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Università degli Studi di Milano
Dipartimento di Matematica

CWM3EO - Budapest, Friday September 26th 2014



The Project

Joint project with the Italian Energy System
Research Centre ( RSE s.p.a.)

Developing with RSE a simulator for Energy
Systems.

Energy systems at a glance:

I producers share demand via a global energy exchange

I system divided in zones connected by a capacitated network

I system interacts with outer systems via import/export flows

Unit Commitment Problem
Planning thermoelectric energy production to satisfy energy demand at
minimum cost



Problem Description

Decision variables:

I thermoelectric and hydroelectric productions

I energy exchanges between zones

Parameters:

I demand, zone by zone

I network capacity

I other non-dispatchable sources (wind, PV, waste. . . )

I import-export with outer systems

Objective:

I minimize total production cost
I thermoelectric production costs (fuel, maintenance, pollution).
I hypothesis: under a competitive market prices are minimized at

clearing level



Thermoelectric Plants (TPP)
I discrete activation pattern (on-off state)

I linear cost function
I non-linear formulation is too inefficient

Let x be the production level, y the state on/off (binary). Cost function
is

f (x) = cx + ey

where c = marginal cost, e = fixed cost

Figure : Cost function for
thermoelectric plants



Model entities

Thermoelectric Plants (TPP):

I linear cost function

I discrete activation pattern

Hydroelectric Plants (HPP):

I costless production

I linear continuous behaviour

Network:

I continuous network flow

Time:

I simulation over 1 year with hourly resolution (= 8760 1h-periods)

⇒ A large-scale MILP model.



Literature

In literature:

I short-term models → operational decisions
I non-linear formulations (Frangioni et al ’03, ’06, ’13)

I medium-term models → tactical decisions
I mixed integer linear formulations and heuristics (Chang et al ’04)

I long-term models → strategic decisions
I mixed integer linear model
I In Kjeldsen and Chiarandini (’12) annual simulation of Danish

market. Solved via constructive heuristics.



Modelling

Variables:

I thermoelectric plants → state: binary, production: continuous

I hydroelectric plants → production: continuous

I network → flows: continuous

Constraints:

I upper and lower bounds on plants production

I upper and lower bounds on hydro plants reservoir levels

I hydroelectric energy balance: for each hydro plant and period
water in = production + reservoir increase + spillage

I zonal energy balance: for each period and zone

demand + export flow = energy production + import flow

I minimum up/down constraints for thermal plants
After switching state the thermal plant must mantain the new state
for τ periods.



Section 2

Preprocessing



Grouping TPPs
In each zone TPPs divided in groups of units with the same marginal
cost c .
In each group TPPs divided in subgroups of units with the same fixed
cost e, same technical minima and maxima and minimum up/down
constraints.

For each period t ∈ T , zone z ∈ Z , group g ∈ Gz the group cost
function is:

ctzgxtzg +
∑

m∈Mzg

etzgmytzgm

with parameters

I ctzg marginal cost

I etzgm fixed cost

and variables

I xtzg ≥ 0 total group production

I ytzgm ∈ {0..km} number of active plants in subgroup m ∈ Mzg

(integer)



Grouping TPPs
In each zone TPPs divided in groups of units with the same marginal
cost c .
In each group TPPs divided in subgroups of units with the same fixed
cost e, same technical minima and maxima and minimum up/down
constraints.

For each period t ∈ T , zone z ∈ Z , group g ∈ Gz the group cost
function is:

ctzgxtzg +
∑

m∈Mzg

etzgmytzgm

A discontinuous piece-wise linear function.

Figure: Lower envelope of
the group cost function



Grouping TPPs
In each zone TPPs divided in groups of units with the same marginal
cost c .
In each group TPPs divided in subgroups of units with the same fixed
cost e, same technical minima and maxima and minimum up/down
constraints.

For each period t ∈ T , zone z ∈ Z , group g ∈ Gz the group cost
function is:

ctzgxtzg +
∑

m∈Mzg

etzgmytzgm

⇒ Result: less symmetry, more efficiency!
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Heuristics



Commit&Dispatch Algorithm (C&D)

0. Estimate: estimate zonal production levels of TPP X i
tz for each

period and zone

1. Commit: for each zone z ∈ Z compute commitment (y i
tzgm)z to

satisfy production levels X i
tz

2. Dispatch: compute optimal dispatching according to commitment
(y i

tzgm)

Get a feasible solution with commitment (y i
tzgm) and production

levels (x i
tzg )

3. Repeat: If the new solution is different from the previous one let
X i+1
tz =

∑
g∈Gz

x i
tzg ∀t ∈ T , z ∈ Z , i := i + 1, and go to Commit.

Otherwise STOP.

Key points:

I after each iteration a feasible solution

I at each iteration the new solution is not worse than the old one
(non-strict monotonicity)

I finitely converges to a solution, not necessarily the optimum



Estimate

At first the algorithm estimates zonal production for TPPs.

Feasibility: for every period and zone, the estimated zonal production
must

I be between 0 and the maximum total production level of the group

I satisfy the zonal energy balance constraint
demand + export flow = energy production + import flow

To estimate zonal production at step 0th we consider two continuous
lower bounds for UCP:

I the Continuous Relaxation (CR)

I the Aggregated Continuous Relaxation (ACR).



ACR
Aggregated Continuous Relaxation (ACR)
For each group we construct the best line (passing by the origin) which
underestimates the original group cost function (requires linear
complexity)
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ACR
Aggregated Continuous Relaxation (ACR)
For each group we construct the best line (passing by the origin) which
underestimates the original group cost function (requires linear
complexity)

Compared to the continuous relaxation (CR) of UCP the ACR

I is smaller, y variables are removed.
In the Italian case from 148 TPPs we get 98 groups and 103
subgruops.

I can be formulated as a Network Flow Problem and solved in
polynomial time

I it is provably weaker
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Exact Approaches



Column Generation (CG)

I For each subgroup m ∈ Mzg consider every feasible commitment
u ∈ Szgm (pattern)

I define αu binary variable to select (αu = 1) pattern u.

I Master Problem: new formulation of UCP with patterns.
Substitute state variables (ytzgm) with pattern variables (αu)zgm.

Constraints on patterns (*)∑
m∈Mzg ,
u∈Szgm

p̂tzgmuαu ≤ xtzg ≤
∑

m∈Mzg ,
u∈Szgm

P̂tzgmuαu ∀t ∈ T , z ∈ Z , g ∈ Gz

∑
u∈Szgm

αu = 1 ∀z ∈ Z , g ∈ Gz ,m ∈ Mzg

We actually consider a master with a limited selection of patterns
(Restricted Master Problem (RMP))



Column Generation Algorithm

Scheme:

0. Init: initialize RMP with patterns from a feasible solution

1. Relax: solve continuous relaxation of RMP (lower bound)

2. Rounding: choose for each subgroup the pattern with highest αu,
obtaining a feasible solution (upper bound).

3. Pricing: for each subgroup generate the pattern of minimum reduced
cost according to dual prices of (*) in current RMP solution.

4. If new patterns are generated go to Relax, otherwise go to
Enumerate

5. Enumerate: if the gap between the best lower and upper bounds is
positive and small enough

a enumerate all the columns whose reduced cost is smaller than the gap
(via Constraint Programming)

b solve RMP as integer program

Otherwise if the gap is positive perform Branch&Bound, else Stop.



Pricing
An ILP for each subgroup in the y variables.
Solvable in linear-time with known dynamic programming scheme (see
Frangioni et al ’06 for reference).

Possible commitments as a graph.
Optimal commitment is a shortest path on the graph.

blue: keep the current state
and go to t + 1
red: switch to a new state
for at least τ periods

The algorithm can manage only one plant at time. In our case we have
more plants in each subgroup.

However we can show that at each period it is optimal to switch either
all or none of the plants of the subgroup.
Pricing objective function:

φPricing(y) =
∑
t∈T

(et − λt − µt)yt − η

where λt , µt and η are the dual prices of constraints (*)



Partial Branch&Bound (PB&B)

I Idea: remove most significant violations in the continuous relaxation
to reduce the gap with optimal solution

I Hypothesis: most significant violations are determined by
under-min production

Under-min production
Production strictly between 0 and the group minimum

0 < xtzg < min
m∈Mzg

{pm}



Partial Branch&Bound: Algorithm

Consider continuous relaxation model CR

1. Solve: solve the model.
Let R = {t ∈ T , z ∈ Z , g ∈ Gz : 0 < xtzg < min

m∈Mzg

{pm}}.

2. If R = ∅ Stop. Otherwise go to Select

3. Select: compute mean under-min production ρ

ρ =

∑
t,z,g∈R

xtzg

|R|

Let C = {t ∈ T ,m ∈ Mzg : ρ ≤ xtzg < minm1∈Mzg {pm1}}
4. Cut: restore integrality constraints for ytzgm : (t,m) ∈ C in the

model. Go to Solve

At every iteration new integrality constraints are restored, strengthening
the relaxation.
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Results



Test

Instance: Italy 2011.

For simplicity we relax minimum up/down constraints (see later).

Scheme:

1. Commit&Dispatch × 1 iteration, initialized with either ACR, CR or
ACR+PB&B

I time limit for PB&B: 1h

2. Column Generation initialized with heuristic C&D solution.
Pricing solved as MIP.

I time limit for CG: 1h

Implementation: CPLEX 11 + AMPL on dual core with 4G RAM.



Lower Bounds



Partial B&B



Commit&Dispatch



Column Generation



Instances sizes

Size Id
Size after presolving

Constraints Continuous var. Integral var. Binary var.

1 month

1 152,541 110,184 13,870 67,158
2 152,360 110,050 13,853 67,104
3 151,649 109,485 13,750 66,852
4 151,578 109,451 13,740 66,836
5 151,624 109,477 13,753 66,831
6 152,406 110,075 13,864 67,112
7 152,266 109,956 13,855 67,062
8 152,492 110,149 13,861 67,150
9 152,147 109,879 13,819 67,013

10 152,218 109,932 13,829 67,043
11 152,311 109,992 13,838 67,093
12 151,774 109,591 13,813 66,908

2 months

1 304,887 220,249 27,721 134,246
2 302,960 218,771 27,478 133,544
3 304,033 219,579 27,616 133,931
4 304,776 220,149 27,725 134,199
5 304,423 219,867 27,646 134,080
6 303,740 219,332 27,595 133,864

3 months

1 456,617 329,831 41,493 201,113
2 455,838 329,210 41,386 200,855
3 457,109 330,187 41,563 201,281
4 456,073 329,383 41,460 200,918

6 months
1 912,782 659,305 82,904 402,076
2 913,597 659,919 83,019 402,375

12 months 1 1,826,563 1,319,378 165,951 804,489



Results - Table

Size Id
Continuous Lower Bounds C&D C&D+CG

ACR CR with ACR with CR with ACR+PB&B with ACR with CR with ACR+PB&B
Time (s) Time (s) Time (s) Gap % Time (s) Gap % Gap % Gap % Gap % Gap

1 month

1 5 23 19 0.44 38 0.47 0.22 0.27 0.21 0.16
2 6 19 18 0.34 36 0.38 0.14 0.34 0.24 0.14
3 5 19 19 0.31 37 0.33 0.13 0.31 0.15 0.13
4 6 15 20 0.41 32 0.42 0.15 0.41 0.41 0.15
5 5 17 17 0.34 33 0.36 0.14 0.34 0.19 0.14
6 8 19 21 0.35 36 0.36 0.18 0.23 0.12 0.18
7 7 21 20 0.30 39 0.36 0.12 0.15 0.14 0.09
8 6 29 23 0.39 47 0.47 0.21 0.22 0.47 0.21
9 6 25 19 0.32 41 0.35 0.16 0.32 0.11 0.16

10 5 24 19 0.34 40 0.40 0.14 0.34 0.33 0.14
11 5 20 20 0.32 37 0.37 0.15 0.21 0.21 0.15
12 5 19 18 0.32 36 0.35 0.14 0.18 0.21 0.04

2 months

1 13 62 42 0.41 99 0.43 0.20 0.28 0.21 0.16
2 13 60 41 0.33 96 0.37 0.16 0.31 0.14 0.16
3 11 70 41 0.33 108 0.36 0.17 0.33 0.22 0.17
4 15 59 58 0.36 97 0.41 0.24 0.29 0.18 0.24
5 13 76 39 0.31 112 0.34 0.17 0.20 0.27 0.17
6 12 80 39 0.33 117 0.35 0.18 0.28 0.17 0.18

3 months

1 20 130 68 0.37 188 0.40 0.30 0.25 0.19 0.27
2 17 114 78 0.34 171 0.40 0.19 0.34 0.26 0.14
3 29 82 96 0.36 142 0.38 0.23 0.27 0.26 0.23
4 20 95 75 0.30 152 0.35 0.19 0.23 0.13 0.19

4 months
1 33 162 98 0.39 251 0.40 0.27 0.28 0.26 0.24
2 55 199 152 0.31 285 0.37 0.23 0.31 0.28 0.21
3 33 202 115 0.33 286 0.37 0.20 0.24 0.30 0.17

6 months
1 55 292 216 0.39 434 0.41 0.27 0.39 0.41 -
2 87 224 273 0.37 374 0.37 0.34 0.37 0.30 -

1 year 1 352 1083 983 0.43 - - - - - -



Notes

I ACR provides a good lower bound with high efficiency

I integer problems Commit and Pricing separable in small, easy
subproblems

I solved with no branch&bound, sometimes a few MIP simplex
iterations

I CG and PB&B reduce gaps mostly at first iterations.



Notes (cont.)

Compared with Kjeldsen and Chiarandini (K&C) (’12)

I we solve a much larger model with comparable time and precision
I K&C best configuration solves yearly instance with 20 TPPs within

15 min and 1% gap
I Commit&Dispatch solves yearly instance with 148 TPPs within 20

min and 0.5%gap
I Our model includes HPPs and network
I In both cases minimum up/down constraints are not handled

I our algorithm does not have parameters to tune

However we do not model ignition costs.



Conclusions

To compute more realistic and meaningful solution we need to test the
algorithms with minimum up/down constraints for TPPs.
With these constraints

I the model is much more expensive to solve

I ACR and CR provide looser bounds

Example on quadrimester instances

I without up/down cons.: 0.35% gap within 3 min with ACR+C&D,
0.30% gap with 1h CG

I with up/down cons.: 3% gap within 20 min with ACR+C&D, 2%
gap with 1h CG

On the other hand the decomposition schemes we devised are general
and can already be solved efficiently with high accuracy.
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