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Abstract

In this work, we cover — without proofs — the mathematical basics needed to study chaos
theory, including measure theory, ergodic theory, hyperbolicity (which is at the heart of
chaos theory), then establish a general method for finding regions of hyperbolicity (cone
technique).

Then we introduce the billiard problem, cover the basic concepts that occur. After
this, we study dispersing billiards, discuss why a stadium billiard is hyperbolic, prove
that a circular billiard is NOT hyperbolic, then demonstrate some interesting phenomena
occuring in annular billiards that consist of two circles.

Using the toolset and knowledge developed in the preceeding chapters and sections,
we later examine a billiard that is made of two stadia, and find parameters that guarantee
hyperbolicity.

A large portion of this work was taken from or paraphrased with the help of [1], and
some figures are also taken from there. Figures where it isn’t stated explicitly whether
they are taken from another source or not, were made by the author (me, Gergé Dénes)

using the TikZ package in BTEX.
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Chapter 1

Intruduction

In literature, chaos does not have a universal definition. However, a common definition

for a chaotic dynamical system is that it satisfies the following properties:
(i) it is sensitive to initial conditions (hyperbolicity)
(ii) it is topologically transitive (mixing)
(iii) it has dense periodic orbits.

Property (iii) is easy enough to grasp and see whether it holds in a dynamical system,
but properties (i) and (ii) are not so evident. In this chapter, we will introduce the most
basic concepts needed to mathematically describe chaos through (i) and (i7). Furthermore,
let us note that the above three properties characterizing chaos are understood in a purely
topological perspective. In this work we include the additional viewpoint of ergodic theory
with the presence of a natural invariant measure. This way we interpret properties (i)
through the Oseledets theorem, while in the context of (i7), we interpret ergodicity /mixing
with respect to the invariant measure.

We follow the most important definitions and derivations in the appendices of [1] for
measure theory and ergodic theory, then for introducing hyperbolicity, we closely follow

Chapter 3 in that very same book.
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1.1 Measure theory basics

Definition 1.1.1 Let X be a set. A nonempty set F constructed of the subsets of X is

a o-algebra if

(i) if A, € F, thenVi>1 = U A; € F (it is closed under countable unions)

=1

(ii) if A€ F, then A° = X\A € F (it is closed under taking complements)

(X, F) together are called a measurable space, the sets A € F are called measurable

sets.

Any o-algebra is closed under all countable combinations of unions, intersections, and

all other elementary set-theoretic operations. Every o-algebra contains X itself and @.

Definition 1.1.2 For any family of o-algebras {F;}, their intersection ﬂ}"z 15 also a

7

o-algebra. For any collection C of subsets of X let f(C) the intersection of all o-algebras
containing C. Then .7:"(6) is called the o-algebra generated by C.

Definition 1.1.3 If C denotes the collection of all open subsets of a topological space X,
then F(C) is called the Borel o-algebra on X.

Definition 1.1.4 A function p: F — RU{+o0} is a measure on (X, F) if
(1) W(A) >0 VAeF (uis nonnegative)

(ii) (@) =0 (the empty set has zero measure)

(iii) If {A2,} € F and A;NA; = @ for i # j, then u(UAZ) = Z,u(Ai) (s
i=1 i=1
o-additive)

Definition 1.1.5 A semi-algebra is a nonempty collection C of subsets of X if

(i) if A, B € C, then AN B € C (closed under intersections)
(ii) if A€C, then A° = | JA; where A; €Candi#j = ANA; =0
i=1
Theorem 1.1.1 Extension theorem Let C be a semi-algebra and let i : C — RU{+o0}
such that
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(i) X = UAi for some A; € C such that pu(A;) < oo

i=1

(i) w is o-additive (see Definition 1.1.4 )
Then there exists a unique measure ji on F(C) that agrees with pu on C.

The proof of this theorem is omitted here.

An important application of this theorem is constructing the Lebesgue measure: take
C as the collection of all open, closed and semi-open intervals in R. Then C is a semi-
algebra, and the length of an interval is a function on C that satisfies the above properties,
thus there exists an m unique measure on the Borel o-algebra on R that gives the length

of intervals. This is called the Lebesgue measure.

Definition 1.1.6 4 is a finite measure on (X, F) if u(X) < oo, and is a probability
measure if u(X) = 1.
Any Borel probability measure . on R can be defined by

p((a,b]) = F(b) — F(a)
assuming the following hold:

(i) F is nondecreasing
(ii) F' is right-continuous

(117) lim F(z) =1 and lim F(z) = 0.

T—00 x—0

Every function F'(x) with the above properties is a distribution function of a probability
measure on R. The restriction of m onto [0, 1] is a probability measure as well.

Let (X, F,u) and (Y,G,v) be two measurable spaces with probability measures. A
transformation 7' : X — Y is measurable if VA € G, we have T4 € F.

The image Ty of the measure p is defined by Tu(A) = p(T-'A) VA € G. An

equivalent form of this fact can be written as:
/gd(Tu) :/gonu
Y X
for any bounded measurable function g : ¥ — R.
Notation 1.1.1 For two measurable sets A, B € F, we write
A=DB (mod0) <= u((A\B)U (B\A))

meaning that A can be transformed into B by adding and/or removing some null sets.
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1.2 Ergodic theory basics

In the following, let (X, F) be a measurable space.

Definition 1.2.1 T : X — X is a measurable transformation if T-'(A) € F for
every A € F.

From now on, let T' be a measurable transformation.

Definition 1.2.2 7 : X — X is an automorphism if it is a bijection, and T~ is also

a measurable transformation.

Note that the set {T™},n > 0 makes a semigroup, and if 7" is also an automorphism,
then {T"},n € Z makes a group. In both cases the group operation is the composition
of functions.

For any point = € X, the sequence {T"x} is called the orbit of x — for our purposes,
we will refer to this as the trajectory of x.

Let M(X) be the set of all probability measures on (X, F). Vu,v € M(X) and
0<p<1weget pu+ (1—pre M(X), meaning that M(X) is a convex set.

T:X — X induces a map T, : M(X) — M(X) through (Tu)(A) = p(T"'A) Vu e
M(X),VA e F.

Definition 1.2.3 A measure p is T-invariant if Ty = p (T preserves the measure ).

For an automorphism 7', Ty = <= T ' = p, so T and T~ preserve the same
measures. Let My (X) be the set of all T-invariant probability measures on X. Then
Mr(X) is a convex subset of M(X).

A measure p € M(X) is T-invariant if and only if for any measurable function f :

/Xfonuzfxfdu

(if one of the integrals exist, the other exists as well).

X — R, we have

For any p € M(X) its image 1 = T is given by

/Xfonuz/dem

T : X — X induces a linear map Ur on the space of measurable functions f: X — R
by
(Urf)(x) = (f o T)(x) = f(T(x))
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Let (X, F) be a measurable space and let T : X — X preserve a measure y € Mrp(X).

(X, F,T, 1) together are called a measure-preserving transformation.

Theorem 1.2.1 Poincaré recurrence theorem Let T : X — X preserve a measure
p € Mp(X) and u(A) > 0 for some measurable set A C X. Then for u-almost every

point x € A, we have
T"(z) € A for some sequence ny < ng < ...

Then,
Ta(z) =T (2),  with nu(x) =min{n >1:T"(z) € A}
1s defined almost everywhere on A, and is called the Poincaré return map. This map

preserves the conditional measure p1a on A defined by pa(B) = u(AN B)\u(A).

The proof of this theorem is omitted.
This theorem is remarkable, as in layman terms, it states that nondissipative, deter-

ministic dynamical systems will eventually return to their initial configurations.
Definition 1.2.4 A measurable set A C X is T-invariant if T~'(A) = A.

This happens if T(A) C A and T(A%) C A“.

If T preserves a measure i, then a measurable set A is T-invariant (mod 0) if A = T~'A
(mod 0). If B is T-invariant (mod 0), then there exists a T-invariant set B such that
B = B (mod 0).

Definition 1.2.5 A function f : X — R is T-invariant if f = foT (f is constant on

every tragectory of the map T).

If T preserves a measure p, then f: X — R is T-invariant (mod 0) if f(x) = f(T'z) for

p-almost every point z € X. In that case, there exists a T-invariant function f such that

f=f (mod 0).

Definition 1.2.6 A T-invariant measure p € My(X) is ergodic if for any T-invariant
set A C X we have u(A) =0 or u(A) = 1.
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A T-invariant measure p is ergodic if and only if any T-invariant function f : X — R
will have p({z : f(z) =¢}) =1 (f is constant almost everywhere).

If a measurable transformation 7" : X — X has a unique invariant measure u, it will
automatically be ergodic. In this case, T is said to be uniquely ergodic.

An example of a uniquely ergodic measure is rotating a circle by an irrational ¢ angle.
In this case, only the Lebesgue measure is preserved. Hyperbolic systems (e.x. hyperbolic
billiards) are typically not uniquely ergodic, as we can assign an invariant measure to

every periodic trajectory.

Definition 1.2.7 Forward/backward time average: Let (X, F,T,u) be a measure-
preserving transformation and f : X — X a measurable function. Then Vx € X the

sequence { f(T"x)} is regarded as the value of f at time n. Then
. 1 +1 +(n—1)
fe(z) := lim —(f(x)+f(T )+ -+ (T x))

is called the forward/backward time average of the function f along the orbit of x (if the

limit exists).

Theorem 1.2.2 Birkhoff Ergodic Theorem Let (X, F,T, ) be a measure-preserving
transformation and f € Li(X) = {f ; / |fI'du < oo}. Then
X

(i) for almost every point x € X the limit f,(x) in Definition 1.2.7 exists.

(ii) if the function f,(z) exists, then f,(T"x) exists for alln and f(T"x) = f(z) (f(x)

is T-invariant).
(11i) fy is integrable cmd/ fodp = / fdu
X X
(iv) if p is ergodic, then f(x) is almost everywhere constant and its value is / fdpu.
X

The proof of this theorem is also omitted.

If T: X — X is an automorphism, then for almost every point € X the limit f_(x)
exists as well, and f_(z) = fi(x) (mod 0).

The integral / fdu is regarded as the space-average of the function f. (iv) asserts
that if p is ergodiéf then the time averages are equal to the space averages.

This theorem is also remarkable, and we usually take result (iv) as granted in statistical

physics.
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Definition 1.2.8 A map T : X — X preserving a measure p is mixing if for all pairs
of measurable subsets A, B C X

lim p(T7"AN B) = u(A)u(B)

n—oo

As p(A) = p(T7™A), this is the same as

lim |[@(T™"ANB) — p(IT"A)u(B)| =0

n—0o0

meaning that the events 77" A and B become asymptotically independent as n — oo.

Note that x € T7"A <= T"(z) € A, meaning that we are speaking about the
events © € B and T"(z) € A (these quantities characterize x at time 0, and x at time n).
Mixing is commonly interpreted as asymptotic independence of the distant future from
the present, as the system ’forgets where it started’.

Also note that mixing implies ergodicity: Let A be an invariant set and B = A. Then
w(T™"ANA) = p(An A) = p(A)
But from the mixing property, we get

lim p(T7"ANA) = p(A)u(A)

n—oo

giving (A) = p(A)?, meaning that u(A) is either 0 or 1, which means that y is ergodic.

Definition 1.2.9 Let (X, F) be a measurable space. A dynamical system with continuous
time, also known as a flow is a one-parameter family of measurable transformation {S*} :
St X — X, t &R such that S = S' 0 S* and the map X x R — X defined by

(z,t) — S'x is measurable.

For every point # € X, the set {S’z} t € R is called the orbit, or in our case more
relevantly the trajectory of x. In billiards, X is a topological space and {S’r} is a
continuous curve Vz € X.

{S'} preserves a measure u € M(X) if u(S*A) = p(A) for all measurable subsets
AC X and all t € R.

Invariant measures, the Birkhoff Ergodic Theorem and mixing can all be extended to

flows quite intuitively, so the specifics of these are omitted.
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1.3 Lyapunov exponents and hyperbolicity

Let M be a compact Riemannian manifold, N C M an open and dense subset and
F:N — MaC" r > 2 diffeomorphism of N onto F(N). Assume that F' preserves a

probability measure p on M and p(N) = 1, where

N = ﬁ F™(N)

n=—oo

is the set where every iteration of F' is defined.

Theorem 1.3.1 Oseledets theorem: Letlog" s = max{log s, 0} and D, F is the deriva-

tive map of F' at point x and
/ log" || D, F||du(z) < 0o and / logt || D, F~H|du(z) < oo
M M

Then, there exists an F-invariant set H C N, u(H) = 1 such that Vo € H, there exists a

D F-invariant decomposition of the tangent space

with some m = m(x) such that for Vi = EV @ --- @ EY (0 < i < m) we have that
Vo(#£0) € VO
1 ,
im — noll = \(®)
nl_l)rinoo - log || D, F"v|| = A, (1.1)

where AV < .. < A,
The proof of this theorem is also omitted.

Definition 1.3.1 The /\gf) values in the above theorem are called Lyapunov exponents

of F' at x and have k; = dim E;i) multiplicities.

Lyapunov exponents may be defined regardless of invariant measures, as long as DF-
invariant decomposition and the limits (1.1) exist at 2 € N.
Lyapunov exponents and their multiplicities are invariant under F. If F' is ergodic,
then the Lyapunov exponents and their multiplicities are almost everywhere constant.
(1.1) can be restated in an equivalent way: Let A, = miin IAD|. Then Ve > 0

3C(z,e) > 0 such that

1DF~"(0)|| < Cla,e)e "X 9Jof| Vv € By (1.2)
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and

1D F" ()| < Cla,e)e ™ Jo]| Vv € E (1.3)

If )\gf) > 0, then nonzero tangent vectors v & Eii) grow exponentially in the future and
contract exponentially in the past. The opposite is true for )\g) <0. If )\g) = 0, then the
corresponding tangent vectors do not expand or contract at an exponential rate, but they
might still grow or shrink linearly or polynomially in n.

In physics, for non-dissipative systems we get that Lyapunov exponents add to 0,
meaning that if there exists a positive exponent, at least one negative exponent also
exists, which corresponds to stretching in one direction and contraction in another in the

tangent space. This is also going to be the case for billiards.

Definition 1.3.2 A point x € M is said to be hyperbolic if Lyapunov exponents exist

at x and none of them equals zero.

For a hyperbolic point # € M, the tangent space is given by 7,M = E. @& E;, where
E:= @ EY and E = EY
AP>0 AP <o
corresponding to the unstable and stable subspaces of F'. The words 'unstable’ and
'stable’ indicate that if any tangent vector in £} gets transformed into E) by D,F,
its length will increase, leading to trajectories close to each other getting further apart,
while tangent vectors in E? get transformed into E; and have shorter length, leading to

trajectories close to each other to get even closer.
Definition 1.3.3 F' is a hyperbolic map if ji-almost every point x € M is hyperbolic.

If F'is a hyperbolic map, then A, > 0 and C(z,&) > 0 (in the sense of (1.2) and (1.3))

are measurable functions on M.

Definition 1.3.4 Hyperbolicity is uniform if A\, and C(x,e) can be made constant,
meaning N, C >0: Vre M An>1:

1D, F~"()[| < Ce™™|vl| Vv € By
1D F"(v)]| < Ce™™ ||| Vv € E

We will see that dispersing billiards are uniformly hyperbolic, stadia are non-uniformly

hyperbolic (this latter will be a result of circular billiards not being hyperbolic at all).
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1.4 Cone technique for proving hyperbolicity

The method described below is quite useful, and will be applied in detail in Chapter 4.
A general method for establishing hyperbolicity for x € M and constructing their
stable and unstable subspaces F; and E are as follows (for sake of simplicity and our
problem, we take dim M = 2, but it can be extended into higher dimensions):
Let z, = F"(z) Vn € Z, and choose some nonzero vectors in the tangent space of M

at point x_,, and n > 0, so v_, € T,_ M. Then, the following equation holds:

lim span{D,_ F"(v_,)} = E (1.4)

n—oo

The above equation states that if we iterate the derivative map on a certain v_,, vector
in the tangent space ’large enough’ n times, the resulting tangent vector will be in the
unstable space, as its component in the stable subspace gets transformed into 0, and its
component in the unstable subspace gets larger and larger.

(1.4) does not hold for all choices of the set {v_,}, but for some typical choices it does.
(1.1) suggests that if A, > 0 and v_, = c_p 4 V_pu + ConsV_ps With v_p,, € B v_, €
E;_, then

D,  F"(v_,) ~ e’\“‘”c_n,uw_mu + e_kx”c_nysw_nﬁs
with w_,, € E; and w_, s € E; some unit vectors.

If 0 < min < |conul,  |c—ns] < max < 00 (the coefficients are bounded away from

|C—n,8| 2z

zero and infinity), then (1.4) holds. As long as grows slower than e**" as n — o0,

’C—n,u
(1.4) still holds, so what we need to do is choose initial vectors v_, not too close to the

stable spaces E; . For choosing v_,, the method of cones can be introduced. For the
next definition, it is again important to note that we work in 2 dimensions, but this

method can be extended into higher dimensions.

Definition 1.4.1 Let L C T,M be a line and o € (0, g) A cone C with axis L and
opening « is the set of all tangent vectors v € T, M that make angle v < o with the line

L.

0C' is made up of vectors making angle o with L (the zero vector satisfies this as well, so
it belongs to the boundary).
Assuming that almost every point z € M is hyperbolic and we have a cone field — i.e.

a cone defined for every point x € M that depends continuously on x —, then C} C T, M
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satisfies D, F(C}) C C}, (the cone is invariant) at almost all points x € M (with L, and
o, measurable functions of x). Then it can be shown that

Ey = ﬂ Dx_nFn(C:}cL_n>

n>0

Using this, Vo_, € C; initial vectors satisfy (1.4).

Similarly, one can construct the stable subspace E} to get £} = ﬂ D,, F~"(C; ) with
n>0
an appropriately defined C3.

The above mean that if we find invariant cones in a hyperbolic system, the unstable
subspace is going to be the infinite intersection of the transformed invariant unstable
cones and the stable subspace is the infinite intersection of the images of the stable cones
by the inverse of the transformation. However, if the system is not hyperbolic (meaning
that the stable and unstable subspaces are empty), these cones can still exist (we will see
an example of this later with circular billiards).

M. Wojtkowski’s results [2| imply that although invariance is not enough, strict in-
variance of the cones imply hyperbolicity for maps that preserve an absolutely continuous
measure (in dimensions greater than 2, the result is true for ’symplectic’ maps instead,

but that is out of the scope of our work). By strict invariance we mean
D,F(C}) C intCy, U {0} (1.5)

D, F~H(C?) C intC4-,, U {0} (1.6)

where C}' and C; are the unstable- and stable cones respectively.

Note that the conditions we derived hold only for uniformly hyperbolic maps. For
nonuniformly hyperbolic maps, the cone method can be applied with the addition that
there exist a measurable function n,, : M — N such that for all n > n, the derived results

hold (this can be referred to as ’eventual invariance’ of the cones).



Chapter 2

The billiard problem

Now that we have laid the basics of the mathematics needed for our problem, we introduce

the billiard problem and Jacobi coordinates, according to Chapters 2 and 3 in [1].

2.1 What i1s a billiard?

Let Dy C R? be a bounded open connected domain and D = D,. We will assume that

the boundary 9D is a finite union of at least C* smooth compact curves.
oD=I=I1U---Url,

where each T; is defined by a C* map f; : [a;, b;] — R?, which is one-to-one on [a;, b;) and
has one-sided derivatives up to order ¢ at a; and b;, assuming ¢ > 3.

A D domain described above is called a billiard table and I'y,..., I, the walls of
the billiard table, or the components of 0D.

If I'; is not a closed curve (f(a;) = f(b;)), we call it an arc.

From now on, we also assume that the boundary components I'; intersect each other
only at their endpoints (note that at these points, 9D might not be 1-smooth — these are
called corners —, but this will not be a problem).

Let us parametrize each I'; with its arclength in such a way that intD, the interior of
the billiard table lies to the left of I';. Then, because of the parametrization, the tangent
vectors become unit vectors: |f7| = 1.

From now on, we also assume that on every I';, the second derivative, f;' is either
identically 0, or is never 0. This means that we disect the boundary to ’completely flat’

walls and curves without inflection points.

17
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Based on their second derivative f” (these are vectors), we classify three types of

curves:
e Flat walls: " =0
e Focusing walls: f” # 0 and points inside D
e Dispersing walls: f” # 0 and points outside D

|1] — the basis of this chapter — has a marvelous figure for demonstrating how a ’general’

billiard table looks like, which we include below:

Iy

T 1—\1

Figure 2.1: A billiard table D = D with different types of walls: I'; is flat, I's is focusing,
I's is dispersing, I'y is a closed curve with a corner point, I'; is a smooth closed curve.
Corner x has a positive interior angle 7, corner z is a ’cusp’ (the derivatives of I'y and T’y
point in the same direction at z). The orientation of the curves are shown by arrows, and
the unreachable parts of R? are colored with grey (not just the grey area, but anyhting
outside I'; UT'y U T'3 also belongs to this set). Figure 2.2 in [1]

We can also define the curvature on each I';, with k = 0 for flat components, K =
—||f"]| for focusing components and x = ||f”|| for dispersing components. Note that
the curvature k is a function of the base point on a given I'; boundary component, it is
generally not constant.

The above given construction for billiards suggests an analogy with geometric optics:
the particles that trace out trajectories in the system can be interpreted as light rays,
while walls can be viewed as perfect mirrors. The terms ’focusing’ and ’dispersive’ are
also quite intuitive, as light rays hitting a focusing mirror converge and light rays hitting
a dispersing mirror diverge from each other.

Note that based on the above analogy with geometric optics, corners might give rise to

interesting phenomena in billiards — we omit their investigation completely in this work.
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Let ¢ € D denote the position of a particle, and v € R? its velocity vector. Both of
these quantities are functions of t € R time. When the particle is moving freely inside

the table, we assume no dissipation, so
Q' =0uv=0

When the particle collides with a smooth part of the boundary at g, its velocity vector
gets reflected across the tangent line to that part of the boundary.

If a moving particle were to hit a corner, its trajectory would not be defined from then
on. This is one of the reasons we omit the investigation of these points.

In a grazing collision, v~ is tangent to a smooth, dispersing part of T'.

Figure 2.2: A particle bouncing off of a focusing boundary, then suffering a grazing

collision

Because |v| is unchanging, it is convenient to choose a coordinate system in which v’s
length is set to 1, meaning that the particle’s velocity is a unit vector and the set of all
possible v-s trace out a circle, so v € S*. The state of the particle at any time is specified

by ¢ and v, so the phase space of the system is given by
2= {(g.0)) =D x 5’

Let Q C Q denote the set of states (¢,v) in which the trajectory of the particle is
defined for all ¢ € R. Thus we obtain the flow of the particle:

PO —Q
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Vt € R with the note that before and after a collision, (¢,v~) and (g, v") are to be identified
with each other in the set of states (this is a convention). Also note that ®° = Id and

P! = ' o ®°, and everything discussed at Definition 1.2.9 holds.

2.2 Coordinates of the flow

The flow can be described in coordinates (z,y,w) with (x,y) = ¢ being the usual carthe-
sian coordinates and w € [0, 27) the counterclockwise angle between v and the x-axis.

For flow without collisions:
P Q= Q: (27, y,w )= (et yT wh) = (27 +tcosw,y” +tsinw,w)

For describing a collision, let (Z,7) € I' denote a collision point with h tangent vector to
I and 7 angle between h and the x-axis. Below we compute the post-collison coordinates
of the phase point X, = (z,,y,,w;) which depend on the pre-collision phase point
X_ =(z_,y_,w_). Let s~ denote the time before the collision and s* = s~ + ¢ the time
n

clapsed since, meaning X, = ®'X_ = ®*+*-X_. Let v denote the angle between v
and h (See Figure 2.3).

(z,y")

Figure 2.3: A collision on a curve I';, with noted parameters that help describe the flow
at the point of collision. It is not noted on the figure, but 7 is the angle between the

tangent vector at (Z,7), h and the z-axis. Figure 2.8. in [1]

Then

rT =T —5 cosw, 2t =72+ st cosw™,

Yy =1 —s sinw’, ytT =g+ st sinw™, (2.1)



CHAPTER 2. THE BILLIARD PROBLEM 21

w =7y -1, wh =75+

Now we aim to compute the differentials of the above quantities. Let r denote the

arclength parameter on I', then
dT = cosydr, dij = sin~dr, dy = —kdr (2.2)

where & is the curvature of the boundary component at (z, 7).

Taking differentials of all 6 equations in (2.1), we get the following quantities:

dxt = cosydr + coswTdsT — sTsinwTdw™
dyt = sinydr + sinwtds™ + s coswTdw™ (2.3)
dwt = —rdr + di
and
dr~ = cosvydr —cosw™ds™ + s sinw dw™
dy~ =sinydr —sinw ds™ — s~ cosw dw™ (2.4)

dw™ = —rdr — dvy

It can be shown that the differential form dx A dy A dw is preserved by ®, so the Lebesgue

measure dxdydw is also preserved on (2.

2.3 Jacobi coordinates and wavefront curvature

Consider a point X = (z,y,w) € Q and a tangent vector in the tangent space of {2 at
X: dX = (dz,dy,dw) € TxQ. A more convenient coordinate system can be defined by
(dn,d€, dw), where

dn = coswdx + sinwdy, and d§ = —sinwdx + coswdy (2.5)

These are called Jacobi coordinates. dn is the component of the vector (dx,dy) along
v, and d¢ is the orthogonal component of this vector. It can be seen that if there are no

collisions between X and ®'X, then

d&, = d€ + tdw, dw; = dw, dny = dn (2.6)
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Now we consider what happens to the quantities at a collision. Denote by d§™,dw™ the

precollisional-, dé*, dw™ the postcollisional values of the quantities d¢, dw. (2.3) and (2.4)

imply
dét = —d¢ (2.7)
and
dut = — 2" e _ du (2.8)
Cos
dnt =dn~

During the flow dn is constant, and because neither dw nor d¢ depend on it, it is enough
to only use the coordinates (d¢, dw) to describe the tangent space instead of (dn, d¢, dw)
(dn would not stay constant if there was dissipation or a potential).

These (d¢, dw) quantities correspond to lines in the tangent space L C 7,-€). We have
not yet explicitly stated, but by calculating the above quantities, we have been describing
the action of the derivative D®' of the flow ®' on these tangent lines.

The ratio of these quantities, (cil_cg define the slope of these lines in Jacobi coordinates.

Let

_dw
T

with adding that if d§¢ = 0 and dw # 0, we set B = oo (whether this is positive or negative

B (2.9)

00, it will not matter).

B, or put simply, the sign of B has a geometric meaning as well: (d¢,0) corresponds to
a displacement of dq = (dx,dy) of ¢ = (z,y) in the direction perpendicular to v because
of the definition of d¢ in (2.3). dw corresponds to a displacement dv of the vector v, so

B > 0 if and only if dq and dv point in the same direction - see the figure below:

ia| v ia| ‘
q v q v ld“

B>0 B <0

Figure 2.4: Geometric meaning of the sign of B

Let v/ C € be a curve pasing through a point X = (¢,v) and tangent to a line
L C T-Q. Assuming B # oo, the projection ¢’ = 7,(7’) of the curve 4 onto the table D
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is a curve which is orthogonal to v at the point ¢. (7, and 7, are the natural projections
of Q onto D and S* such that 7,(¢’,v") = ¢ and 7,(¢,v') ='.)

Every point X' = (¢,v") € 7/ moves along a trajectory, (¢' + sv’,v"), which traces a
segment of the line ¢’ + sv’ on the billiard table (for small enough s that ¢’ + sv” stays
inside D). Then, A = {¢ + sv' : (¢/,v") € v’} is a C" smooth family of directed lines in
D. A is a 2-dimensional family of lines, as v = v'(¢') is a function of ¢’ € o'.

Let o be the orthogonal cross-section of this family passing through ¢ (this curve is
perpendicular to every line in A). If we equip every point ¢ € ¢ with a unit normal
vector v” to o pointing in the direction of motion, we get a curve v C .

This v contains X = (¢,v) and it is tangent to 7' and L at X.

Definition 2.3.1 A smooth curve o C D equipped with a continuous family of unit nor-

mal vectors described above is called a wavefront.

The sign of B corresponds to different types of wavefronts: B > 0 means the wavefront
is dispersing, B < 0 means the front is focusing, B = 0 means the front is flat, and
B = 0o means the front is degenerate - it is completely focused in a focusing point (also

called degenerate). For clarity, [1] has a handy figure for this:

Dispersing Flat
B>0 B=0
Focusing Degenerate

B <0 B = oo

Figure 2.5: Types of wavefronts depending on the sign and finiteness of B (Symbol B is
used instead of B). Figure 3.8. in [1]

B can be identified as the curvature of the wavefront. In the following it will become

clear why:
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From (2.6), it can be seen that for flow without collision, starting with B, after time

t, we will get

dw B 1
B = — = = 2.1
"Tdf 1+tB t+ 1 (2.10)

This equation makes it evident why B is associated with the wavefront’s curvature. As-

sume By = oo, then through defocusing, the wavefront will become a circle with radius t,
1
and B; will be e which is the curvature of this very circle.
For collisions, it is also clear from (2.7) and (2.8) that if B = B~ before collision, then

after the collision it will be
2K

cos

Bt =B + (2.11)

For an n long series of these collisions, with ¢; —t;_; distance between the i-th and 7— 1-
st consecutive collisions, and the wall having k; curvature at the ¢-th collision, being hit
by the trajectory at incident angle ;, we can collect the equations into a single continued

fraction for the slope B;:

1
B, = - (2.12)
b=t - 1
- T
COS Py,
i
bn = tn1+ —5— i
COSPn-1 ..
i
t1 + E

If B is the curvature right before a collision, then ¢; = 0, the formula still holds.

2.4 The collision map

The problem can also be discretized to only map from collision to collision. It is easy
to realize that I' x S is a hypersurface describing the collisions at the boundary of
the billiard table, but because we know the postcollisional vectors are related to the
precollisional vectors through the normal vectors on I'; it is enough to describe the space
of postcollisional vectors.

For this, start by defining M = U{:E =(q,v) € Q: qeTly (v,n) >0} where n is

i
the unit normal vector to the i-th boundary component I';, pointing inside D ((v,n) is
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the standard Euclidean inner product). M is a 2-dimensional submanifold in €2, and it is
called the collision space.

We can use the arclength on I' for one of the coordinates parametrizing M. On each I';
component, let r € [a;, b;] with of course |I';| = b; — a;, and taking (a;, b;) disjoint intervals
on R for different values of . On smooth closed I';, a; can be identified with b;, meaning
that r is a cyclic parameter. For each point z € M, let ¢ = [ — g, g} be the angle
between n and v with ¢ being positive for clockwise- and negative for counterclockwise
oriented angles.

Every component of the collision space M has its each parametrization, but as long
as the boundary components are connected, M can be made into a connected surface as
well. If a boundary component is disjoint from some boundaries, then the collision space
belonging to this obstacle will also be separate from those boundaries’ collision space.

Let x = (q,v) € M. If ¢ is not a grazing collision or at a corner, and (v,n) > 0, then
its trajectory ®'x is defined for some interval 0 < t < . If the trajectory ®'z for x € M
is defined for some interval of time (0, €), then this trajectory can be continued up to the
point 2 on the surface I' x S* and we denote the value of time assigned to this intersection
by 7(x) > 0, which we call the return time. Since |v| = 1, 7(z) is equal to the distance
the trajectory covers from x before the next collision.

Let Q. C Q € Q denote the set of trajectories that have collisions in them.
Definition 2.4.1 Then let M = M N, for which we can define the collision map
F-M-oM: Flz)=3O% ().

Let x = (r,¢) € int M, then F(z) = (r1,¢1) € intM. Let (Z,7), (£1,71) € 0D be the
coordinates of the boundary points corresponding to r» and r;. Also let w be the angle

made by the trajectory between these two points and the z-axis. Then with 7 = 7(x),
T1— T = TCosw, Y1 — Yy =Tsinw (2.13)

Let 7,1 be the same as in Figure 2.3 then equations (2.1) and (2.2) hold again. Similar
notations for (v;,11, k1) can be used at the point ;. Because of the definition of w, we
get

w=7y+9Y=m—1

Taking differentials of this yields

dw = —kdr + dyp = —k1dry — di (2.14)
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Taking the differentials of (2.13):

26

cos y1dry — cos ydr = coswdT — T sin wdw

siny;dry — sin ydr = sinwdTt + T cos wdw

From the above 4 equations, we get

sin Ydry + sin¢dr = Tdw

(2.15)

Solving (2.14) and (2.15) for dr; and di);, and changing the parameter ¢ to the angle of

incidence ¢ through ¢ = g — ¢, we get

dr1:—< s —i—COS(’D)dT— T dy

COS®1  COS Py COS 1

and

coS K
dgplz—<7—ﬁm—|—f{+f<¢1 gO)alr—(Tl
COS Y1 COS 1 COS 1

(2.16)

+ 1)d¢ (2.17)

Therefore, there exists a matrix DF which acts on the vector (dr,dy) at z = (r,¢) and

transforms it to (dry,der) at xy = (r1,¢1) through the parameters of the collisions and

the distance between the collision points. This is called the derivative map.



Chapter 3

Dispersing billiards, stadia and annular

billiards

We have now seen a way to describe billiard tables generally. In this chapter, we aim to
explore different types of simple billiard tables. This chapter still heavily relies on [1].
For dispersing billiards, it will follow Chapter 4, and for stadium-shaped billiards, it will
follow some of Chapter 8 in the book. In a later section we will mention phenomena
appearing in [4], and we will share useful insight into what really causes hyperbolicity
described in [3].

In Chapter 4, we will aim to use our knowledge gathered in this chapter to establish

hyperbolicity on our own for a specific class of billiard tables.

3.1 Dispersing billiards

Definition 3.1.1 A billiard table D C R? is dispersing if all walls T; C T' = 0D are

dispersing.

In [1] there are further classifications of these billiards that include whether or not the
billiard has corners (in that case, does it have cusps) and whether the billiard’s horizon
is bounded or not. For the notion of bounded horizon, see Definition 3.1.3 below.

First we have to define Tor?:

Definition 3.1.2 Let K; = {(2,9) : 0 <2 < 1,0 <y < 1}. Then R? can be covered by
parallel translations of Ky. Tor* is obtained by identifying the opposite sides of the square
K; ((0,y) = (1,y) and (x,0) = (x,1) in the values x,y allowed on K ).

27
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The standard projection of R? onto K; just takes the coordinates and produces the frac-
tional parts of them: (z,y) — (x — |x],y — |y]), i.e. the standard projection transforms
trajectories in R? into directed straight lines on Tor®. (For more information, see Chapter

1in [1])

Definition 3.1.3 A billiard table D C Tor* has bounded horizon if Q; = @, where Q)

is the union of all collision-free trajectories. If this is untrue, the horizon is unbounded.

In dispersing billiards, the curvature of 9D is always positive, k > 0.
Because of our choice in Chapter 3 for the I'; boundary components to have either 0

or never vanishing second derivatives, we have upper and lower bounds on the curvature

of 0D:

0 < Fmin < K < Kpax < 00 (3.1)

From (2.12) and the above mentioned fact (3.1), it is evident that if a wave front has
slope B > 0, then Vt > 0, B; > 0 as well, meaning that dispersing wave fronts remain

dispersing in the future.

In the case of dispersing billiards, R = is bounded away from zero: R > Ry, =

Cos

2Kmin > 0 (because of our definition of a dispersing billiard).
A flat front B = 0 will remain flat until the first collision with 9D, but upon that
collision B; > 0 and will remain dispersing. If we were to graph By, it would look like

. . . o R
a sawtooth like curve: at every collision, it increases by ——, then decreases along a
COS ¢

hyperbola with horizontal asymptote B = 0. [1| has a great figure for this as well:

3

B

Figure 3.1: An example of how B; might change for a dispersing billiard (symbol B is
used instead of B;). Figure 4.4. in [1]



CHAPTER 3. DISPERSING BILLIARDS, STADIA AND ANNULAR BILLIARDS 29

Let us remember Definition 2.4.1 and the results following it. We can construct un-

stable cones C for F: All wavefronts that are dispersing or flat upon arriving at = make

d
a cone Cf = {(dr,dy) € T,M : k < d_go < 0o}. Note how
r
dy
v(r) = ar = B_(x1) cos o1 + k1 = By (1) cos 1 — K1

so it is enough to search for invariant cones for either of the quantities B_ or B, as well,
since a lower and upper bound for these quantities also imply lower and upper bounds for
v.

From (2.12) and (3.1), C}' is obviously invariant, however we need strict invariance,
so we have to find appropriate upper and lower bounds for these values.

For every point xy € M, we can find the upper edge 1, and lower edge v, of the cone
Dy F(Ch) C Ty M at 21 = F(x0).

If we compute the upper and lower bounds for the quantity B_, assuming 0 <

B_(z9) < oo we get

1 1 - 1 < 1
5 1 1 = COS ¥
2 Tmax T Tmax T+ 70 +

2Hmin 2Kmin

1
<B_ (1;) < —<
70 Tmin

Blo =

+1n =By

2%0

Where ki, is the lowest-curvature boundary component, 7, and 7.« are the shortest
and longest distances between collisions (we know a 7y, exists, because we have bounded
horizon) and 7 is just some arbitrary positive quantity (adding this value guarantees that
equality cannot hold).

From the above, the invariant cones for v are:

COS Y1 1 COS (1
Vio = Kmin < K1+ —— o507 Vyp = Kmax + > K1+
To + Tmin 70
2%0

+ 7' < oo for some arbitrary positive 1, meaning our

giving v, < V < Vyp < Kmax T+ .
cones C' are strictly invariant:mlln)xo]—" (Cy,) C intCy N {0}. This means the map F is
hyperbolic.

From now on, we will work with B_ instead of v for simplicity, and we take as granted

that upper and lower bounds for B_ imply the upper and lower bounds for v as well.

3.2 Stadia and circular billiards

In [3] L. Bunimovich points out that dispersing and defocusing are the only mechanisms

of hyperbolicity that occur in billiards.
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This can happen in two ways: Almost all focusing fronts must be eventually trans-
formed into dispersing fronts by the dynamics of the system (i.e. through defocusing),
or dispersion must overcome focusing so B, grows to infinity as ¢t — oo. In the case of
dispersing billiards, the second case applied (as there were no focusing components at
all). In the following problem, the first case applies.

Imagine a stadium-shaped billiard, defined by a rectangle with sidelengths d and 2R
and 2 semicircles with radius R attached on two opposite sides of it.

In the analysis of this type of billiard, a useful trick is often applied: whenever a real
trajectory collides with a flat side I'; on D, we can reflect the entire table across I';, and
let the trajectory move straight into the mirror image of D (we 'unfold’ the trajectory
into an infinite billiard with no flat sides).

From this trick, or through simply plugging x = 0 into (2.11), we can see that collision

with a flat wall does not change the curvature of a wavefront hitting it.

Yy

Figure 3.2: 'Unfolding’ a stadium billiard (symbols D, d and r are used instead of D,d
and R). Figure 8.7. in [1]

Let us first investigate the d = 0 case to explore if there are invariant cones in a
circular billiard.

In Figure 3.3, let ¢ be the angle of incidence of a trajectory at the boundary. Between
collisions, there is a distance of 7 = 2R cos ¢ = 2d.

2
= —— curvature, meaning that if
Rcosyp d

At the next collision, it will obtain R = —



CHAPTER 3. DISPERSING BILLIARDS, STADIA AND ANNULAR BILLIARDS 31

Figure 3.3: The circular billiard

its curvature before a collision was B, then

B _ 1 B 1 (1)2 1
1= 1 “2d \2d) _ 3
2Rcosg0+—2 2d 2d Ba_ﬁ

By —
Rcosp
Note that
2 3 1\2 1

-5 - (B

! ' Rcosy 2d 2d 3

2

i.e. Bf is 'more negative’ than B, meaning that the wavefront gets focused with each

collision, and it could only become dispersing through free flow. The graph of B in terms

of By can be seen on Figure 3.4 below.

By

Figure 3.4: B; in terms of B, (without loss of generality we take d = 1). The vertical

3d
dashed line is at B, = ER while the other dashed line is the y = z line.
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1
B, =B; = p describes an invariant line for the tangent map under F. Let’s analyze
the cases we have:

1 1
For B()_<C—i,weget BO_<B1_<E'

3 1 1 1
For 24 < By, we get B] < 2 which is smaller than 7 so it will also approach p

from here on.

1 3 1 1
For p < B, < 5’ Ve can put B, = p +¢eo with 0 < g9 < 24 into the above formula

to see that B; = B + €1, where ; > ¢y and the difference between ¢, and €1 also
grows as the number of iterations k increases, meaning that we eventually arrive at the

3
case oo < By + ¢, = B,, for which the previous case applies.

This means that we can construct an invariant cone by

1
0< By < —
0 = yq

for which

1
By < By < =
0 1 d

holds, but there is no strict invariance, since B, is a monotonically increasing function in

1 1
n with limit 7 so the upper edge of the cone, p does not get transformed into some value

1
in int([BO_, p

than p out of the cone.

1
]) Trying to extend the cone beyond p will transform the values greater

There is no hyperbolicity in the circular billiard. Examining the phase-space M =

T
{(r,gp) :r €[0,2Rm), p € (—5,5

the value of the angle of incidence ¢ stays constant as we iterate F, the phase-space is

) } (r a cyclic coordinate), we may notice that because

foliated by lines L,, of constant ¢ such that F(L,) = L, i.e. invariant curves, for which F

@
can be interpreted as just a rotation of the circle by m — 2 (in other terms, ’the dynamics
is conjugate to rotation’, but this is not important here).

In the problem of d # 0, for any d > 0 we get that the map F is hyperbolic. To prove
this, consider the case where x; = F(xg) is on the other semicircle from xy (we know that

collision with a flat component does not matter, and there is no strict invariance when

viewing the same circle). Let the cone at zq be defined by

1

0<By < =——
O ™ Rcos gy

The distance between between the points zg and F(xg) = 1 is 7 = 2R cos ¢ +¢, where

7 is bounded by T, = d from below and 7,.x = 2R + d from above and ¢ is bounded
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by €min = VR? + d? — R from below and e,,,x = d from above — if we allow collisions
on the flat sides in between the circular arcs, there is no upper bound on 7 and . Such
,bouncing trajectory segments” are another soure of non-uniform hyperbolicity, analogous

to sliding along the semicircular arc. We provide Figure 3.5 for clarity.

Figure 3.5: ¢ is the ’extra distance’ of the trajectory compared to the circular billiard

From this, we get the bounds for B; as:

1 1 1 1
< 55——< By =
3R 1
-5 + Emax 2Rcospg + €+ 5

B -~
O Recos py

0

< <
Rcosypg+ emin R cos g

Note that this cone’s upper bound depends on the angle ¢y, and if for example @y > 1,
the entire cone at xo will not get transformed into the interior of the cone at x;. However,
in the family of billiards that the stadium billiard falls under (Bunimovich billiards), it
can be proven that these cones will still result in hyperbolicity (for the proof of this, see
[1] Section 8.4., Theorem 8.9.).

This means that we have found a strictly invariant cone for any xy and ¢, i.e.

D, FCy C intC(, ) U{0}. In the case of the circular billiard, the upper edge of the cone

is given by as € = 0 and ¢ is unchanging. In that case, the upper bound for By

cos
is going to be the same as for B, so the cone is never strictly invariant.
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3.3 Annular billiards

In [4], the authors study annular tables between two circles, defined through the pa-
rameters (r,9), where the outer circle is of radius R = 1, the radius of the inner circle
is r, and 0 is the distance between their centers. Let 2 denote the arclength of the
outer circle, ¢ the angle of incidence of trajectories arriving on it at a given value Q.
Similarly, w and ¢ denote the arclength and angle of incidence on the smaller circles.
Also denote the phase-spaces by Moy = {(@, ) : B €[0,2m),p € <— g,g)} and
M, = {(w,¢) cw € 0,2rm), ¢ € [— g, a} — note that $ and w are cyclic and 0 < r,
0<¢andr+9J <1 have to hold.

The construction and the parameter space of the problem is demonstrated in Figure

N €
| . \

(0,0) (1,0)

OO

Figure 3.6: The annular table and the parameter space § x r. Figure 1 in [4]

In this type of billiard, lots of phenomena emerge. One of the most important of these
is elliptical islands for certain parameters of r and ¢ (elliptical islands are positive measure
subsets of the phase-space which the map F leaves invariant, and as in the circular billiard,
the dynamics is conjugate to rotation. The phase-space diagrams of these for different
configurations of r and § can be seen on Figure 3.7.

Notice how for concentric circles, the system is integrable, the entire phase-space is
foliated by invariant curves C' such that F(C) C C' - in this case, these invariant curves
are lines L, of constant ¢. Also notice how for every nonconcentric billiard, the M
phase-space has a band at the top and bottom of its phase-space that are foliated by L,
lines that are left invariant by F. These correspond to ’sliding’ trajectories on the outer
circle that avoid the inner circle entirely by having a high enough angle of incidence —

these parts of the phase-space are called 'the whispering gallery’.
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Figure 3.7: The ’typical’ phase-spaces for the outside circle M, (top) and inside circle
M, (bottom) of the problem for different values of §,r (arclength is the horizontal axis,

angle of incidence is the vertical axis). Figure 2 in [4].

For increasing values of 0 and decreasing values of r, the system becomes 'more hy-
perbolic’ — what we mean by this is that the elliptical islands appearing in both M, and
M, shrink — but there always exist elliptical islands for any values of r, § that satisfy our
assumptions of r + 6§ < 1.

The authors of the paper aim to show how to calibrate r and § such that hyperbolicity
occurs in a large part of the phase-space — previous results already known to them indi-
cated that this only occurs when § ~ 1 and r = 0, i.e. small obstacle, large eccentricity
cases — they find regions of hyperbolicity using the cone technique already demonstrated
in previous sections. However, these hyperbolic regions they manage to construct have
zero Lebesgue measure as they are fractal in nature.

In Chapter 4 of this work, our aim is also to find parameters that guarantee hyperbol-
icity, but instead of a zero-measure set, we obtain a full measure set of such points. Our
results are not the most optimal parameters for the task, but that is not the purpose of the
work. Rather, our intention with the next chapter is to demonstrate the cone technique

in detail.



Chapter 4

Stadium with inner obstacle

Motivated by circular annular billiards discussed in Chapter 3 and [4], and the stadium
billiard also discussed in Chapter 3, we might start to imagine a combination of the two.

Let us construct a horizontal stadium billiard with radius R semicircles, and midlength
d. Then, let’s imagine a circular obstacle with radius r inside the table — for sake of
simplicity, let this obstacle be on the horizontal axis of symmetry. Then, ,stretch” this
circle horizontally into a stadium, with length d between the centers of the two semicircles,
same as in the outer stadium.

This case is a special case described in [5], which investigates "track billiards’: billiards
that consist of regions of annulus with circles of radii 0 < 7 < ry (circular guides)

separated by rectangular regions of width 7o — ry (straight guides).

Figure 4.1: Examples of ’track billiards’. Figure 2 in [5].

What the authors of [5] conclude is that for hyperbolicity it is needed to either have
long enough straight guides or wide enough and long enough circular guides — i.e. if these
conditions (not discussed by us here) are not satisfied, we cannot guarantee hyperbolicity.
In track billiards, another interesting phenomenon emerges: the phase-space separates
into two disjoint sets which the collision map leaves invariant, corresponding to clockwise

and counterclockwise directed trajectories.

36
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This separation into two — clockwise and counterclockwise — invariant components
persists whenever the centers of the semicircular arcs of the inner and outer obstacle
coincide. Such a splitting occurs even in the degenerate case when the inner obstacle is
just a straight segment connecting the centers of the two circular arcs. In the following, we
will investigate a different, less symmetrically positioned inner obstacle, expected to result
in hyperbolic and ergodic dynamics with respect to the natural invariant measure. Our
discussion below only investigates hyperbolicity only, ergodicity requires further study
beyond the scope of this work.

Let us construct a more generalized inner stadium: after creating the obstacle, further
stretch or shrink its length by e; on the right and €5 on the left, noting that these
values’ signs are such that they ,point outward”, meaning that if these €; o parameters are

nonnegative, the distance between the inner semicircles is greater than or equal to d.
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Figure 4.2: The stadium billiard with an inner obstacle, with middle section length d,

outer radius R, inner radius r, and parameters 1,9 > 0

It is important to note that for the sake of simplicity, we omit the investigation of the
case where d+ &1 +e9 < 0. This would lead to the semicircles overlapping (or, if we don’t

take the entire semicircles, corners). Thus, we already pose a restriction:
d+€1+6220 (41)

For similar reasons, we also omit the investigation of the case where e; +1r or e5 +1r are
greater than or equal to R, in which case either the inner semicircle would be tangent to

the outer semicircle, or the inner boundary would stick out through the outer boundary
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(this way, ’inner’ and 'outer’ would no longer be meaningful specifications of the curves

either).

4.1 Hyperbolicity between collisions

Collision with the flat components of the billiard table can be omitted from the discussion
using a 'mirroring’ method similarly to stadia in Chapter 3. This requires the flat sides
of the billiard table to be 'glued’ together (inner flat side with other inner flat side, outer
flat side with other outer flat side), in the sense that a particle arriving at one of the
flat sides will continue without reflection from the flat side it is 'glued’ to, keeping its z
coordinate, but jumping in its y coordinate by +2r (depending on which direction the
trajectory started in). Then, because we placed our obstacle on the axis of horizontal
symmetry, this is essentially the same as if we flipped the billiard along the flat side as

soon as the trajectory arrived at it.

Figure 4.3: The trajectory of a particle arriving on the 'glued together’ flat sides in the
problem. The dashed lines together with the solid lines in the upper region represent the
real trajectory of the billiard, while the collection of solid lines represents the imaginary
trajectory of the billiard, which never gets reflected on flat components. The solid lines

in the lower region are mirror images of the dashed lines in the upper region.

This convention for gluing is enough for our purposes, as we are only interested whether
the system is hyperbolic, in which case what only matters is the distance travelled be-
tween collisions with curved components. If we were interested whether the system is
ergodic or not, or whether the phase-space separates into clockwise and counterclockwise
trajectories like in track billiards, we would have to carefully construct a rather hard-to-
imagine 2D-surface without flat components, on which the flow preserves clockwise and

counterclockwise motion.
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It is enough to prove strict invariance of the cone when the two consecutive collisions
are on two different curved boundary components (with no bounces on the flat components
in between). For such transitions, there is a uniform upper bound on the free path, which
we denote below by 7T,.c. In the case of the stadium billiard, 7., = d + 2R, in our
problem, 7. < d + 2R between any curved boundary component if the inner obstacle
has nonzero thickness, i.e. r > 0.

Note that trajectories that consist only of collisions with the flat parts of the boundary
also exist, they are even dense inside the allowed parts of the rectangle, but it can be
easily verified that they have measure 0 on the phase space of the billiard map, just like
trajectories colliding with a corner at the end of the flat sides.

Our next goal is to find the conditions that guarantee hyperbolicity when going from
one curved part of the boundary to the other. Consider the labeling in Figure 4.4. The

unique cases for trajectories between two curved parts of the boundary are listed below:

.F1—>F1

' —=m

I' =7

P1—>F2

7 — I
o v — 1

Note that in each case above, the indices 1 and 2 can be swapped, and listing every case

this way will result in all possible curve-to-curve trajectories.

4.2 Hyperbolicity at the outer boundary
We want to prove hyperbolicity by finding invariant cones for B~ through the following:

Cy ={(d§,dw) € T2 3er,c2 >0 o < B (x) = o< Ca}
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Figure 4.4: I'; and I'y denote the outer semicircles, 7, and 7, denote the inner ones

Assume that a wavefront with curvature B; starts just before colliding with I'y and
gets to the curve 71, 72 or I'y in the next collision (the same reasoning also works for
switching I'; and I'y).

Let the cone at x; € I'; be defined by

_ 1
0<Bl ($1) < E,

and let 9 = Fx,. Then — as we will argue below — the image of this cone at x5 € ¥1, 72

or I'y respectively can be given by

1 1
< By < — 4.2
Tmax 2 (‘TQ) Tmin — R ( )
where 7, is different for the different curves vy, vo, I's.
After the collision with I'y at x1, the curvature will have become
Bf =By — — 2 —p - B
L7 Reosp Tt
where
2 - B=—"__< (4.3)
—_ — o0 .
R~ R cos(yp)

(,< 00” here means that grazing collisions on the outer boundary are not possible, unlike
with the inner boundary, where equality will also be possible). Then, just before the
collision with the next curve (at x5 € 41,72 or I's), the curvature that started out as By

at x1 € I'; will become

(4.4)
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where

0 < Toin < T < Tmax (4.5)

Let us construct result (4.4) step-by-step while attempting to find an invariant cone
as in (4.2) above. To start, let us assume only that 0 < B; . Then, after having bounced
off of the outer boundary, the curvature will have changed:

2
—oo<Bf:B;—5§B;—E

For the construction of the invariant cone, we want to avoid the situation where

2
By — I > 0 (as that would lead to 1/Bj falling into one of 2 disjoint intervals, one
with positive lower bound, the other with negative upper bound, both of these intervals

unbounded on their other sides), so we already put a further restriction on By :

2
0< BT < —
LR

Now, take the reciprocal of the expression for By

1 < r 1 <0
B; — E - B fr B; - 5
R
Adding 7 to 1/B;":
+ ! < ! + <
Tmin > == =T — Tmax
B — 2 7 B By —p e
' R
. . . . . 1
Again, for constructing the invariant cone, we want to omit the case when Tmin+—2 <
By — =
0. The previous restriction for B; is not enough to make such a lower bound, but for
example
1
0< By <—=
"R

works, and will result in the restriction
Tmin = R (46)

The above restrictions will result in the following lower and upper bounds for B; :

1 1 1 1
< By = < — (4.7)

Tmax T +
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Thus, we have found positive lower and upper bounds for By and 7y, such that there
exist more restrictive positive lower and upper bounds for B, as well — thus we have found

an invariant cone. Note that we have strict invariance as well, because of the finiteness
1

COs
well, in which case we still have strict invariance, and it would be in accordance with

of these bounds. Also note that the upper edge of the cone could have been

as

the circular billiard’s invariant, but not strictly invariant cone — that would pose the

restriction 7, > R cos @, which is always satisfied by 7, > R.

4.3 Hyperbolicity at the inner boundary

Assume a wavefront with curvature B; starts just before colliding with v, and gets to the
curve I'y or T'y (the same reasoning works when starting from -y, as well). For this case,

we will let the cones be defined by the following;:

0< Bj(z) <o

1 1 1 2
< < BQ_(JIQ) < <

2Tmax Tmax Tmin Tmin

Just before the collision with the next curve at xo, € I'y or I'y, the cruvature that

started out as By at x1 € vy, will become

By = i (4.8)
+
"TB 45
with
2 2
2 < B = < 4.9
7“_/8 Tcos(go)_oo (4.9)

and (4.5) still holds (perhaps with different 7., and 7., values). Again, let us construct

the result step by step with the assumption B; > 0:

2
- < B +8 <>
,

Taking the reciprocal:

Adding 7:
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Taking the reciprocal, we finally get

1 1 1 1
< < <—+7 (4.10)

Tmax T+ 1 Tmin Tmin

By +6

for arbitrary positive . However, this cone needs to be inside the cone discussed in the

previous section: 0 < Tya, trivially holds, but

1
—n < — —1n' also has to hold for some
Tmin R
small but positive 7, 7" values — luckily, the previous 7,;, > R restriction guarantees that
there exist such n,7’. Thus, we have found an invariant cone without posing any new

restriction for B] or Tpiy.

4.4 Parameters guaranteeing hyperbolicity

Reminding ourselves that (4.7) and (4.10) work for trajectories starting at not only I'y
and 7, but also at I'y and 72, now we aim to find the collection of parameters (d, r,e1,€2)
that guarantee hyperbolicity between collisions with the curved boundaries. In the case
resulting in (4.10) we do not need to pose any restrictions for the parameters. For the
case resulting in (4.7) with the restriction (4.6), we will go through the unique cases that
start with I'y, mentioned in Section 4.1.

As we've seen with the circular billiard, in the I'; — I'; case there is an invariant cone
present, but it’s not a strictly invariant cone, so there is no hyperbolicity (also, Tym = 0
independently of the parameters, thus 7., # R). However, it’s evident that after ’enough’
collisions, the trajectory will leave the arc, then after some 7 distance, collide with either
Y1, Y2 or 'y, so all that’s left is to examine these cases.

We want to find 7,;, in all cases and ensure that it’s greater than R. For this, consider 2
general nonintersecting circular arcs. Then, the smallest distance between the two comes
from one of the following sets of line segments that connect a) their endpoints, b) an
endpoint of one and an interior point of the other, such that this line segment’s extension
goes through the centre of the second arc, c¢) interior points of the two arcs, such that
this line segment’s extension goes through the centres of the arcs.

Let R,r > 0 be fixed, and examine the cases I'y — v; depending on the sign of ¢y,
with the help of the figures below.

For the case of €1 > 0, Ty = R — 7 — &1 > R has no positive solution for £;, meaning

that in this case we can’t guarantee hyperbolicity.
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Iy

Figure 4.5: Case c¢) is valid for &y > 0

Iy

Figure 4.6: Case c¢) is valid for ey = 0
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For the case of ¢ =0, I'y and 7, are concentric, so Tyin = R — r > R has no solution

either.

Figure 4.7: Case b) is valid for &1 < 0

For the case of € < 0, Tmin = \/R2 + €2 —r > R has the solution |e;| > V72 + 2Rr
1

and combining this with e; < 0, then noting that this has to hold for the I'y — v case as

well, we get:

€12 < —V 2Rr + 1?2 (411)

Note that for the I'y — I'y case we get T, = d trivially, for which d > R is the
restriction we get, but given that we didn’t aim to find the most optimal cone, just 'some
cone’, we neglect this restriction and refer to the case of the stadium, meaning that d > 0
is enough of a restriction, which we already have from (4.1) and (4.11)

Now, let’s examine the I'; — 5 case, noting that we already pose restriction (4.11),

implemented in the figure below as well.

Because of (4.1) and (4.11), 5 < —d is not possible, giving us T = \/(d + £2)2 + (R —7)2 >
R, which has the solution

|d+€2|:d—|—€2> V2Rr — r?

Then, taking (4.1), we get

d+¢es > —21 > V2Rr +12 > V2Rr — r2

so we get no new restriction for €4 5.
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Iy

Figure 4.8: Case a) is valid for —d < g5 < 0

Thus now, we have found the space of values (d,e1,e5) for any R > r > 0 that

guarantee hyperbolicity:

&1 < —\/W
g9 < —V2Rr + 12 (4.12)
d>—c1— &9
Note however, that these are not the most optimal values of these quantities that guar-
antee hyperbolicity overall, not even the most optimal values that guarantee hyperbolicity
between any collisions from one curved boundary to the other. The aim of this derivation
was to demonstrate the calculation for finding cones for such an unusual billiard table.
Note, that if we had viewed a series of collisions instead of just one, we could have
got much more optimal values. However, for example, viewing the period 2 trajectory
v — 't = 71, we get

1 1
< By <

1
Tmin 7y

Tmax

Tmin R

And if we again only care for ’some cone’, not the most optimal one, the same 7,,;, > R
restriction is satisfactory.

It is important to note that there are specific conditions discussed in general works on
hyperbolicity 7] and ergodicity [6] for some classes of billiards which cover this example,
but rather than checking the conditions laid out in these works, we aimed to construct

the invariant cones directly.



Chapter 5

Conclusion

In this work, we introduced the basics of billiard dynamics using a very general book [1]
as our main source of information. We used it to study dispersing, stadium-shaped and
circular billiards, then we summarized the relevant results of [4]. After these, we worked
on the unique problem of a stadium billiard with an inner obstacle, and found a family
of parameters that guarantee hyperbolicity between 2 consecutive collisions on different
arcs of the boundary.

In the future, further work could be put into the problem to find more optimal param-
eters for hyperbolicity, find parameters that guarantee ergodicity — perhaps, in another
direction generalize the results known for the e; = 9 = 0,7 > 0 case, i.e. the separation
of the phase-space into 2 ergodic components, one corresponding to clockwise directed
trajectories, while the other corresponding to counterclockwise directed trajectories.

The author is also interested in studying quantum chaos in the future (these are
quantum systems whose classical equivalent is chaotic), for which writing this bachelor
thesis was rather useful, as he had to familiarize himself with the relevant concepts and

literature required to examine classically chaotic systems.
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