An interior-point solver for convex separable block-angular problems

J. Castro
Group of Numerical Optimization and Modelling Department of Statistics and Operations Research
Universitat Politècnica de Catalunya Barcelona, Catalonia

COST Workshop M ${ }^{3}$ EO
25-26 September 2014

Outline

(1) Block-angular and large-scale problems
(2) IPM for block-angular problems
(3) The BlockIP solver

4 Some applications

- Multicommodity problems
- Minimum congestion problems
- Statistical tabular data confidentiality problems
- Other applications

Block-angular problems

Modelling tool

- Multiperiod, multicommodity problems.
- Stochastic problems (two-stage, multi-stage optimization).
- Linking constraints.

Applications

- Energy
- Logistics
- Telecommunications
- Big-data.

Size

- Very large-scale problems

IPMs successful for very large-scale problems...

... but some problems too-large for standard IPMs

Specialized vs standard IPMs

- Standard IPMs (CPLEX, XPRESS, MOSEK...) rely on Cholesky
- Specialized IPMs use PCG for systems of equations.
- Preconditioners are instrumental for efficiency.

Some preconditioners in IPMs

- Splitting preconditioners (Oliveira, Sorensen, 2005; Frangioni, Gentile 2004)
- Constraints preconditioners (Keller, Gould, Wathen 2000; Gondzio et al. 2007; Gondzio 2012)
- Partial Cholesky (Bellavia et al. 2013)
- IPM converge even if systems solved approximately (Gondzio 2013)

IPM for block-angular problems

Formulation of block-angular problems
For convex separable problems (f_{i} convex separable)

$$
\begin{aligned}
\min & \sum_{i=0}^{k} f_{i}\left(x^{i}\right) \\
\text { subject to } & {\left[\begin{array}{cccc}
N_{1} & & & \\
& \ddots & & \\
& & N_{k} & \\
L_{1} & \ldots & L_{k} & ,
\end{array}\right]\left[\begin{array}{c}
x^{1} \\
\vdots \\
x^{k} \\
x^{0}
\end{array}\right]=\left[\begin{array}{c}
b^{1} \\
\vdots \\
b^{k} \\
b^{0}
\end{array}\right] } \\
& 0 \leq x^{i} \leq u^{i} \quad i=0, \ldots, k .
\end{aligned}
$$

Particular cases

- Linear: $f_{i}\left(x^{i}\right)=c^{i^{\top}} x^{i}$
- Quadratic: $f_{i}\left(x^{i}\right)=c^{i^{T}} x^{i}+\frac{1}{2} x^{i T} Q_{i} x^{i}, Q_{i}$ diagonal

Approaches

- Dantzig-Wolfe, cutting planes
- But IPMs can also be used...

A path-following method

Convex optimization problem

$$
\begin{array}{lll}
& \min & f(x) \\
(P) & \text { s.to } & A x=b \\
& 0 \leq x \leq u & {[\lambda]} \\
& 0, w]
\end{array}
$$

Central path defined by perturbed KKT- μ system

$$
\begin{aligned}
& A^{\top} \lambda+z-w-\nabla f(x)=0 \\
& A x=b \\
&(X Z e, S W e)=(\mu e, \mu e) \quad \mu \in \mathbb{R}^{+} \\
&(z, w)>0 \\
&(x, s)>0 \quad s=u-x
\end{aligned}
$$

The linear algebra of IPMs
Augmented system
PCG-based IPMs usually solve the augmented system:

$$
\left[\begin{array}{cc}
-\Theta^{-1} & A^{\top} \\
A & 0
\end{array}\right]
$$

Normal equations
BlockIP solves normal equations

$$
\left(A \Theta A^{\top}\right) \Delta \lambda=g
$$

where

$$
\Theta=\left(Z X^{-1}+W S^{-1}+\nabla^{2} f(x)\right)^{-1}
$$

is a diagonal matrix if problem is separable.

Solving normal equations

Exploiting structure of A and Θ

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
N_{1} & & & \\
& \ddots & & \\
& & N_{k} & \\
L_{1} & \ldots & L_{k} & \text { I }
\end{array}\right] \quad \Theta=\left[\begin{array}{ccc}
\Theta_{1} & & \\
& \ddots & \\
& & \Theta_{k} \\
& & \\
& & \\
& & \Theta_{0} A^{\top}=\left[\begin{array}{cccc}
N_{1} \Theta_{1} N_{1}^{\top} & & & \\
& \ddots & \Theta_{1} L_{1}^{\top} \\
& & N_{k} N_{k}^{\top} & N_{k} \Theta_{k} L_{k}^{\top} \\
\hline L_{1} \Theta_{1} N_{1}^{\top} & \ldots & L_{k} \Theta_{k} N_{k}^{\top} & \Theta_{0}+\sum_{i=1}^{k} L_{i} \Theta_{i} L_{i}^{\top}
\end{array}\right]=\left[\begin{array}{cc}
B & C \\
C^{\top} & D
\end{array}\right]
\end{array} .\right.
\end{gathered}
$$

The Schur complement

$$
\left[\begin{array}{cc}
B & C \\
C^{\top} & D
\end{array}\right]\left[\begin{array}{l}
\Delta \lambda_{1} \\
\Delta \lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
g_{1} \\
g_{2}
\end{array}\right] \Longleftrightarrow \begin{aligned}
\left(D-C^{\top} B^{-1} C\right) \Delta \lambda_{2} & =\left(g_{2}-C^{\top} B^{-1} g_{1}\right) \\
B \Delta \lambda_{1} & =\left(g_{1}-C \Delta y_{2}\right)
\end{aligned}
$$

- System with B solved by k Cholesky factorizations.
- Schur complement $S=D-C^{\top} B^{-1} C$ with large fill-in: system solved by PCG.

The preconditioner

Based on P-regular splitting $S=D-\left(C^{\top} B^{-1} C\right)$ (SIOPT00,COAP07)
Spectral radius of $\left.D^{-1}\left(C^{\top} B^{-1} C\right)\right)$ satisfies $\left.\rho\left(D^{-1}\left(C^{\top} B^{-1} C\right)\right)\right)<1$ and then

$$
\left(D-C^{\top} B^{-1} C\right)^{-1}=\left(\sum_{i=0}^{\infty}\left(D^{-1}\left(C^{\top} B^{-1} C\right)\right)^{i}\right) D^{-1}
$$

Preconditioner M^{-1} obtained truncating the power series at term h

$$
\begin{array}{ll}
M^{-1}=D^{-1} & \text { if } h=0 \\
M^{-1}=\left(I+D^{-1}\left(C^{\top} B^{-1} C\right)\right) D^{-1} & \text { if } h=1 .
\end{array}
$$

Quality of preconditioner depends on

- $\rho<1$: the farther from 1 , the better the preconditioner.

Non-zero Hessians improve the preconditioner I

Proposition. Upper bound for ρ (MP11)

The spectral radius ρ of $D^{-1}\left(C^{\top} B^{-1} C\right)$ is bounded by

$$
\rho \leq \max _{j \in\{1, \ldots,\}\}} \frac{\gamma_{j}}{\left(\frac{r_{j}}{v_{j}}\right)^{2} \Theta_{0 j}+\gamma_{j}}<1,
$$

where r is the eigenvector of $D^{-1}\left(C^{\top} B^{-1} C\right)$ associated to $\rho ; \gamma_{j}, j=1, \ldots, l$, and $V=\left[V_{1}, \ldots, V_{l}\right]$, are the eigenvalues and matrix of eigenvectors of $\sum_{i=1}^{k} L_{i} \Theta_{i} L_{i}{ }^{\top}$, and $v=V^{\top} r$.
If $L_{i}=I$ the bound has the simple and computable form:

$$
\rho \leq \max _{j \in\{1, \ldots, \prime\}} \frac{\sum_{i=1}^{k} \Theta_{i j}}{\Theta_{0 j}+\sum_{i=1}^{k} \Theta_{i j}}<1 .
$$

IPM for block-angular problems

Non-zero Hessians improve the preconditioner II
Proposition. PCG more efficient for quadratic or nonlinear problems Under some mild conditions, the upper bound of ρ decreases for $\nabla^{2} f(x) \succ 0$.

Proposition. PCG extremely efficient if Hessian is large

$$
\lim _{\substack{\nabla^{2} f_{i}(x) \rightarrow+\infty \\ i=1, \ldots, k}} \rho=0
$$

Example: solution of a large (10 million variables, 210000 constraints) with quadratic objective function $x^{\top} Q x$, for different $Q=\beta$ ।

Instance	β	CPLEX-11		Specialized IPM			f^{*}
		it.	CPU	it.	PCG	CPU	
CTA-100-100-1000	0.01	7	29939	10	36	66	$-2.6715 e+08$
CTA-100-100-1000	0.1	7	31328	9	40	61	$-2.6715 e+09$
CTA-100-100-1000	1	8	33367	8	38	56	$-2.6715 e+10$
CTA-100-100-1000	10	9	35220	7	37	51	$-2.6715 \mathrm{e}+11$

Quadratic regularizations improve the preconditioner

Standard barrier, proximal-point and quadratic regularization

- $B(x, \mu) \triangleq f(x)+\mu\left(-\sum_{i=1}^{n} \ln x_{i}-\sum_{i=1}^{n} \ln \left(u_{i}-x_{i}\right)\right)$
- $B_{P}(x, \mu) \triangleq f(x)+\frac{1}{2}(x-\bar{x})^{\top} Q_{P}(x-\bar{x})+\mu\left(-\sum_{i=1}^{n} \ln x_{i}-\sum_{i=1}^{n} \ln \left(u_{i}-x_{i}\right)\right)$
- $B_{Q}(x, \mu) \triangleq f(x)+\mu\left(\frac{1}{2} x^{\top} Q_{R} x-\sum_{i=1}^{n} \ln x_{i}-\sum_{i=1}^{n} \ln \left(u_{i}-x_{i}\right)\right)$

Regularization only affects to Θ matrices

$$
\begin{array}{ll}
\Theta=\quad\left(Z X^{-1}+W S^{-1}+\nabla^{2} f(x)\right)^{-1} & \text { for } B \\
\Theta=\left(Q_{P}+Z X^{-1}+W S^{-1}+\nabla^{2} f(x)\right)^{-1} & \text { for } B_{P} \\
\Theta=\left(\mu Q_{R}+Z X^{-1}+W S^{-1}+\nabla^{2} f(x)\right)^{-1} & \text { for } B_{Q}
\end{array}
$$

- μQ_{R} vanishes as we approach the solution, B_{Q} being equivalent to B.
- B_{Q} thus preferred to B_{P}.

IPM for block-angular problems

Spectral radius ρ can be estimated from Ritz values

- Ritz values: eigenvalues of a certain tridiagonal matrix T_{k} associated to CG
- Proposition (EJOR 2013). For $h=0$ (one term in preconditioner), if $r_{\text {min }}$ is smallest Ritz value then ρ estimated as

$$
1-r_{\min }
$$

$$
T_{k}=\left[\begin{array}{ccccc}
\gamma_{1} & \eta_{2} & & & \\
\eta_{2} & \gamma_{2} & \eta_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & \eta_{k-1} & \gamma_{k-1} & \eta_{k} \\
& & & \eta_{k} & \gamma_{k}
\end{array}\right]
$$

loose PCG tolerance

tight PCG tolerance

Estimating spectral radius when $h>0$

Proposition. Estimation of ρ (2014)
Let $M^{-1}=\left(\sum_{i=0}^{h}\left(D^{-1}\left(C^{\top} B^{-1} C\right)\right)^{i}\right) D^{-1}$ be the preconditioner with h terms of the power series. And let $r_{\text {min }}$ be the smallest Ritz value (easily computed).
Then the estimation of ρ is

$$
\sqrt[h+1]{1-r_{\min }}
$$

The BlockIP solver: some features

- Efficient implementation of the IPM for block-angular problems.
- For LO, QO, or CO problems.
- Problems in standard or general form.
- Uses Ng-Peyton Sparse Cholesky package (room for improvement).
- Fully written in C++, about 14000 lines of code.
- Many options: computation Ritz values, quadratic regularizations,...
- Comes with different types of matrices: General, oriented and non-oriented Network, Identity, Diagonal, [$/ 1 /],\left[\begin{array}{ll}D_{1} & D_{2}\end{array}\right]$.

Easy addition of other types of matrices.
Extension to Matrix-Free paradigm.

How to input a problem? 1. Callable library

The most efficient option

Example

```
// declare N (block constraints matrix) as a Matrix for BlockIP
MatrixBlockIP N;
// declare arc source and destination vectors
int *srcN, *dstN;
// N is created as network matrix
N.create_network_matrix(numArcs, numNodes, srcN, dstN);
// fill srcN and dstN; srcN and dstN allocated by create_network_matrix()
// declare L (linking constraints matrix) as a Matrix for BlockIP
MatrixBlockIP L;
// L is created as an identity matrix
L.create_identity_matrix(numArcs);
BlockIP bip; // declare BlockIP problem
double *cost, *qcost, *ub, *rhs;
// creation of BlockIP problem
bip.create_problem(BlockIP::QUADRATIC, cost, qcost, NULL, NULL, ub, rhs,
    numBlocks, true, &N, true, &L);
// fill cost, qcost, ub, rhs ...
```

How to input a problem? 2. Input file in BlockIP format
Efficient format: vectors and sparse matrices

Example

```
#typeobj 0=linear 1=quadratic 2=nonlinear
1
#number of blocks
2
#sameN 1=yes 0=no
1
#Matrix: first line m,n,nnz; next nnz lines i,j,a
3 57
1 1 1
1 2 1
1 3 1
2 1-1
241
3 2 -1
3 5 1
```

How to input a problem? 3. Input file in Structured MPS

MPS extension for block-angular problems developed for BlockIP

Example

```
ROWS
E Block1:Cons1
E LinkCons1
COLUMNS
Block1:Var1 obj 1 Block1:Cons1 1
...
Slack1 LinkCons1 1
```

How to input a problem? 4. SML (Grothey et al. 2009)

- AMPL extension for structured problems.
- SML extended to separable nonlinear problems for BlockIP.

Example (multicommodity transportation problem)

```
block Prod{p in PROD}:
    var Trans {ORIG, DEST} >= 0; # units to be shipped
    minimize total_cost:
        sum {i in ORIG, j in DEST} cost[p,i,j] * Trans[i,j];
    subject to Supply {i in ORIG}:
        sum {j in DEST} Trans[i,j] = supply[p,i];
    subject to Demand {j in DEST}:
        sum {i in ORIG} Trans[i,j] = demand[p,j];
end block;
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Prod[p].Trans[i,j] <= limit[i,j];
```

LP Multicommodity flow problems

Formulation

$$
\begin{aligned}
& \min \quad \sum_{i=1}^{k} c^{i^{\top}} x^{i} \\
& \text { s. to } \quad\left[\begin{array}{ccc}
N & & \\
& \ddots & \\
& & N \\
& \ldots & l \\
& l
\end{array}\right]\left[\begin{array}{c}
x^{1} \\
\vdots \\
x^{k} \\
s
\end{array}\right]=\left[\begin{array}{c}
b^{1} \\
\vdots \\
b^{k} \\
u
\end{array}\right] \\
& \\
& \\
& 0 \leq x^{i} \leq u^{i} \quad i=1, \ldots, k, \quad 0 \leq s \leq u .
\end{aligned}
$$

N is network matrix, / is identity, u arc mutual capacities, x^{i} flows per commodity, s slacks of capacity constraints:

Results for some "small" difficult instances

Problem dimensions

Instance	k	constraints	variables
tripart1	16	3294	33774
tripart2	16	13301	135941
tripart3	20	25541	329161
tripart4	35	38004	869814
gridgen1	320	329831	985191

Computational results

	BlockIP					CPLEX 12.5	
Instance	Iter	CPU	PCG		Iter	CPU	
tripart1	51	0.8	1260		19	0.3	
tripart2	68	10	4034		17	4	
tripart3	78	20	3363		19	13	
tripart4	131	268	20791		24	34	
gridgen1	199	253	4790		33	883	

The minimum congestion problem
Goal: to make feasible a nonoriented multiflow problem
Minimize $\|y\|_{\infty}, y$ is the vector of relative increments in arc capacities.

$$
\begin{array}{rll}
\min & z & \\
\text { subject to } & N x^{i^{+}}-N x^{i^{-}}=b^{i} & i, \ldots, k \\
& \sum_{i=1}^{k}\left(x_{j}^{i^{+}}+x_{j}^{i^{-}}\right)-y_{j} u_{j} \leq 0 & j=1, \ldots, n \\
& y_{j}-z \leq 0 & j=1, \ldots, n \\
x^{i^{+}}, x^{i^{-}} \geq 0 & i=1, \ldots, k \\
y_{j} \geq 0 & j=1, \ldots, n
\end{array}
$$

Dense column for variable z, matrix D of preconditioner is very dense

The minimum congestion problem: efficient formulation
Extra variables $z_{i}, i=1, \ldots, n$, but no dense column

$$
\begin{array}{rll}
\min & z_{1} & \\
\text { subject to } & N x^{i^{+}}-N x^{i^{-}}=b^{i} & i=1, \ldots, k \\
& \sum_{i=1}^{k}\left(x_{j}^{i^{+}}+x_{j}^{i^{-}}\right)-y_{j} u_{j} \leq 0 & j=1, \ldots, n \\
& y_{j}-z_{j} \leq 0 & j=1, \ldots, n \\
& z_{j}-z_{j+1}=0 & j=1, \ldots, n-1 \\
& x^{i^{+}}, x^{i^{-}} \geq 0 & i=1, \ldots, k \\
& y_{j} \geq 0 & j=1, \ldots, n
\end{array}
$$

Matrix D of the preconditioner of larger dimension but sparser

Results with efficient formulation

Problem dimensions

Instance	k	constraints	variables
M32-32	34	2449	33533
M64-64	66	5564	67962
M128-64	66	11640	155742
M128-128	130	19867	314243
M256-256	258	71891	1139467
M512-64	66	470075	634143
M512-128	130	79765	1249145

Computational results

	BlockIP					CPLEX 12.5	
Instance	Iter	CPU	PCG		Iter	CPU	
M32-32	93	0.9	289		17	1.3	
M64-64	94	2	183		17	4	
M128-64	97	7	234		19	22	
M128-128	97	15	213		20	52	
M256-256	110	161	891		22	627	
M512-64	131	95	1223		21	1071	
M512-128	131	244	2090		25	2520	

Minimum Distance Controlled Tabular Adjustment

Statistical table

- Vector $a \in \mathbb{R}^{n}$ of n cells.
- Satisfies constraints: $A a=b, l_{a} \leq a \leq u_{a}$.

Goal: to find cell perturbations $x \in \mathbb{R}^{n}$ such that

- Minimizes $\|x\|_{\ell}$ for some distance ℓ
- Satisfies $A(x+a)=b, l_{a} \leq x+a \leq u_{a} \Longleftrightarrow A x=0, I \leq x \leq u$
- Satisfies protection requirements: $\alpha_{i} \leq x_{i} \leq \beta_{i} \quad i \in \mathscr{S} \subseteq\{1, \ldots, n\}$, $0 \notin\left[\alpha_{i}, \beta_{i}\right]$.

Optimization problem

$$
\begin{array}{cl}
\min _{x} & \|x\|_{\ell} \\
\text { s. to } & A x=0 \\
& l \leq x \leq u \\
& \alpha_{i} \leq x_{i} \leq \beta_{i} \quad i \in \mathscr{S}
\end{array}
$$

Block-angular structure of 3D tables: cube/box of data

Example: Profession \times County \times Sex

A 2D table for each sex, plus a third table for totals
Males

Different problems for three distances
Linear Problem: $\nabla^{2} f(x)=0$, twice the number of variables

$$
\|x\|_{\ell_{1}}=\sum_{i=1}^{n}\left|x_{i}\right|=\sum_{i=1}^{n}\left(x_{i}^{+}+x_{i}^{-}\right)
$$

Quadratic Problem: $\nabla^{2} f(x)=2 /$

$$
\|x\|_{\ell_{2}}^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

Nonlinear Problem: $\nabla^{2} f(x) \succ 0$

$$
\|x\|_{\ell_{1}}=\sum_{i=1}^{n}\left|x_{i}\right| \approx \sum_{i=1}^{n} \phi_{\delta}\left(x_{i}\right)
$$

Pseudo-Huber function ϕ_{δ} approximates absolute value

$$
\phi_{\delta}\left(x_{i}\right)=\sqrt{\delta^{2}+x_{i}^{2}}-\delta \quad \delta \approx 0
$$

Plots of and $|x|$ and ϕ for some δ

Plots of ϕ, ϕ^{\prime} and $\phi^{\prime \prime}$ for $\delta=0.01$

Results for ℓ_{1}

Instance	Dimensions		BlockIP	CPLEX 12.5
	constraints	variables	CPU	CPU
25-25-25	1850	31875	4	1
25-25-50	3075	63125	12	2
25-50-25	3100	63750	19	2
25-50-50	4950	126250	61	10
50-25-25	3100	63750	28	1
50-25-50	4950	126250	1	7
50-50-25	4975	127500	33	9
50-50-50	7450	252500	16	41
100-100-100	29900	2010000	8	986
100-100-200	49800	4010000	25	2262
200-100-200	79800	8020000	49	8789
200-200-200	119800	16040000	144	64521
500-500-50	299950	25250000	424	19595
500-50-500	299500	25025000	227	17415

Results for ℓ_{2}

Instance	Dimensions		BlockIP	CPLEX 12.5
	constraints	variables	CPU	CPU
25-25-25	1850	16250	0.0	0.8
25-25-50	3075	31875	0.1	1.4
25-50-25	3100	32500	0.1	1.2
25-50-50	4950	63750	0.1	5.8
50-25-25	3100	32500	0.1	1.2
50-25-50	4950	63750	0.1	4.2
50-50-25	4975	65000	0.1	5.1
50-50-50	7450	127500	0.2	19
100-100-100	29900	1010000	3	874
100-100-200	49800	2010000	6	1802
200-100-200	79800	4020000	11	7319
200-200-200	119800	8040000	29	65467
500-500-50	299950	12750000	91	15437
500-50-500	299500	12525000	28	14784

Results for pseudo-Huber in small instances
Pseudo-Huber more efficient since $\nabla^{2} f \succ 0$

Instance	Dimensions		BlockIP		BlockIP ℓ_{1}	
	const.	variables	CPU	PCG	CPU	PCG
25-25-25	1850	16250	1	3285	4	16475
25-25-50	3075	31875	2	2940	12	22430
25-50-25	3100	32500	2	2525	19	34863
25-50-50	4950	63750	5	4658	61	57641
50-25-25	3100	32500	2	2404	28	53667
50-25-50	4950	63750	4	4392	1	526
50-50-25	4975	65000	4	3298	33	28669
50-50-50	7450	127500	6	1831	16	5523

- Other state-of-the-art convex solvers could not solve these instances.
- Larger instances neither could be solved with BlockIP.

Other applications under consideration

Routing in telecommunications networks

- Nonoriented multicommodity network.
- Many OD pairs
- Nonlinear Kleinrock delay function
- Already implemented: good results. Work in progress.

Transportation assignment problem in urban networks

- Similar to routing in telecommunications networks.
- Many OD pairs
- Nonlinear BPR (Bureau of Public Roads) function.
- To be tested soon.

Conclusions

- IP solver for block-angular problems.
- Shown to be very efficient for some applications.
- Many future applications to be tried.
- Soon available for research purposes from its web page.

Temporarily available from www-eio.upc.edu/~jcastro/BlockIP.html

References

Some references about the IPM and applications

- J. Castro, A. Frangioni, C. Gentile, Perspective reformulations of the CTA problem with L2 distances, Operations Research, 62 891-909, 2014.

S. Bocanegra, J. Castro, A.R.L. Oliveira, Improving an interior-point approach for large block-angular problems by hybrid preconditioners, European Journal of Operational Research, 231 263-273, 2013.

J. Castro, J. Cuesta, Improving an interior-point algorithm for multicommodity flows by quadratic regularizations, Networks, 59 117-131, 2012.

J. Castro, Recent advances in optimization techniques for statistical tabular data protection, European Journal of Operational Research, 216 257-269, 2012.

J. Castro, J. Cuesta, Quadratic regularizations in an interior-point method for primal block-angular problems, Mathematical Programming, 130 415-445, 2011.

J. Castro, J. Cuesta, Existence, uniqueness and convergence of the regularized primal-dual central path, Operations Research Letters, 38 366-371, 2010.

J. Castro. An interior-point approach for primal block-angular problems, Computational Optimization and Applications, 36 195-219, 2007.

J. Castro. A specialized interior-point algorithm for multicommodity network flows, SIAM Journal on Optimization, 10 852-877, 2000.

Thanks for your attention

