersection of the line (x, vx) with the unit square, which
is a segment between (0, 0) and (1, v), hence we have 0 < u < v.

• if 1 < v, we are after the intersection of the line (x, vx) with the unit square, which is
a segment between (0, 0) and (1/v, 1), hence we have 0 < u < 1/v.

In a summary the image of the unit square is the domain

R2 ⊃ U = {(u, v) | 0 < v ≤ 1; 0 < u < v }
⋃
{(u, v) |1 < v < +∞; 0 < u < 1/v}.
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For the Jacobian

J =
∂(u, v)

∂(x, y)
=

∣∣∣∣ y −y/x2

x 1/x

∣∣∣∣ =
2y

x
= 2v.

Hence the joint density is

g(u, v) =

{
1
2v

if (u, v) ∈ U,
0 otherwise.

28 The multivariate normal distribution

Some terminology

Throughout this section, vectors in Rn will be underlined, while n × n matrices will be
double underlined.

For the joint distribution of (arbitrary) random variables (X1, X2 . . . , Xn), the vector of
expected values is

µ =

 µ1
...
µn

 =

 EX1
...

EXn

 ,

and the covariance matrix C is defined as

Ci,j = Cov(Xi, Xj) i = 1, . . . , n; j = 1, . . . , n.

In particular, for n = 2

C =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

Where σ2
i = V ar(Xi) (i = 1, 2), and ρ is the correlation coefficient. C is always a symmetric

positive definite matrix by the Cauchy-Schwartz inequality (20.4).

The multivariate normal distribution

Let µ be a vector of expected values and C a covariance matrix. Let, furthermore, A = C−1,
which is another symmetric positive definite matrix. The variables (X1, . . . , Xn) are jointly
normally distributed with vector of expected values µ and covariance matrix C (in short
X ∼ N (µ,C)) if their joint density is

f(x1, . . . , xn) =

√
detA

(2π)n/2
· exp

(
−1

2
(x− µ)TA(x− µ)

)
,

where x =

 x1
...
xn

, and the superscript T stands for transpose.
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Special case. If µ = 0 =

 0
...
0

 (the origin) and C = A = I =

 1 0
. . .

0 1

, the unit

matrix, then
f(x1, . . . , xn) = ϕ(x1) · · ·ϕ(xn),

that is, the variables are independent, and Xi ∼ N (0, 1) (i = 1, . . . , n).

Proposition 28.1. If X ∼ N (µ,C), then there exist independent variables Yi ∼ N (0, 1)
(i = 1, . . . , n) and an invertible n× n matrix B such that

X = k−1(Y ) = B Y + µ ⇐⇒ Y = k(X) = B−1(X − µ).

Proof. As A is symmetric and positive definite, it is diagonalizable. That is, there exist
n positive eigenvalues λ1, . . . , λn (counted with multiplicity) and associated eigenvectors
u1, . . . , un which form an orthonormal base. Furthermore, denoting

P =

 u1 · · · un

 and D =

 λ1 0
. . .

0 λn


we have

D = P−1AP ⇐⇒ A = P DP−1,

where D is a diagonal and P is an orthogonal matrix.
Denote, furthermore

D1/2 =


√
λ1 0

. . .

0
√
λn


and define

B−1 := D1/2 P−1 ⇐⇒ B = P D−1/2.

Then we have
A = P DP−1 = P D1/2D1/2 P−1 = (B−1)TB−1 (28.1)

(as P−1 = P T for an orthogonal matrix, while D1/2 is symmetric). So if

y = k(x) = B−1(x− µ)

then as this transformation is linear, it has a constant Jacobian

J =
∂y

∂x
= det(B−1) = det(D1/2) =

√
detD =

√
detA, (28.2)

where we have used that detP = 1 for an orthogonal matrix. Also

(x− µ)TA(x− µ) = (x− µ)T (B−1)TB−1(x− µ) = yTy. (28.3)
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So, the joint density of Y = (Y1, . . . , Yn) is

g(y) =
1

J
· f(x) =

1√
detA

·
√

detA

(2π)n/2
· exp

(
−1

2
(x− µ)TA(x− µ)

)
= (2π)−n/2 exp

(
−1

2
yTy

)
which completes the proof.

Note also that X = BY + µ, so

Cov(Xi, Xj) = Cov

(
n∑
k=1

BikYk,
n∑
`=1

Bj`Y`

)
=

n∑
k=1

n∑
`=1

BikBj`δk` =

=
n∑
k=1

BikBjk = (BBT )ij = (A−1)ij,

which shows that C = A−1 is indeed the covariance matrix for X.
If X = (X1, . . . , Xn) are jointly normally distributed, then we have the following prop-

erties.

• If the variables are uncorrelated, that is, for all pair i 6= j we have Cov(Xi, Xj) = 0,
then Xi ∼ N (µi, σ

2
i ) (i = 1, . . . , n) and the variables are, actually, independent. Recall

that in general zero covariance does not imply independence, so this is a special feature
of the jointly normally distributed case.

• Any linear combination
∑n

i=1 aiXi of the variables is normally distributed.

• The conditional distributions are normal, too. For example, if n = 2, then X1|X2 ∼
N (µX2 , σ̂

2), where σ̂2 = σ2
1(1− ρ2) and µX2 = µ1 + ρ

σ1

σ2

(X2− µ2). this can be verified

by computations analogous to what we have done in Example 26.5.

Example 28.2. The height-weight example, see the excel file.

Example 28.3. Theoretical Exercise 7.41 in the Ross book.

29 Almost sure convergence

Definition 29.1. A sequence of random variables Yn : Ω→ R converges in probability to 0
if for any ε > 0

P(|Yn| > ε)→ 0 as n→∞.

Definition 29.2. A sequence of random variables Yn : Ω→ R converges to 0 almost surely
if for any ε > 0

P({ω ∈ Ω |Yn(ω)→ 0}) = 1.
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Example 29.3. Here is an example of a sequence of random variables for which Yn → 0
in probability, but not almost surely. Let Ω = [0, 1] with the Lebesgue measure. For n ≥ 1,
there is a unique k ≥ 0 and r ∈ {0, . . . , 2k − 1} such that n = 2k + r. Let

Yn(ω) =

{
1 if r

2k
≤ ω ≤ r+1

2k
,

0 otherwise.

Borel-Cantelli lemmas

Let An ⊂ Ω, n ≥ 1 be a sequence of events, and

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak; lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak.

In words: lim sup
n→∞

An is the event that infinitely many of the An occur, while lim inf
n→∞

An

is the event that all but finitely many of the An occur. It follows for the de Morgan laws
that (

lim sup
n→∞

An

)C
= lim inf

n→∞
ACn ;

(
lim inf
n→∞

An

)C
= lim sup

n→∞
ACn .

Lemma 29.4 (Borel-Cantelli lemmas). Let An be a sequence of events.

(1) If
∞∑
k=0

P(Ak) <∞, then P
(

lim sup
n→∞

An

)
= 0.

(2) If the events An are independent and
∞∑
k=0

P(Ak) =∞, then P
(

lim sup
n→∞

An

)
= 1.

Proof. To prove (1), use that for any N ≥ 1:

P
(

lim sup
n→∞

An

)
= P

(
∞⋂
n=1

∞⋃
k=n

Ak

)
≤ P

(
∞⋃
k=N

Ak

)
≤

∞∑
k=N

P(Ak)

which is the tail of a convergent sequence, hence tends to 0 as N →∞.
To prove (2), we may use independence of the events An and the identity 1 − x ≤ e−x

to obtain

P

(
∞⋂
k=n

ACk

)
=
∞∏
k=n

(1− P(Ak)) ≤
∞∏
k=n

e−P(Ak) ≤ exp

(
−
∞∑
k=n

P(Ak)

)
.

Then

P

((
lim sup
n→∞

An

)C)
= P

(
lim inf
n→∞

ACn

)
= lim

n→∞
P

(
∞⋂
k=n

ACk

)
≤ lim

n→∞
exp

(
−
∞∑
k=n

P(Ak)

)
= 0.

as any tail of a divergent series (with non-negative terms) is infinite.
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Strong law of large numbers

Consider am i.i.d. sequence of random variables, X1, X2, . . . , Xn, . . . ; with µ = EX(= EX1)
and Sn = X1 + · · ·+Xn. The weak law of large numbers states that Sn

n
→ µ in probability.

Theorem 29.5 (Strong Law of Large Numbers). Consider an i.i.d. sequence with the no-
tations specified above. Then

Sn
n
→ µ almost surely, as n→∞.

Proof. We prove this statement under the additional assumption EX4 <∞. Note that this
implies that there exists some K̃ > 0 such that E(|X|p) ≤ K̃ for p = 1, 2, 3, 4.

Centered case. Let us assume for now that µ = 0, hence our aim is to bound Sn
n

from
above. We have

S4
n = (X1 + · · ·+Xn)4 =

n∑
i=1

X4
i +

∑
i<j

(
4

2

)
X2
iX

2
j + . . .

where the additional terms are of the form cXiX
2
jXk with j 6= i and k 6= i. When

the expected value of such a term is taken, we have, by independence and µ = 0 that
E(cXiX

2
jXk) = c · EXi · E(X2

jXk) = 0. For the other two types of terms, we may use the
upper bound on E(|X|p) to get:

ES4
n ≤ Kn2 for some K > 0.

Now, for any ε > 0:

P
(∣∣∣∣Snn

∣∣∣∣ ≥ ε

)
= P(S4

n ≥ n4ε4) ≤ Kn2

n4ε4
=
K

ε4
· 1

n2

by the Markov inequality. Note that the numbers on the RHS form a summable series.
Introduce, for m ≥ 1 fixed,

Amn =

{∣∣∣∣Snn
∣∣∣∣ ≥ 1

m

}
; Bm = lim sup

n→∞
Amn

By the first Borel-Cantelli lemma, P(Bm) = 0 for any m ≥ 1. That is, P(BC
m) = 1 for any

m ≥ 1. Hence

P

(
∞⋂
m=1

BC
m

)
= 1

which precisely means that

P
({
∀ε > 0 ∃n0 ≥ 1 : ∀n ≥ n0

∣∣∣∣Snn
∣∣∣∣ < ε

})
= 1,
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which is exactly the statement of the SLLN.
For extension to the general case of µ 6= 0, let X̂n = Xn − µ, which are centered, so the

previous case applies. Then note that{
Sn
n
→ µ

}
=

{
Ŝn
n
→ 0

}
.

30 Markov chains

Given a countable set S, a sequence of S-valued random variables X0, X1, . . . , Xn, . . . is a
Markov chain if

P(Xn = in |Xn−1 = in−1, Xn−2 = in−2, . . . , X1 = i1, X0 = i0) = P(Xn = in |Xn−1 = in−1)

for any n ≥ 1 and in, in−1, . . . , i1, i0 ∈ S. Throughout, time homogeneous Markov chains
are considered which means

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i) = pij

where pij is the transition matrix. We have

• pij ≥ 0, ∀i, j;

•
∑
j

pij = 1 ∀i.

Consider the Gambler’s ruin, Ehrenfest chain, Weather chain examples from Durrett.
Here is another example:

Example 30.1. A drunk person is walking around randomly in a small town the map of
which is displayed on Figure 11. Each time he is at one of the corners, he picks evenly one
of the available streets, except the street he has just arrived from. Do the corners visited
by the drunk person form a Markov chain? If yes, determine the transition matrix. If no,
come up with an alternative suggestion for a Markov chain that describes the process.

Multistep transition probabilities :

P(Xn+m = j|Xn = i) = (pm)ij

where pm is the mth power of the matrix p.
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Figure 11: Map of the city for Example 30.1

Classification of states

For x, y ∈ S, introduce the following notations:

Ty = min{n ≥ 1 : Xn = y} the first hitting/return time,

ρxy = Py(Ty <∞) = P(Ty <∞|X0 = y) the probability that x can be reached from y,

x→ y if ρxy > 0, i.e. ∃n ≥ 1 : pnxy > 0 x communicates with y.

Further terminology:

• If ρxx = 1, then x is called recurrent, if ρxx < 1 then x is called transient.

• A set A ⊂ S is

– closed if for any x ∈ A and y 6∈ A we have x 6→ y,

– irreducible if for any pair x, y ∈ A we have x→ y.

Proposition 30.2. If A ⊂ S is finite, closed and irreducible then all states x ∈ A are
recurrent.

Proof. Introduce

T ky = min{n > T k−1 : Xn = y} the kth hitting/return time,

Ny = #{n ≥ 1 : Xn = y} the total number of visits at y,

Ex(Ny) the expected number of visits at y,when starting from x.

Notice that
{Ny ≥ k} = {T ky <∞},

hence

Ex(Ny) =
∞∑
k=1

Px(Ny ≥ k) =
∞∑
k=1

Px(T ky <∞).

Also
Px(T ky <∞) = ρxyρ

k−1
yy .
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This implies that there are two options:

y is transient ⇐⇒ ρyy < 1 ⇐⇒ Ey(Ny) =
ρyy

1− ρyy
<∞;

y is recurrent ⇐⇒ ρyy = 1 ⇐⇒ Ey(Ny) =∞.

Using indicator variables, we get another formula

Ex(Ny) =
∞∑
k=1

pkxy.

Now, the statement of the Proposition follows from the following two observations:

1. If A is irreducible, and there exists some y ∈ A which is recurrent, then every x ∈ A
is recurrent. This holds because

Ex(Nx) =
∞∑
k=1

pkxx ≥ ρxy

(
∞∑
j=1

pjyy

)
ρyx

and we have ρxy > 0 and ρyx > 0 by irreducibility, while the middle factor is infinite
as y is recurrent.

2. If A is finite and closed, than it contains at least one recurrent state. To see this,
assume that all sates in A are transient. Then ∀x, y ∈ A we have Ex(Ny) <∞. But

∑
y∈A

Ex(Ny) =
∑
y∈A

∞∑
k=1

pkxy =
∞∑
k=1

∑
y∈A

pkxy =
∞∑
k=1

1 =∞.

Corollary 30.3. If S is finite, then it arises as a disjoint union S = T ∪ R1 ∪ · · · ∪ RK

for some K ≥ 1, where every x ∈ T is transient while for any k = 1, . . . , K, Rk is a closed
and irreducible (hence recurrent) class.

Proof. Let x ∈ T if there exists some y ∈ S such that x → y but y 6→ x. Such states are
transient as there is a positive probability that we get to y and then never get back to x.

For y1, y2 ∈ (S \T ), we have y1 → y2 if and only if y2 → y1, which defines an equivalence
relation, and the Rk are the equivalence classes.

In most cases, irreducible Markov chains are considered, which means that S consists of
a single closed irreducible class. In case S is finite, (all states in) this class are recurrent.
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Stationary distributions

Even if started from a specific state X0 = i ∈ S, at the next time step, X1 is already random,
in particular P(X1 = j|X0 = i) = Pij. Hence it is reasonable to consider the evolution of
distributions. If we have

αj = P(X0 = j),

(
αj ≥ 0,∀j ∈ S,

∑
j∈S

αj = 1

)

then

βj = P(X1 = j) =
∑
i∈S

P(X1 = j|X0 = i)P(X0 = i) =
K∑
i=1

αiPij

where we have assumed that #S = K <∞. The moral is that probability distributions on
S are evolved by multiplication by the transition matrix from the right.

Definition 30.4. A vector (π1, . . . , πK) with πi ≥ 0 and
K∑
i=1

πi = 1 is a stationary distribu-

tion if

πj =
K∑
i=1

πiPij, ∀j = 1, . . . K

that is, if πi is a left eigenvector of the matrix Pij corresponding to the eigenvalue λ = 1.

Proposition 30.5. If S is finite and the chain is irreducible, then there exists a unique
stationary distribution. Moreover, πi > for every i = 1, . . . , K.

Proof. Recall
K∑
j=1

Pij = 1; ∀i = 1, . . . , K

which can be interpreted as follows: λ = 1 is an eigenvalue of Pij with right eigenvector
(1, . . . , 1)T . Hence λ = 1 is an element of the spectrum of P , and thus there has to exist at

least one left eigenvector (v1, . . . , vK); for which vj =
K∑
i=1

viPij for every j = 1, . . . K.

Now we show that vj ≥ 0 for every j = 1, . . . K – more precisely, that all of the
components vj have the same sign. Consider R = (Id+P )/2, that is, Rij = (δij + Pij)/2,
the transition matrix for the lazy chain. On the one hand, R apparently has the same
eigenvalues and eigenvectors as P . On the other hand, there exists M ≥ 1 such that
RM
ij > 0 for every (i, j) ∈ {1, . . . , K}2. To see this, note that, by irreducibility, for every

pair i, j there exist m(= m(i, j)) such that Rm
ij > 0. Let

M = max{m(i, j) : (i, j) ∈ {1, . . . , K}2}
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and we claim that RM
ij > 0 for every (i, j), because if you make it to j earlier, you can just

“waste your time” there. Now we argue by contradiction, assuming there exist components
of negative sign, which would imply:

|vj| =

∣∣∣∣∣
K∑
i=1

viR
M
ij

∣∣∣∣∣ <
K∑
i=1

|vi|RM
ij =⇒

=⇒
K∑
j=1

|vj| <
K∑
j=1

K∑
i=1

|vi|RM
ij =

K∑
i=1

|vi|,

a contradiction. To see that all components are, actually, positive, note that

vj =
K∑
i=1

viR
M
ij > 0

as on the RHS at least one term is positive, unless vi = 0 for all i, a contradiction.
Finally, to see that the eigenvector v obtained this way is unique (up to a constant

factor), assume that the eigenvalue λ = 1 is of higher multiplicity, then the associated
eigenspace would contain a two dimensional plane, and thus a vector perpendicular to v,
which would have components of variable signs, a contradiction.

Convergence

Aperiodicity. For x ∈ S, let

Per(i) = g.c.d{n ≥ 1 : pnii > 0}

where g.c.d. stands for greatest common divisor. If Per(i) = 1, then i ∈ S is called aperiodic.
Equivalently, i ∈ S is aperiodic if there exists N ≥ 1 such that pnii > 0 for any n ≥ N . Also,
if i ∈ S is aperiodic and i↔ j, then j ∈ S is aperiodic, hence aperiodicity is a property of
a class. Unless otherwise stated, irreducible, aperiodic Markov chains are considered.

Proposition 30.6. Let us consider an irreducible, aperiodic Markov chain on a finite state
space S. Then, for any pair i, j we have

lim
n→∞

pnij = πj.

Also, Ex(Tx) = (π(x))−1 for any x ∈ S.

Proof. (Sketch)
Coupling argument. We may consider the Markov chain on S ×S with transition probabil-
ities

P(x1,y1)(x2,y2) = px1x2 · py1y2 .
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This chain is irreducible. As a consequence, if Xn and Yn are two copies of the Markov
chain started from two different states, and T denotes the first time that Xn = Yn, then
P(T <∞) = 0. This implies

|P(Xn = j)− P(Yn = j)| ≤ 2P (T > n)→ 0 ∀j ∈ S, as n→∞.

Now if Xn is started form state i and Yn is started form the stationary distribution, this
boils down to

lim
n→∞

|pnij − πj| = 0.

To see that Ex(Tx) = (π(x))−1, introduce Nn(x), the number of visits at x up to time n.
Recall that T kx is the time of the kth visit at y. Then

lim
n→∞

n

Nn(x)
= lim

k→∞

T kx
k

= Ex(Tx)

almost surely. The first equality is because for both fractions the numerator counts the
total number of steps, while the denominator counts the number of times the chain is at
state x. The second inequality is a law of large numbers when the chain is started form x,
and otherwise the initial transient of making to x for the first time does not contribute to
the asymptotic. Hence

lim
n→∞

Nn(x)

n
= (Ex(Tx))−1

almost surely, also when the chain is started from the stationary state, in which case
EπNn(x) = π(x)n.

Detailed balance

Let us consider irreducible chains with finitely many states (#S = K <∞). We know that

there is a unique stationary state πi, namely, the eigenvector
K∑
i=1

πipij = πj, however, it may

be difficult to solve this explicitly if K is large.

Definition 30.7. The Markov chain has detailed balance if there exists some vector πi > 0
such that

πipij = πjpji ∀i, j ∈ {1, . . . , K}2

Summation on i implies that in this case πi is the stationary distribution.
Comments.

• There are chains which do not have detailed balance. See Example 1.29 in Durrett.

• Two important examples for detailed balance are

– Birth and death chains, in particular, the Ehrenfest chain.

– Random walks on undirected graphs.

83



Gambler’s ruin

For N ≥ 2 and p ∈ (0, 1), let S = {0, 1, . . . , N − 1, N}, and

p(i, i+ 1) = p and

p(i, i− 1) = q = 1− p for 1 ≤ i ≤ N − 1, while

p(0, 0) = 1,

p(N,N) = 1.

0 and N are absorbing states. Introduce θ = q/p. Let

TN = min{n ≥ 1 : Xn = N},
T0 = min{n ≥ 1 : Xn = 0},
T = min(T0, TN),

h(k) = P(TN < T0 |X0 = k), k = 1, . . . , N − 1;

g(k) = EkT, k = 1, . . . , N − 1.

Unfair game from the gambler’s perspective: Let p < 1/2; and thus θ > 1. Xn = 0
means that the gambler is bankrupt at time n, while Xn = N means that the gambler has
made his goal and stops playing at time N . Let us determine h(k):

h(0) = 0, h(N) = 1;

h(k) = qh(k − 1) + ph(k + 1) =⇒
(h(k + 1)− h(k)) = θ(h(k)− h(k − 1)) = · · · = θk(h(1)− h(0))

and thus

1 = h(N)− h(0) =
N−1∑
k=0

(h(k + 1)− h(k)) = (h(1)− h(0))
N−1∑
k=0

θk = (h(1)− h(0))
θN − 1

θ − 1

so

(h(1)− h(0)) =
θ − 1

θN − 1
=⇒

h(k) = h(k)− h(0) =
k−1∑
i=0

(h(i+ 1)− h(i)) =
k−1∑
i=0

θi(h(1)− h(0)) =
θ − 1

θN − 1
· θ

k − 1

θ − 1
=
θk − 1

θN − 1
.

Let us consider roulette when p = 18/38, q = 20/38 and θ = 10/9. If, for example,
k = 50 and N = 100, then

h(50) =
(10/9)50 − 1

(10/9)100 − 1
≈ 0.00513
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Fair game: The case of p = q = 1/2 (θ = 1) was considered back in Budapest:

h(k) =
k

N
. (30.1)

Unfair game from the casino’s perspective: Now p > 1/2 and thus θ < 1. We may
consider the limit

lim
N→∞

Pk(T0 <∞) = 1− lim
N→∞

h(k) = θk (30.2)

In particular, for roulette, the chance that the casino will ever go bankrupt decreases ex-
ponentially as a function of the initial capital k. For example, if k = 100, P(T0 < ∞) =
(0.9)100 ≈ 2.656× 10−5.

Expected exit time for the fair game: For p = 1/2 let us determine g(k).

g(0) = 0, g(N) = 0;

g(k) = 1 +
1

2
g(k − 1) +

1

2
g(k + 1) =⇒

g(k + 1)− g(k) = g(k)− g(k − 1)− 2 = · · · = g(1)− g(0)− 2k = c− 2k

and thus

0 = g(N) = g(N)− g(0) =
N−1∑
k=0

(g(k + 1)− g(k)) = Nc− 2
N(N − 1)

2
.

This implies
c = N − 1

and

g(k) = g(k)− g(0) =
k−1∑
i=0

(g(i+ 1)− g(i)) = kc− 2
k(k − 1)

2
= k(N − k). (30.3)

Infinite state spaces

Reflected random walk. Let

S = {0, 1, . . . },
p(i, i+ 1) = p for i ≥ 0,

p(i, i− 1) = q = 1− p for i ≥ 1, and

p(0, 0) = q = 1− p.

Let us use the notations from the gambler’s ruin section, in particular θ = q/p.
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Drift to the left: p < 1/2, and thus θ > 1. This is a birth and death chain, which has
detailed balance:

π(i)p = π(i+ 1)q =⇒ π(i+ 1) = θ−1π(i) = θ−iπ(0)

which by
∑∞

i=0 π(i) = 1 gives
π(k) = (1− θ−1)θ−k+1

As there is a stationary distribution, the expected return time to any state has the finite
expectation (π(i))−1.

Drift to the right: p > 1/2, and thus θ < 1. From (30.2) it follows that the chain is transient :
when started from 0, there is a positive chance that it never returns. With probability 1 it
returns only finitely many times, and wanders off to infinity.

Case with no drift: To see what happens in this borderline case, we consider the N → ∞
limits of

- (30.1). When started form 0, the chain returns with probability 1.

- (30.3). However, the expected return time is infinite.

Also, the detailed balance equations would result in π(i) = π(0) for every i ≥ 1, but as
there are infinitely many states, no such probability distribution exists.

These examples demonstrate that, for irreducible Markov chains on infinite state spaces
there are the following three options.

• Positive recurrence. There is a stationary distribution, the chain returns to its starting
position with probability 1, and the expected return time is finite.

• Transience. There is a positive probability that the chain does not return to its
starting position. With probability 1 it returns only finitely many times and wanders
off to infinity.

• Nullrecurrence. The chain returns to its starting position with probability 1, however,
the expected return time is infinite. Accordingly, there is no stationary distribution.

Symmetric random walk on Zd. By symmetry, there cannot exit a stationary distri-
bution, so the chain is either transient or nullrecurrent. It is a famous theorem of György
Pólya that the simple symmetric random walk on Zd is recurrent for d = 1, 2 and transient
for d ≥ 3.

We will investigate first the case of d = 1. Let us start the chain from 0. Then, by direct
inspection

P(Xk = 0) =

{(
2n
n

)
· 1

22n
if k = 2n,

0 if k = 2n+ 1.
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Let
An = {X2n = 0},

and let us use Stirling’s formula to estimate P(An).

n! ≈ nn

en

√
2πn,

(n!)2 ≈ n2n

e2n
2πn,

(2n!) ≈ (2n)2n

e2n

√
4πn = 22n · n

2n

e2n
2πn · c√

n
, for some c > 0,

P(An) =

(
2n

n

)
· 1

22n
=

c√
n

+ higher order terms.

Now as
∞∑
n=1

P(An) =∞

(2) of the Borel-Cantelli lemmas suggests that

P(lim supAn) = 1 =⇒
The walk returns to 0 infinitely many times with probability 1.

For d ≥ 2, consider d independent random walkers X
(i)
n , i = 1, . . . , d, along the d coordinate

axes, all isomorphic to Z. The d dimensional random walk returns to the origin at time 2n
if and only if all the X

(i)
2n return to 0 simultaneously. So

Adn = {d dimensional random walk returns to the origin at time 2n};

P(Adn) =
d∏
i=1

P(X
(i)
2n = 0) = (P(An))d =

C

nd/2
+ higher order terms

So

∞∑
n=1

P(Adn) =∞ ⇐⇒ nullrecurrence ⇐⇒ d = 1 or 2;

∞∑
n=1

P(Adn) <∞ ⇐⇒ transience ⇐⇒ d ≥ 3.

87


