Stochastic processes exam

$10\mathrm{th}$ Jan2025

Theoretical part

- 1. (a) (2 points) Define the stationary distribution of the discrete time Markov chain X_n .
 - (b) (2 points) Assume that the Markov chain is irreducible. Write down those equations for the components of the stationary distribution vector in terms of the transition matrix which determine the stationary distribution.
 - (c) (2+3 points) Explain and prove how the stationary distribution of an irreducible Markov chain can be computed using the inverse of a certain matrix.
- 2. (a) (2 points) Define the (time homogeneous) Poisson process of parameter $\lambda > 0$ on \mathbb{R}_+ .
 - (b) (2 points) We thin the Poisson process of parameter λ with probability p, that is, we keep each point with probability p independently for the points. What is the distribution of the resulting set of points? (No proof is needed here.)
 - (c) (2+3 points) What is the distribution of the first point of a Poisson process of parameter λ conditionally given that there is exactly one point in the interval [0, t] for some fixed t > 0. (The answer has to be proven.)
- 3. Let M_n be a martingale and let H_n be a predictable betting strategy.
 - (a) (2 points) Define the predictability of H_n .
 - (b) (2 points) Define the wealth W_n after step n using the martingale M_n and the betting strategy H_n started from initial wealth W_0 .
 - (c) (2+3 points) State and prove a sufficient condition under which the wealth process W_n is a martingale if M_n is a martingale.

Exercise part

- 4. (5+2 points) A knight can move two squares horizontally and one square vertically or two squares vertically and one horizontally in one step. Let X_n be the sequence of squares that results if we pick one of the knight's legal moves at random independently in each step.
 - (a) Find the stationary distribution.
 - (b) What is the expected number of moves to return to the corner (1,1) when we start there.
- 5. (3+4 points) Consider two machines that are maintained by a single repairman. Machine *i* functions for an exponentially distributed amount of time with rate λ_i before it fails. The repair times for each unit are exponential with rate μ_i . They are repaired in the order in which they fail.
 - (a) Formulate a Markov chain model for this situation with state space $\{0, 1, 2, 12, 21\}$.
 - (b) Suppose that $\lambda_1 = 1, \mu_1 = 2, \lambda_2 = 3, \mu_2 = 4$. Find the stationary distribution.
- 6. (2+3+2 points) Let U_1, U_2, \ldots be i.i.d. random variables on (0,1) with density f(x) = 2x and define $Y_0 = 1$ and $Y_n = U_n U_{n-1} \ldots U_0$.
 - (a) Show that $M_n = (3/2)^n Y_n$ is a martingale.
 - (b) Use the fact that $\log Y_n = \log U_1 + \cdots + \log U_n$ to show that almost surely

$$\frac{\log Y_n}{n} \to -\frac{1}{2}.$$

- (c) Use (b) and the fact that $\log(3/2) 1/2 < 0$ to conclude $M_n \to 0$, i.e., in this "fair" game our fortune always converges to 0 as time tends to infinity.
- 7. (7 points) Let B(t) and $\tilde{B}(t)$ be two independent Brownian motions. Prove that

$$\frac{1}{2}B(t) - \frac{\sqrt{3}}{2}\widetilde{B}(t)$$

is also a Brownian motion.