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1 The Model

1.1 Motivation

In this thesis we study a random walk generated by a renewal process that has polynomial
tail distribution. The motivation comes from the study of chaotic billiards. This is an
actively researched topic (see the monograph [6] for detail). A billiard ball is initialized
on the boudaries of scatterers, typically placed in a periodic manner on R2. Some of the
simpler cases are that they are non intersecting circles around the lattice points of Z2.
The ball will travel at a constant speed and whenever it hits the scatterers it bounces off.
The new direction can be obtained using the classical approach: angle of reflection =
angle of incidence. Using convex scatterers after some time passed and many collisions
later, one can consider the current position of the ball as random, independent of the
starting point.

A system has the "infinite horizon" property if the possible travel lengths of a billiard
ball, in between hitting scatterers is not bounded from above. A famous model, which
might possess the infinite horizon property, is the Lorentz model where the billiard
ball imitates a gas molecule bouncing around and hitting the scatterers. This model is
discussed for example in [8] or [9].

A simple case, already mentioned above, is when the scatterers are circles around
lattice points of Z2, which do not intersect and also possess a uniform radius (e.g r = 1

4).
The non-intersecting placement guarantees the infinite horizon property, as a molecule
may bounce into a "corridor" where it could fly for an arbitrary long time, if the flight
angle is almost aligned with the x or y axis .

We are going to study an even simpler version which corresponds to the analogy, that
a particle is moving on R (on a straight line), changing directions randomly. Direction
changes can be interpreted as collisions and the consecutive movement directions are
either plus or minus one. That is it either continues onward or turns around (bounces
back), with the two options being equally probable. Inter-collision times are i.i.d random
variables so they (along with the collision times) give us a renewal process.We are going
to consider such waiting times that have polynomial tail distributions. There are physical
models where such distributions occur. In particular the infinite horizon case, where the
tail distribution is P(L > x) ∼ x−2, where L is the inter-collision time. Another example
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is a non-infinite horizon model (in [7] section 6.3), when instead of straight corridor
motion long flights correspond to a more complicated repetitive bouncing motion, which
causes different polynomial decay (P(L > x) ∼ x−4).

Our model is simple, yet it captures the corridor movement, where exact vertical
placement is negligible, all that is important are the hitting times and horizontal travel
directions. The 2 dimensional billiard process is more complicated though, long flights
in corridors, followed by a series of shorter flights. As a first approximation we could
consider only the corridor motions and omit the short bouncing episodes.

Finally, let us note that distributions with polynomial decay occur in many areas of
mathematics and applications, so studying them here might help us in other areas as
well.

1.2 Defining the Model

Our model has the following setup. Let us consider a renewal process with arrival times
0 < T0 < T1 < T2 < . . . . Let ξ(x) be the process, which has values 1 or -1 in between
arrival times, with even probabilities (That is +1/− 1 with probability 1

2)
More precisely let ξi ∀i ∈ N be i.i.d. random variables with probabilities:

P(ξi = −1) = P(ξi = 1) = 1
2 . Now ξ(x) is the process defined as ξ(x) := ξi if

Ti−1 < x < Ti i ≥ 1 and ξ(x) := ξ0 if x < T0. Here Ti are independent of ξj for
all i, j ∈ N

Moreover, for some a > 0 and β = 4 fixed (could just as well be β ≥ 2 but we are
only focusing now on this special case), let Lk = Tk − Tk−1 be independent identically
distributed random variables (the k’th inter-arrival time) with polynomial tail behavior
P(L > x) ∼ ax−β. For the desired results, in this thesis we assume a stronger condition,
that is P(L > x) = ax−β + O(x−β−1) as x → ∞ (a > 0, β = 4) and let the Lk’s have
distribution L. Also let µ = E(L)

Here, and throughout my thesis , a(t) ∼ b(t) means that :

a(t)
b(t) → 1

as t → ∞
Also a(t) = O(tb) means that a(t) is continuous and:

• a(t) is bounded on [0, 1]
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• a(t) ≤ C · tb for t > 1 and for some C ∈ R

Now let us define the two quantities that we are interested in:

ST :=
T∫

0

ξ(t)dt (1)

and

Xk := ξkLk, Sn =
n∑

i=1
Xi (2)

Where k ≥ 1 and n ≥ 1.
Also Xk are all i.i.d. random variables, so let’s call their common distribution X. Note
that |X| has the same distribution as L, yet the distribution of X is symmetric so
E(X) = 0 and E(X3) = 0
These two quantities are related. If T = Tn is an arrival time for some n ∈ N then

(STn =)ST = Sn + ξ0T0

1.3 Why these distributions ?

Now that the model has been defined, let us consider the reasons why we consider such
distributions, with such a β parameter.

The original idea comes from [5] (Appendix A), where the case β = 2 is
discussed. In that case the Central Limit Theorem is not applicable, since the variance
of X doesn’t exist. The observation made there was, that using a modified Central limit
theorem on the i.i.d. sum Sn (2) it is true that (by [3] Section XVII.5, Theorem 2):

Sn√
n · ln(n)

→ N (0, a)

Here ’a’ is the constant of the L distribution. From this Central Limit Theorem used
for the i.i.d. sum Sn,we can conclude by the Law of Large Numbers that the renewal
process also converges in distribution:

ST√
T ln(T )

→ N
(

0, a
µ

)
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In contrast to the limit of the second moment:

lim
n→∞

E
(

S2
T

T ln(T )

)
= 2a

µ

Here this doubling effect is a direct analogue of what has been observed in infinite
horizon Lorentz models ([7],[10]) (The µ is there because of the renewal process, but
there we would expect to find a

µ
).

We focus on the behavior of the 4th cumulant at β = 4. Our motivation
comes from [7] section 6.3. In this thesis we present a computation for this quantity,
which is based on an approximation. The essence of the approximations is that certain
quantities (see in Subsection 4.5) are replaced by their stationary values. Although we do
not present a complete proof, we will also comment on the validity of this approximation.
Also, in contrast to β = 2, here we are going to have the classical Central Limit Theorem
, since the second moment of X exists.

1.4 Moments and Cumulants

We are going to define the cumulants just like in [1] Chapter I §2

Definition 1.1. Let X be a random variable. It’s logarithmic characteristic function is
defined as ln(ψX(t)) = ln(E(eitX)). If ln(ψX(t)) is n times differentiable, then the n’th
cumulant of X is:

Cn(X) := 1
in

 dn

dtn
ln(E(eitX))


t=0

It is easy to see that if the logarithmic characteristic function has a Taylor expansion
around 0 then it is:

ln(E(eitX)) =
∞∑

k=1

Ck(X)
k! (it)k (3)

So the cumulants can be obtained from the Taylor expansion.
Some special cumulants are E(X) = C1(X) and V ar(X) = C2(X). Higher cumulants do
not coincide with central moments but can be expressed in terms of them. In particular
we have the following property:
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Lemma 1.2. Assume X is a random variable, whose 4th moment exists and E(X) = 0,
then the 4th cummulant of X can be expressed as:

C4(X) = E(X4) − 3(E(X2))2

Proof. See [1] Chapter I.

Here it is worth noting that if X has standard normal distribution, then :

ln(E(eitX)) = −1
2t

2

So all cumulants (except the second , which is the variance) are 0. This is why cumulants,
in some way, measure the "distance" from the standard normal distribution.

2 Renewal Theory

2.1 Overview

Let us recall the terminology and notation on renewal processes introduced in section
1.2.

Furthermore, for each t > 0 let’s define: Zt = min{m ∈ N : t < Tm} which is the
number of arrivals before time t. Using this Zt random variable we can define some
useful notations for ourselves. First one is called the renewal function:

M(t) = E(Zt) (4)

Further notation: The derivative of M(t) will be denoted as m(t) (:= M ′(t)).
In addition, it is important to emphasize that these denote non-stationary quantities
assuming there was an arrival at 0. Nevertheless as t → ∞ m(t) → mstac(t) = 1

µ
that is

m(t) converges to the stationary case.
The second one is the residual time:

Hstac = Hstac(t) = TZt − t (5)
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Where it is important to note that this is a distribution that assumes stationarity of
the renewal process. So that is why actually, it is not a function of t. Whereas for non
stationary cases we need a new notation (for t ≥ t0):

H (t− t0) = TZt−t0
− (t− t0) (6)

Where t0 is an arrival time. After which we look at the process, as if it were a new
starting point.

To ensure stationarity let T0 have distribution:

P(Hstac(t) > u) = P(T0 > u) (7)

Also it follows from [2] Chapter 3 (Theorem 3.9) , (because of the sized biased dis-
tribution) , that:

P(T0 > t) = 1
µ

∞∫
t

P(L > x)dx

However we are going to need more specific functions, as stationarity does not always
hold. Consider the function Φ(t, x) where t is going to be a given time after arrival
happened at 0 and x will be the required length of the residual. Then the cumulative
distribution functions of the residual for a given t is (see [3] Chapter XI):

1 − Φ(t, x) = P(H(t) > x) = P(L > t+ x) +
t∫

y=0

[P(L > t+ x− y)] dM(y)

As emphasized above, here M(y) is non-stationary as an arrival is assumed at time
0. From now on using the notation FL(x) = P(L ≤ x) for the cumulative distribution
function of L:

Φ(t, x) = P(H(t) ≤ x) = FL(t+ x) −
t∫

y=0

[1 − FL(t+ x− y)] dM(y) (8)

For the sake of simplicity, for future references, we are going to use the formula
derived for the density function. A simple consequence of the previous equation. Let:

ϕ(t, x) = d

dx
Φ(t, x)
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Then:

ϕ(t, x) = fL(t+ x) +
t∫

y=0

[fL(t+ x− y)] dM(y) = fL(t+ x) +
t∫

y=0

[fL(t+ x− y)m(y)] dy

(9)

Where fL(s) is the probability density function of L assuming it is absolutely continuous
and m(t) is the derivative of the renewal function.

Calculating M(t) is not necessarily an easy task, however there is a very important
"recursive" equation that M(t) satisfies.(see [3] Chapter XI)
The renewal equation:

M(t) = FL(t) +
t∫

s=0

M(t− s)dFL(s) = FL(t) +
t∫

s=0

M(t− s)fL(s)ds (10)

2.2 Laplace transform

These previous equations might seem nice as they have a relatively simple form. However
solving them is not trivial. But using Laplace transform can help us derive an exact
solution of the Laplace transform of the renewal function.

Recall that the Laplace transform of a function is defined the following way:

Definition 2.1. Let f : R+ → R be a real function then:

f̂(s) = L{f(t)}(s) =
∞∫

t=0

f(t) · e−stdt

Notation: A function named after letter f will have Laplace transform whose name
is the capped version of the same letter (e.g.: f(t) has Laplace transform f̂(s)).

Let us mention the basic formulas that will be helpful to us.
Take the convolution of two functions z(t) = x(t) ∗ y(t) (supported on t > 0)

z(t) =
t∫

u=0

x(t− u) · y(u)du
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The Laplace transform of the convolution function:
(see [3] Chapter XIII Section 2)

L{z(t)}(s) = ẑ(s) = x̂(s) · ŷ(s) = L{x(t)}(s) · L{y(t)}(s) (11)

Now let us apply this Laplace transform to our renewal equation (10):
Where first we differentiate both sides with respect to t

m(t) = fL(t) +
t∫

s=0

m(t− s)fL(s)ds

From this we get:

L{m(t)}(r) = m̂(r) = L{fL(t)}(r) + L


t∫

s=0

m(t− s)dFL(s)
 (r) =

Using the convolution formula (11)

m̂(r) = f̂L(r) + m̂(r) · f̂L(r)

From this:

m̂(r) = f̂L(r)
1 − f̂L(r)

(12)

3 Renewal Process Calculations

3.1 Further Notations

Let us introduce a notation Gn(s) which will be useful for us. It is defined recursively in
the following way:

Definition 3.1. Let
G0(s) = 1

µ
P(L > s)

The factor 1
µ

ensures that G0(s) is a density function supported on R+ (The density
function of T0). Now we can define:

G1(s) := P(T0 > s) = 1
µ

∫ ∞

s
P(L > x)dx for s ≥ 0
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If Gn(s) is already defined then:

Gn+1(s) :=
∫ ∞

s
Gn(x)dx for s ≥ 0

Note that Gn(s) for n ≥ 1 is not a density function.
We can come up with some approximations for Gn(s). However we need to be careful

as these integrals are not finite for too large n (depending on β). In fact the smaller β
is, the smaller n needs to be in order for Gn(s) to be finite and thus useful. Now we only
consider β = 4 but these approximations also hold for every β.

Lemma 3.2. if n < β then Gn(s) exists and:

Gn(s) = a

µ
∏n

i=1(β − i)s
−(β−n) + O(s−(β−n+1))

as s → ∞

Proof. Induction in n. The first step is for n = 1

G1(s) = P(T0 > s) = 1
µ

∫ ∞

s
P(Lk > x)dx = 1

µ

∫ ∞

s
ax−β + O(x−(β+1))dx =

=
[

−a
µ(β − 1)x

−(β−1) + O(x−(β))
]∞

x=s

= a

µ(β − 1)s
−(β−1) + O(s−(β)).

Assume true until n-1, then:

Gn(s) =
∫ ∞

s
Gn−1(x)dx =

∫ ∞

s

a

µ
∏n−1

i=1 (β − i)x
−(β−n+1) + O(x−(β−n+2))dx =

=
[

−a
(β − n)µ∏n−1

i=1 (β − i)x
−(β−n) + O(x−(β−n+1))

]∞

x=s

=

= a

µ
∏n

i=1(β − i)s
−(β−n) + O(s−(β−n+1))

Meaning for β = 4: only up until n=3 are these integrals finite. Meaning G4(s) =
infinity

Another equality, which is not hard to see is the following:
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Lemma 3.3. if n < β then

Gn(0) = 1
(n− 1)!E(T n−1

0 ) = 1
n!µE(Ln)

Where L has the same distribution as the Lk’s , also T0 has density function G0(t)

Proof.

Gn(0) =
∫ ∞

t1=0
Gn−1(t1)dt1 =

∫ ∞

t1=0

∫ ∞

t2=t1
Gn−2(t2)dt2dt1 =

=
∫ ∞

t2=0

∫ t2

t1=0
Gn−2(t2)dt1dt2 =

∫ ∞

t2=0
t2Gn−2(t2)dt2 = · · · =

=
∫ ∞

tn−1=0

tn−2
n−1

(n− 2)!G1(tn−1)dtn−1 =
∫ ∞

tn−1=0

tn−2
n−1

(n− 2)!P(T0 > tn−1)dtn−1 =

=
∫ ∞

tn−1=0

∫ ∞

tn=tn−1

tn−2
n−1

(n− 2)!G0(tn)dtndtn−1 =
∫ ∞

tn=0

∫ tn

tn−1=0

tn−2
n−1

(n− 2)!G0(tn)dtn−1dtn =

=
∫ ∞

tn=0

tn−1
n

(n− 1)!G0(tn)dtn = 1
(n− 1)!E(T n−1

0 )

Since G0(t) is the density function of T0

The second equation has the same proof save stopping at the last step. L has density
function fL(t)

Gn(0) =
∞∫

tn=0

tn−1
n

(n− 1)!G0(tn)dtn =
∞∫

tn=0

tn−1
n

(n− 1)!
1
µ
P(L > tn)dtn =

=
∞∫

tn=0

∞∫
tn+1=tn

tn−1
n

(n− 1)!
fL(tn+1)

µ
dtn+1dtn =

∞∫
tn+1=0

tn+1∫
tn=0

tn−1
n

(n− 1)!
fL(tn+1)

µ
dtndtn+1 =

=
∞∫

tn+1=0

tnn
(n)!µfL(tn+1)dtn+1 = 1

n!µE(Ln)

Our goal is to calculate or approximate the 4th cumulant of the random variables
ST (defined in section 1). This requires the second and the fourth moment (as stated
in Lemma 1.2). Calculating the fourth moment of ST with a general L tail distribution
can be challenging. However some general observations can be made about the integral
that will bring us closer to computing C4(ST ). We are going to use 4 events to express
the formulas.
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Definition 3.4. Let 0 < t1 < t2 < t3 < t4 < T be four fixed numbers and let

A = {Hstac(t1) > t2 − t1}

B = {H(t3) > t4 − t3}

C = {t3 − t1 > Hstac(t1) > t2 − t1}

D = {Hstac(t1) > t4 − t1}

be four events. See figure (1). From now on we may write Hstac = Hstac(t1) as it is
independent of t1. Note that in the definition of B we have H(t3) instead of Hstac. As
we cannot always assume stationarity of H(t3). We will comment on this below.

(a) A event (b) B event

(c) C event (d) D event

Figure 1: Events

It is important to note, that B and C are events concerning distinct renewal intervals.

Lemma 3.5. ([5], Appendix A) Without loss of generality let 0 < t1 < t2 < T . Then

E(S2
T ) = 2!

T∫
t2=0

t2∫
t1=0

P(A)dt1dt2

Proof. We start with the expansion.

E(S2
T ) = 2!

T∫
t2=0

t2∫
t1=0

E[ξ(t1)ξ(t2)]dt1dt2
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Now E[ξ(t1)ξ(t2)] can be written in terms of conditional expectation, where we condition
on the ti’s placement in relation with the arrival times. Because if t1 and t2 are in the
same renewal period then the product of ξ(t1) and ξ(t2) will certainly be 1. (Indeed if
t1, t2 ∈ [Tk−1, Tk] then the respective ξ values are the same). However, if t1 and t2 are
in different renewal blocks, then because of the independence of the ξi’s, the product’s
expected value will become the expected values’ product. Also from the distribution of
ξi’s the expected values are 0.

E[ξ(t1)ξ(t2)] = E[ξ(t1)ξ(t2) | t2 − t1 > Hstac(t1)] · P(t2 − t1 > Hstac(t1))

+ E[ξ(t1)ξ(t2) | Hstac(t1) > t2 − t1] · P(Hstac(t1) > t2 − t1) =

= P(Hstac(t1) > t2 − t1) = P(A)

Exactly because t2 −t1 > Hstac(t1) means that ξt1 and ξt2 have values ξi with different
i’s. Meaning their product’s expected value is 0. Also E[ξ(t1)ξ(t2) | Hstac(t1) > t2 − t1]
is exactly 1 because from the condition follows: ξt1 = ξt2 = ξm(t1)

Lemma 3.6. Without loss of generality let 0 < t1 < t2 < t3 < t4 < T . Then

E(S4
T ) = 4!

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

(
P(D) + P(C ∩B)

)
dt1dt2dt3dt4

Proof.

E(S4
T ) = 4!

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

E[ξ(t1)ξ(t2)ξ(t3)ξ(t4)]dt1dt2dt3dt4

This is very similar to the proof of lemma 3.5. With extra possible divisions of the
ti’s. But the gist of it is the same. E[ξ(t1)ξ(t2)ξ(t3)ξ(t4)] is only non-zero in those cases
when there is an even number of t’s in each renewal period, then their product will be
positive. Because of independence if an odd number of ti’s are in one renewal period
then the product’s expected value will be zero (here then it is certainly true that there
exists a ti which sits alone in a renewal block, whose expected value is 0 ). It is easy
to see that ti’s can only be placed in 2 ways for this product to have non-zero expected
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value. Either all four of them are in 1 big renewal period (D) or 2-2 of them are in two
distinct renewal periods (C ∩B). From this follows:

E[ξ(t1)ξ(t2)ξ(t3)ξ(t4)] =

= E[ξ(t1)ξ(t2)ξ(t3)ξ(t4) | D ] · P(D) + E[ξ(t1)ξ(t2)ξ(t3)ξ(t4) | C ∩B ] · P(C ∩B)

Because of the conditions these expected values will be 1 , that leaves us with the
sum of their probabilities, which is what we were looking for.

Let us comment finally on having H(t3) instead of Hstac in event B. Note that B
occurs in the form of P(B ∩ C) thus we have to consider the conditional probabilities
P(B|C). From event C follows that there has been an arrival between t2 and t3, meaning
we no longer can assume that the process is in stationary state at time t3.

4 Fourth Cumulant

4.1 Second Moment

Let’s start by calculating E(S2
T ) , where according to lemma 3.5:

1
2!E(S2

T ) =
T∫

t2=0

t2∫
t1=0

E[ξ(t1)ξ(t2)]dt1dt2 =
T∫

t2=0

t2∫
t1=0

P(A)dt1dt2 =

Because of stationarity (7) and the definition of Gn(x) (def 3.1)

=
T∫

t2=0

t2∫
t1=0

P(T0 > t2 − t1)dt1dt2 =
T∫

t2=0

t2∫
t1=0

G1(t2 − t1)dt1dt2 =

With the substitution s = t2 − t1 and by the definition of G2(x) (def 3.1)

=
T∫

t2=0

t2∫
s=0

G1(s)dsdt2 =
T∫

t2=0

(
G2(0) −G2(t2)

)
dt2 = TG2(0) − (G3(0) −G3(T ))

So we can conclude that :

E(S2
T ) = 2 (TG2(0) −G3(0) +G3(T )) (13)

14



Here it is worth noting that during the argument for (13), we did not use that β > 4.
Also I would like to mention that in [5] similar calculations are done however, without
the Gn(x) notation. So our argument for E(S2

T ) is depending on the existence of G3(x)
and G2(x), to be more precise:

• for β > 3 (13) is true

• for 3 ≥ β > 2 this argument stands, save G3(x)’s existence. There we should use:

T∫
t2=0

(
G2(0) −G2(t2)

)
dt2 = TG2(0) + o(T 3−β) = TG2(0) + o(T )

• for β = 2 the explicit argument in [5] gives us:

E(S2
T ) = 2a

µ
T ln(T ) + O(T )

Which is exactly the doubling effect mentioned in section 1.3.
This concludes our discussion of E(S2

T ).

4.2 Fourth Moment

Now lets focus on the more complicated E(S4
T ). The calculations are elementary

however there is a lot of them and as we approach the end result, we will be dividing it
into smaller integrals, solving it one bit at a time. But first let’s draw the big picture
using lemma 3.6:

1
4!E(S4

T ) =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

E[ξ(t1)ξ(t2)ξ(t3)ξ(t4)]dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(D) + P(C ∩B)
dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(D)dt1dt2dt3dt4 +
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C ∩B)dt1dt2dt3dt4 (14)

So here we have to determine these 2 integrals.
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Here we need to mention that we focus on the case of β = 4, meaning Gn(t) will
only be finite for n ≤ 3. Thus we need an approximation formula for the integral, as
we are not allowed to use the Lemmas 3.3 and 3.2 involving G4(t). Here the following
modification of lemma 3.2 (n = 3, β = 4) will be most helpful to us:

T∫
t=0

G3(t)dt =
T∫

t=1

 a

µ
∏n

i=1(β − i)t
−(β−n) + O(t−(β−n+1))

dt+ O(1) =

=
T∫

t=1

[
a

6µt
−1 + O(t−2)

]
dt+ O(1) =

= a

6µ ln(T ) + O(1). (15)

This is a valid approximation, because we only look at the results when T is big. In
fact our approximation formula in lemma 3.2 only works as T → ∞ Also there is some
rule for the early behavior (e.g [0, 1] interval), where this integral G3(t) of L has to be
finite. We can assume that we integrate from 1 to T since only the tail distribution is
known to us and the remaining term is O(1).

4.3 Fourth Moment D event

Let’s start by solving the term in (14) involving P(D):

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(D)dt1dt2dt3dt4 =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(Hstac(t1) > t4 − t1)dt1dt2dt3dt4 =

Because of the stationarity of T0 (7):

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(T0 > t4 − t1)dt1dt2dt3dt4 =

By the definition of Gn(k)’s (def 3.1):

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t1)dt1dt2dt3dt4 =

By s = t4 − t1 substitution:
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=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t4∫
s=t4−t2

G1(s)dsdt2dt3dt4 =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

(
G2(t4 − t2) −G2(t4)

)
dt2dt3dt4 =

By u = t4 − t2 substitution:

=
T∫

t4=0

t4∫
t3=0

−G2(t4)t3 +
t4∫

u=t4−t3

G2(u)du
 dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

[−G2(t4)t3 +G3(t4 − t3) −G3(t4)]dt3dt4 =

By v = t4 − t3 substitution:

=
T∫

t4=0

−1
2G2(t4)t24 −G3(t4)t4 +

t4∫
v=0

G3(v)dv
 dt4 =

With the help of (15):

=
T∫

t4=0

(
−1

2G2(t4)t24 −G3(t4)t4
)
dt4 +

T∫
t4=1

(
a

6µln(t4) + O(1)
)
dt4 + O(1) =: U

Where we have used that:

1∫
t4=0

(
a

6µ ln(t4) + O(1)
)

= O(1).

Lets denote this integral by U and do some smaller calculations. Now it helps to know
that:

T∫
t4=0

−1
2G2(t4)t24dt4 =

t24
2 G3(t4)

T

t4=0

+
T∫

t4=0

−t4G3(t4)dt4 = T 2

2 G3(T ) +
T∫

t4=0

−t4G3(t4)dt4

And also we can calculate the following with the help of lemma 3.2:

T∫
t4=0

−t4G3(t4)dt4 =
T∫

t4=1

−t4
[ a
6µt

−1
4 + O(t−2

4 )
]
dt4 + O(1) = − a

6µT + O(ln(T ))

17



So now we can calculate the integrals in U:

U = T 2

2 G3(T ) + 2
T∫

t4=0

−t4G3(t4)dt4 +
T∫

t4=0

(
a

6µ ln(T ) + O(1)
)
dt4 =

= T 2

2 G3(T ) − 2 a

6µT + O(1) + a

6µT ln(T ) − a

6µT + O(T )

From the fact G3(T ) = O(T−1) follows that T 2G3(T ) = O(T ). Thus:

U = a

6µT ln(T ) + O(T ) (16)

4.4 Fourth Moment B ∩ C event - approximation

Now we are going to consider the integral containing P(C ∩ B). In this subsection we
will use the following approximation: When considering P(B|C) we will pretend as if the
process was in stationary state at time t3. In other words, we pretend that C and B are
independent. This is a strong approximation, but it makes the calculations easier. We
intend to justify the results in the next subsection.

But in fact if we know that an arrival happened just now or long ago, then prior
knowledge will, in most cases, change the next arrival’s distribution. This is easier to see
for distributions whose domain is bounded. (e.g: Uniform on [0,1] if I know that the last
arrival happened at 0.9 ago, then it is certain that in the next 0.1 it will happen again.
On the other hand if it happened 0.5 ago, then on the next 0.1 it will only happen with
20% probability )

Nevertheless, we first approximate these events, albeit not giving us exact values for
the moments and cumulants of ST ’s in the β = 4 polynomial tail distribution case.

The case of P(C ∩B) pretending the independence of B and C:

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C ∩B)dt1dt2dt3dt4 =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C)P(B)dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(Hstac(t3) > t4 − t3)P(t3 − t1 > Hstac(t1) > t2 − t1)dt1dt2dt3dt4 =
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Because of stationarity of T0 (7):

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(T0 > t4 − t3)P(t3 − t1 > T0 > t2 − t1)dt1dt2dt3dt4 =

Also using the definition of Gn(k)’s (def 3.1):

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t3) [G1(t2 − t1) −G1(t3 − t1)] dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

[
G1(t4 − t3)G1(t2 − t1) −G1(t4 − t3)G1(t3 − t1)

]
dt1dt2dt3dt4

Here let’s start introducing notations for the subsequent terms:

I =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t3)G1(t2 − t1)dt1dt2dt3dt4

II =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t3)G1(t3 − t1)dt1dt2dt3dt4

Rewriting our result we get that :

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C ∩B)dt1dt2dt3dt4 = I − II (17)

We will start by calculating I:

I =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t3)G1(t2 − t1)dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)
t3∫

t2=0

t2∫
t1=0

G1(t2 − t1)dt1dt2dt3dt4 =

observe that
t3∫

t2=0

t2∫
t1=0

G1(t2 − t1)dt1dt2 is nothing else, than 1
2!E(S2

t3). So by (13)

I =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3) (t3G2(0) −G3(0) +G3(t3)) dt3dt4 = I1 − I2 + I3
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Now here we have 3 integrals, where I1, I2 and I3 stands for :

I1 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3G2(0)dt3dt4

I2 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(0)dt3dt4

I3 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(t3)dt3dt4

Then also decompose II:

II =
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

G1(t4 − t3)G1(t3 − t1)dt1dt2dt3dt4 =

=
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)
t3∫

t2=0

t2∫
t1=0

G1(t3 − t1)dt1dt2dt3dt4

We need to calculate the inner integral first (substitute s = t3 − t1):

t3∫
t2=0

t2∫
t1=0

G1(t3 − t1)dt1dt2 =
t3∫

t2=0

t3∫
s=t3−t2

G1(s)dsdt2 =
t3∫

t2=0

[
G2(t3 − t2) −G2(t3)

]
dt2 =

Substituting u = t3 − t2 :

=
t3∫

u=0

G2(u)du−G2(t3)t3 = G3(0) −G3(t3) − t3G2(t3)

So now we know that:

II =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3) [G3(0) −G3(t3) − t3G2(t3)] dt3dt4 =

T∫
t4=0

t4∫
t3=0

G1(t4 − t3)G3(0)dt3dt4 −
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(t3)dt3dt4
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−
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3G2(t3)dt3dt4 = II1 − II2 − II3

Where the names are:

II1 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(0)dt3dt4

II2 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(t3)dt3dt4

II3 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3G2(t3)dt3dt4

Now first let’s make the observations that:

I2 = II1 and I3 = II2

From this and (17) follows, that :

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C ∩B)dt1dt2dt3dt4 = (I1 − I2 + I3) − (II1 − II2 − II3) =

= I1 − 2I2 + 2I3 + II3 (18)

We need to compute these four integrals, starting with I1:

I1 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3G2(0)dt3dt4 = G2(0)
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3dt3dt4 =

Substitute s = t4 − t3:

G2(0)
T∫

t4=0

t4∫
s=0

G1(s)(t4 − s)dsdt4 =

= G2(0)

 T∫
t4=0

t4

t4∫
s=0

G1(s)dsdt4 −
T∫

t4=0

t4∫
s=0

sG1(s)dsdt4

 =
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= G2(0)
T∫

t4=0

[
t4G2(0) − t4G2(t4)

]
dt4 −G2(0)

T∫
t4=0

t4∫
s=0

sG1(s)dsdt4 =

Integration by parts:

= G2
2(0)

T∫
t4=0

t4dt4 −G2(0)
T∫

t4=0

t4G2(t4)dt4

−G2(0)
T∫

t4=0

[− sG2(s)
]t4

0
+

t4∫
s=0

G2(s)ds
 dt4 =

= G2
2(0)1

2T
2 −G2(0)

T∫
t4=0

t4G2(t4)dt4

+G2(0)
T∫

t4=0

t4G2(t4)dt4 −G2(0)
T∫

t4=0

[G3(0) −G3(t4)]dt4 =

= G2
2(0)1

2T
2 −G2(0)

T∫
t4=0

[G3(0) −G3(t4)]dt4

= G2
2(0)1

2T
2 − TG2(0)G3(0) +G2(0)

T∫
t4=0

G3(t4)dt4 =

Now with the help of (15)

I1 = G2
2(0)1

2T
2 − TG2(0)G3(0) +G2(0)[ a6µ ln(T ) + O(1)] = G2

2(0)1
2T

2 + O(T )

.
With that finished, let’s solve I2 (which we already have). By noticing that:

I2 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(0)dt3dt4 = G3(0) 1
2!E(S2

T )

= G3(0)[TG2(0) −G3(0) +G3(T )] = O(T ) (19)

Follows from (13).
Now only I3 and II3 are left to be calculated. However we are going to ap-

proximate them since as it turns out their leading terms are negligible to us. For this we
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need to notice 2 facts. First, the 2 integrals are very similar in fact G3(t) and tG2(t) are
both of the same order. So there exist a constant C for which tG2(t) < CG3(t) (∀t > 0)
So by this we can also conclude that:

II2 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)t3G2(t3)dt3dt4 <
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)CG3(t3)dt3dt4 =

= C

T∫
t4=0

t4∫
t3=0

G1(t4 − t3)G3(t3)dt3dt4 = C · I3

Now we have that 2I3 + II3 < (2 + C) · I3.
By rewriting the original I3 integral with integration by parts we see that:

I3 =
T∫

t4=0

t4∫
t3=0

G1(t4 − t3)G3(t3)dt3dt4 =

=
T∫

t4=0

[G2(t4 − t3)G3(t3)
]t4

t3=0
+

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3

dt4 =

Now here we can’t write G4(0) −G4(T ) as these don’t exist but rather use (15)

I3 =
T∫

t4=0

[
G2(0)G3(t4) −G2(t4)G3(0)

]
dt4 +

T∫
t4=0

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3dt4 =

= G2(0)
(
a

6µ ln(T )+O(1)
)

−G3(0)
(
G3(0)−G3(T )

)
+

T∫
t4=0

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3dt4 =

O(T ) +
T∫

t4=0

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3dt4

Where the last step is valid as G3(T ) = O(T ) and also ln(T ) = O(T ).
The second observation is that the inner part of this last double integral is a convo-

lution of G2(x) with itself. Convolution has the property that it is a closed operation
in L1 space. That is if f, g ∈ L1 are convolved, then the resulting function will also be
in L1. And since G3(0) exists (for β > 3) it is true that G2(x) is integrable , thus the
convolution is also in L1, let’s call it W (t4). And thus:
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T∫
t4=0

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3dt4 =
T∫

t4=0

W (t4)dt4 = O(1)

With this we can see that:

I3 =
T∫

t4=0

t4∫
t3=0

G2(t4 − t3)G2(t3)dt3dt4 + O(T ) = O(1) + O(T ) = O(T )

From this it is clear that:

2I3 + II3 < (2 + C) · I3 = (2 + C) · O(T ) = O(T ) (20)

Now using (18) we know that

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

P(C ∩B)dt1dt2dt3dt4 = I1 − 2I2 + 2I3 + II3

= G2
2(0)1

2T
2 + O(T ) (21)

So now we know with the help of (14), (16) and (21):

E(S4
T ) = 24

(
G2

2(0)1
2T

2 + a

6µT ln(T ) + O(T )
)

= 12G2
2(0)T 2 + 4a

µ
T ln(T ) + O(T )

Now as for the role of the second moment (13)

3(E(S2
T ))2 = 3

[
2 (TG2(0) −G3(0) +G3(T ))

]2

=

= 12
(
T 2G2

2(0) +G2
3(0) +G2

3(T ) − 2TG2(0)G3(0) + 2TG2(0)G3(T ) − 2G3(0)G3(T )
)

=

= 12T 2G2
2(0) + O(T )

So using lemma 1.2 and the two equations above, we get that:

C4(ST ) = E(S4
T ) − 3(E(S2

T ))2 = 12G2
2(0)T 2 + 4a

µ
T ln(T ) + O(T ) − 12T 2G2

2(0) + O(T )

C4(ST ) = 4a
µ
T ln(T ) + O(T ) (22)
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4.5 Fourth Moment B ∩C event - dealing with the correctness
of the approximation

Expanding the event P(B ∩ C):

P(B ∩ C) =
t3−t1∫

t2−t1

P(B|Hstac(t1) = z)fHstac(t1)(z)dz =

Using the definition of B and "setting t1 + z to be our new start", that is we know it
is an arrival time and using the definition of Φ(x, t) (from equation (8) ):

=
t3−t1∫

t2−t1

[1 − P(H[t3 − (t1 + z)] ≤ t4 − t3)] fHstac(t1)(z)dz =

=
t3−t1∫

t2−t1

[1 − Φ(t4 − t3, t3 − z − t1)] fHstac(t1)(z)dz

Now let us consider this last form of the event probability. If t3 − z → ∞ then
stationarity will appear and also using (8) we get:

P(B ∩ C) =
t3−t1∫

t2−t1

[1 − Φ(t4 − t3, t3 − z − t1)] fHstac(t1)(z)dz =

=
t3−t1∫

t2−t1

[1 − P(H[t3 − (t1 + z)] ≤ t4 − t3)] fHstac(t1)(z)dz ≈

≈
t3−t1∫

t2−t1

[
1 − P(Hstac(t3) ≤ t4 − t3)

]
fHstac(t1)(z)dz =

Where H(t3) is no longer a function of z nor of t3 − (t1 + z), because of stationarity.
So from this follows:

=
[
1 − P(Hstac(t3) ≤ t4 − t3)

] t3−t1∫
t2−t1

fHstac(t1)(z)dz = P(B)
t3−t1∫

t2−t1

1dFHstac(t1)(z) =

= P(B) · P(t3 − t1 > Hstac(t1) > t2 − t1) = P(B) · P(C)
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So from stationarity the independence of the events B and C follows. However in
reality stationarity is a strong statement (one that is not true in general). In fact what
we say is that P(H(t) > x) = P(T0 > x) which is a strong approximation. Recall that
P(T0 > x) ∼ x−3. We suspect that the following bound could be enough and correct:

P(H(t) > x) = P(T0 > x) + O
(

1
(t+ x)3

)
(23)

Is it enough ? Now writing this instead of the independence approximation we get
that

P(B ∩ C) =
t3−t1∫

t2−t1

[1 − Φ(t4 − t3, t3 − z − t1)] fHstac(t1)(z)dz =

=
t3−t1∫

t2−t1

[1 − P(H[t3 − (t1 + z)] ≤ t4 − t3)] fHstac(t1)(z)dz =

=
t3−t1∫

t2−t1

P(H[t3 − t1 − z] > t4 − t3)fHstac(t1)(z)dz =

Using the approximation we get that:

=
t3−t1∫

t2−t1

[
P(Hstac > t4 − t3) + O

(
(t3 − t1 − z + t4 − t3)−3

)]
fHstac(t1)(z)dz =

Which is a sum of two integrals, where the first term is exactly like the approximate
case. Thus:

= P(B) · P(C) +
t3−t1∫

t2−t1

O
(
(t4 − t1 − z)−3

)
fHstac(t1)(z)dz

In order for equation (22) to hold, even after we dispose of the approximation, we
need that:

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

t3−t1∫
t2−t1

O
(
(t4 − t1 − z)−3

)
fHstac(t1)(z)dzdt1dt2dt3dt4 = O(T ) (24)
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Where fHstac(t1)(z) = O(z−4). Using this and a v = z + t1 substitution we get:

t3−t1∫
t2−t1

O
(
(t4 − t1 − z)−3

)
O
(
(z)−4

)
dz =

t3∫
t2

O
(
(t4 − v)−3

)
O
(
(v − t1)−4

)
dv =

=
t3∫

t2

O
(
(t4 − v)−3(v − t1)−4

)
dv

Now using elementary integral calculations from the indefinite integral
∫
(t4−v)−3(v−

t1)−4dv, we obtain that the leading term of this integral
t3∫
t2

O ((t4 − v)−3(v − t1)−4) dv is

of O ((t4 − t1)−3) O ((t2 − t1)−3). So substituting back into equation (24) we get:

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

t2∫
t1=0

O
(
(t4 − t1)−3

)
O
(
(t2 − t1)−3

)
dt1dt2dt3dt4) ≤

By applying that O ((t4 − t1)−3) is upper bounded by O ((t4 − t2)−3):

≤
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

O
(
(t4 − t2)−3

) t2∫
t1=0

O
(
(t2 − t1)−3

)
dt1dt2dt3dt4) =

where the inner integral is finite so:

=
T∫

t4=0

t4∫
t3=0

t3∫
t2=0

O
(
(t4 − t2)−3

)
O(1)dt2dt3dt4) =

T∫
t4=0

t4∫
t3=0

t3∫
t2=0

O
(
(t4 − t2)−3

)
dt2dt3dt4) =

=
T∫

t4=0

t4∫
t3=0

O
(
(t4 − t3)−2

)
dt3dt4)

Again the inner part is a finite integral, leaving us with:

=
T∫

t4=0

O(1)dt4 = O(T )

Exactly what is required by equation (24).
Is it true ? Lets discuss why would the approximation (23) be correct. Some

complicated calculations (and not yet rigorous ones) lead us to believe that they are
true. Recall for the density ϕ(t, x) equation (23) reduces to:
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ϕ(t, x) = 1
µ
P(L > x) + O

(
(t+ x)−4

)
To see our idea we need to inspect the formula in (9).

ϕ(t, x) = fL(t+ x) +
t∫

y=0

[fL(t+ x− y)m(y)] dy

here fL(t+ x) = O(x+ t)−5, which trivially fits into O(x+ t)−4 . Then secondly, by
using the formula (12) in m̂(r) we expect m̂(r) = 1

µr
+m̂0(r) where m0(t) is a probability

density function with m0(t) ∼ t−4. This requires further justification.
Now expanding the expression in (9) linearly:

t∫
y=0

[fL(t+ x− y)m(y)] dy =
t∫

y=0

[
fL(t+ x− y) 1

µ

]
dy +

t∫
y=0

[fL(t+ x− y)m0(y)] dy =

Using the same trick as with the Gn(t)’s with a s = t− y integral substitution:

= 1
µ

 ∞∫
y=0

fL(x+ s)ds−
∞∫

y=t

fL(x+ s)ds

+
t∫

y=0

[fL(t+ x− y)m0(y)] dy =

1
µ

[P(L > x) − P(L > x+ t)] +
t∫

y=0

[fL(t+ x− y)m0(y)] dy

So back to ϕ(t, x) and putting this together:

ϕ(t, x) = fL(t+ x) + 1
µ

[P(L > x) − P(L > x+ t)] +
t∫

y=0

[fL(t+ x− y)m0(y)] dy

• fL(t+ x) = O ((x+ t)−5)

• P(L > x+ t) = O((x+ t)−4)

•
t∫

y=0
[fL(t+ x− y)m0(y)] dy If it was an integral until t+x, then it would be convolu-

tion of the form (through Laplace transforming reasoning) fL∗m0(x+t) ∼ (t+x)−4.
(That is = O((t+ x)−4)

These 3 approximations would be taken care of, which would mean that O((t+ x)−3) in
(23) would hold.
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5 Summary and Outlook

In this thesis we studied a random walk ST generated by a renewal process with its inter-
arrival times having a tail distribution P(L > x) ∼ ax−β (with β = 4). The goal was to
determine the 4th cumulant of this process, which we did under strong approximations.
In particular, we introduced four parameters 0 ≤ t1 < t2 < t3 < t4 ≤ T , along with
events B and C (see figure 1). When constructing P(B|C) we pretended that the process
is in stationary state at time t3, although an arrival occurred in the interval [t2, t3].

The heuristics behind this approximation is that as T grows, t3 − t2 also grows in
average. We have also included some discussion based on the exact formulas (9) and
(12), to argue that the error terms in this approximation indeed contribute a correction
of lower order. Further analysis of the error term is the subject of future research.

Different goals β = 6: Now, using a more complicated event system than A,B,C
and D, we could also determine the 6th cumulant in the case of β = 6. However not only
would this make the events more complicated, but also handling the error term would
be a significantly more complex problem than that of the β = 4 case. Though harder,
we do not expect the requirement of further theoretical insight than for cases β = 2 and
β = 4
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