Impact of Forecast errors on Generation and Transmission Expansion Planning Workshop on Mathematical Models and Methods for Energy Optimization (Budapest)

Salvador Pineda¹ Juan M. Morales² Trine K. Boomsma¹

¹University of Copenhagen, funded by FEMs project (www.futureelmarket.dk)

²Technical University of Denmark, funded by CITIES project (www.smart-cities-centre.org)

September, 25, 2014

Energy systems

- A **power system** is a network of electrical components used to supply, transmit and use electric power
- Electricity cannot be **stored**: generation = demand
- Increase in production by renewable sources: new challenges

Source: Berkeley Lab estimates based on data from Navigant, EIA, and elsewhere

Wind power production

- Wind power production varies through time
- Wind power production is hard to predict in advance

We were wondering...

- How can we account for forecast errors within current generation and transmission capacity expansion models?
- What is the impact of these forecast errors on generation and transmission capacity expansion planning?
- What is the impact of the market design on generation and transmission capacity expansion planning?

Some assumptions

- Static expansion models (single target year)
- Focus on short-term uncertainties (scenarios)
- No inter-temporal constraints (stationary process)
- Energy-only market with marginal pricing
- Perfect competitive market
- Convex production cost functions
- Inelastic demand
- DC representation of the network

Two markets floors

Coordination between the two market floors

- Cheapest day-ahead
- Expensive balancing
- High total cost
- Reserves after energy

- More expensive day-ahead
- Cheaper balancing
- Minimum total cost
- Simultaneous reserve and energy

We have investigated

- The impact of forecast errors on GE of stochastic units by a central planner:
 - Central GEP without forecast errors
 - Central GEP with forecast errors under efficient market
 - Central GEP with forecast errors under inefficient market
- How a collusion of producers affects the GE of stochastic units:
 - Collusion GEP without forecast errors
 - Collusion GEP with forecast errors under efficient market
 - Collusion GEP with forecast errors under inefficient market
- The impact of forecast errors on G&T expansion by a central planner:
 - G&TEP without forecast errors
 - G&TEP with forecast errors under efficient market
 - G&TEP with forecast errors under inefficient market

Central GEP without forecast errors

$$\begin{array}{ll} \underset{\overline{p}^{W}, \Phi_{s}^{D}}{\text{Min}} & \sum_{s} \tau_{s} \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ \text{s.t.} & f \left(\overline{p}^{W} \right) \leqslant 0 \\ & h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0, \quad \forall s \\ & g^{D} \left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0, \quad \forall s. \end{array}$$

- \overline{p}^W capacity to be installed
- Φ_s^D dispatch decisions
- ho_s capacity factor of stochastic units

Central GEP with forecast errors under efficient market

$$\begin{split} \underset{\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}}{\min} & \sum_{s} \tau_{s} \left(\mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \sum_{r} \pi_{sr} \mathcal{C}^{B} \left(\Phi_{sr}^{B} \right) \right) + \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ \text{s.t.} & f \left(\overline{p}^{W} \right) \leqslant 0 \\ & h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0, \quad \forall s \\ & g^{D} \left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0, \quad \forall s \\ & h^{B} \left(\Phi_{sr}^{B} \right) = 0, \quad \forall s, \forall r \\ & g^{B} \left(\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}; \rho_{s}, \Delta \rho_{sr} \right) \leqslant 0, \quad \forall s, \forall r. \end{split}$$

 Φ^B_{sr} re-dispatch decisions $\Delta
ho_{sr}$ variation of capacity factor

Central GEP with forecast errors under inefficient market

$$\begin{split} \underset{\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}}{\min} & \sum_{s} \tau_{s} \left(\mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \sum_{r} \pi_{sr} \mathcal{C}^{B} \left(\Phi_{sr}^{B} \right) \right) + \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ \text{s.t.} & f \left(\overline{p}^{W} \right) \leqslant 0 \\ & h^{B} \left(\Phi_{sr}^{B} \right) = 0, \quad \forall s, \forall r \\ & g^{B} \left(\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}; \rho_{s}, \Delta \rho_{sr} \right) \leqslant 0, \quad \forall s, \forall r \\ & \Phi_{s}^{D} \in \arg \begin{cases} \underset{p}{\min} & \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) \\ \text{s.t.} & h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0 \\ & g^{D} \left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0. \end{cases} \\ \forall s. \end{split}$$

Impose cost merit-order at the day-ahead

Data of illustrative example

- Four 100-MW inflexible blocks with marginal costs 20, 21, 22, 23
- Two 100-MW flexible blocks with marginal costs 24, 25
- A constant load of 400 MW and no network
- Expansion of one hundred 5-MW units with a cost of \$430000
- Two time segments: $\rho_{s1} = 0.2$ and $\rho_{s2} = 0.8$
- Four equiprobable scenarios for forecast errors:

Generation expansion under perfect competition

	\overline{p} (MW)	\mathcal{C}^{I} (\$M)	$\overline{\mathcal{C}}^{D}$ (\$M)	$\overline{\mathcal{C}}^B$ (\$M)	$\overline{\mathcal{C}}$ (\$M)	ψ (%)
No errors	410	35.26	35.82	0.00	71.08	51.25
Efficient	360	30.96	42.35	-0.83	72.48	45.02
Inefficient	250	21.50	50.58	2.45	74.54	28.34

- Without forecast errors we get the highest capacity and wind share
- Forecast errors reduce the installed capacity and the wind share
- An efficient market designs soften the adverse effects of forecast errors

Collusion GEP without forecast errors

$$\begin{split} & \underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \tau_{s} \Pi^{D} \left(\Phi_{s}^{D}, \lambda_{s}^{D} \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ & \text{s.t.} \quad f \left(\overline{p}^{W} \right) \leqslant 0 \\ & \left(\Phi_{s}^{D}, \lambda_{s}^{D} \right) \in \arg \begin{cases} \underset{\Phi_{s}^{D}}{\operatorname{Min}} \quad \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) \\ & \text{s.t.} \quad h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0 : \lambda_{s}^{D} \\ & g^{D} \left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0 \end{cases} \forall s \end{split}$$

 Π^D revenue in the day-ahead market λ^D_s day-ahead price

Collusion GEP with forecast errors under efficient market

$$\begin{aligned}
& \underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \tau_{s} \left(\Pi^{D} \left(\Phi_{s}^{D}, \lambda_{s}^{D} \right) + \sum_{r} \pi_{sr} \Pi^{B} \left(\Phi_{sr}^{B}, \lambda_{sr}^{B} \right) \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\
& \text{s.t.} \quad f \left(\overline{p}^{W} \right) \leq 0 \\
& \left(\underset{s,D}{\operatorname{Min}} \quad \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \sum_{r} \pi_{sr} \mathcal{C}^{B} \left(\Phi_{sr}^{B} \right) \right)
\end{aligned}$$

$$\begin{pmatrix} \Phi^{D}_{s}, \lambda^{D}_{s} \\ \Phi^{B}_{sr}, \lambda^{B}_{sr} \end{pmatrix} \in \arg \begin{cases} \begin{pmatrix} \Psi^{IIIII}_{s} & C^{-}(\Psi_{s}) + \sum_{r} \pi_{sr} C^{-}(\Psi_{sr}) \\ & \\ & \\ s.t. & h^{D} \left(\Phi^{D}_{s}; l_{s} \right) = 0 : \lambda^{D}_{s} \\ & \\ & g^{D} \left(\overline{p}^{W}, \Phi^{D}_{s}; \rho_{s} \right) \leq 0 \\ & \\ & h^{B} \left(\Phi^{B}_{sr} \right) = 0 : \pi_{sr} \lambda^{B}_{sr}, \quad \forall r \\ & \\ & \\ & g^{B} \left(\overline{p}^{W}, \Phi^{D}_{s}, \Phi^{B}_{sr}; \rho_{s}, \Delta \rho_{sr} \right) \leq 0, \quad \forall r \end{cases} \end{cases} \forall s$$

 Π^B revenue in the balancing market λ^B_{sr} balancing price

Collusion GEP with forecast errors under inefficient market

$$\begin{aligned} &\underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \tau_{s} \left(\Pi^{D} \left(\Phi_{s}^{D}, \lambda_{s}^{D} \right) + \sum_{r} \pi_{sr} \Pi^{B} \left(\Phi_{sr}^{B}, \lambda_{sr}^{B} \right) \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ & \text{s.t.} \quad f \left(\overline{p}^{W} \right) \leqslant 0 \end{aligned}$$

$$\begin{split} & (\Phi^{D}_{s},\lambda^{D}_{s}) \in \arg \begin{cases} & \underset{\Phi^{D}_{s}}{\min} \quad \mathcal{C}^{D} \ (\Phi^{D}_{s}) \\ & \text{s.t.} \quad h^{D} \ (\Phi^{D}_{s};l_{s}) = 0:\lambda^{D}_{s} \\ & g^{D} \ (\overline{p}^{W},\Phi^{D}_{s};\rho_{s}) \leqslant 0 \end{cases} \forall s \\ & (\Phi^{B}_{sr},\lambda^{B}_{sr}) \in \arg \begin{cases} & \underset{\Phi^{B}_{sr}}{\min} \quad \mathcal{C}^{B} \ (\Phi^{B}_{sr}) \\ & \text{s.t.} \quad h^{B} \ (\Phi^{B}_{sr}) = 0:\lambda^{B}_{sr} \\ & g^{B} \ (\overline{p}^{W},\Phi^{D}_{s},\Phi^{B}_{sr};\rho_{s},\Delta\rho_{sr}) \leqslant 0 \end{cases} \forall sr. \end{split}$$

Collusion GEP with forecast errors under inefficient market

$$\begin{aligned} & \underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \pi_{s} \left(\Pi^{D} \left(\Phi^{D}_{s}, \widehat{\lambda}^{D}_{s} \right) + \sum_{r} \pi_{sr} \Pi^{B} \left(\Phi^{B}_{sr}, \lambda^{B}_{sr} \right) \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \\ & \text{s.t.} \quad f \left(\overline{p}^{W} \right) \leqslant 0 \end{aligned}$$

$$\begin{pmatrix} \Phi^{D}_{s}, \lambda^{D}_{s} \\ \Phi^{D}_{sr}, \lambda^{D}_{sr} \end{pmatrix} \in \arg \begin{cases} \underset{\substack{\Phi^{D}_{s}, \Phi^{B}_{sr} \\ \sigma^{B}_{sr}, \Phi^{B}_{sr} \end{pmatrix}}{\text{s.t.} & h^{B} \left(\Phi^{B}_{sr} \right) = 0 : \pi_{sr} \lambda^{B}_{sr} \\ & g^{B} \left(\overline{p}^{W}, \Phi^{D}_{s}, \Phi^{B}_{sr}; \rho_{s}, \Delta \rho_{sr} \right) \leq 0 \\ \\ \Phi^{D}_{s} \in \arg \begin{cases} \underset{\substack{\Phi^{D}_{s}}{\sigma} \in \sigma}{\text{min}} & \mathcal{C}^{D} \left(\Phi^{D}_{s} \right) \\ & \text{s.t.} & h^{D} \left(\Phi^{D}_{s}; l_{s} \right) = 0 : \hat{\lambda}^{D}_{s} \\ & g^{D} \left(\overline{p}^{W}, \Phi^{D}_{s}; \rho_{s} \right) \leq 0 \end{cases} \end{cases} \forall s$$

Generation expansion under imperfect competition

	Perfect competition			Collusion		
	\overline{p} (MW)	$\overline{\mathcal{C}}$ (\$M)	ψ (%)	\overline{p} (MW)	$\overline{\mathcal{C}}$ (\$M)	ψ (%)
No errors	410	71.08	51.25	305	71.69	38.14
Efficient	360	72.48	45.02	200	73.84	25.01
Inefficient	250	74.54	28.34	120	74.99	13.60

- Under a collusion the installed capacities decrease
- Forecast errors reduce the capacity and the wind share
- An efficient market designs soften the adverse effects of forecast errors

Generation and transmission expansion models

- Investment decisions made by a central planner
- New stochastic and conventional generation
- New transmission lines
- Day-ahead and a balancing market
- Forecast errors of load and wind production
- Efficient and inefficient market design

Generation and transmission expansion models

- 24-bus system (IEEE)
- 10 existing conventional units
- 3 flexible generating units
- Variable demand
- 4 projects of stochastic units
- 3 new flexible generating units
- 7 new transmission lines
- Renewable target of 20/30/40%

G&T expansion for 20% renewable target

		No errors	Efficient	Inefficient
	n_6	-	-	50
Wind capacity	n_8	950	1000	900
	n_{13}	-	-	-
	n_{23}	400	350	450
	n_{18}	-	-	-
Flexible Generation	n_{21}	-	80	-
	n_{22}	-	-	160
	$n_6 n_{10}$	-	-	-
	$n_{8}n_{9}$	-	-	-
	$n_{11}n_{13}$	175	175	175
Line capacity	$n_{11}n_{14}$	-	-	175
	$n_{12}n_{21}$	-	350	-
	$n_{12}n_{23}$	-	-	-
	$n_{14}n_{16}$	-	-	175
Investment cost		162.6	165.1	172.8
Salvador Pineda	Septen	nber, 25, 2014	-	

Impact of forecast errors on G&T expansion

		Renewable target			
Market	Expansion	20%	30%	40%	
Efficient	Errors	474.8(20)	527.8(30)	589.2(<mark>40</mark>)	
	No errors	475.5(19.2)	530.7(26.5)	587.7(<mark>31.5</mark>)	
Inefficient	Errors	484.2(20)	543.6(30)	<mark>607.8</mark> (40)	
	No errors	526.5(19.3)	631.7(28.7)	728.2(36.1)	

- Under an efficient market, disregarding the errors will entail a reduction of the renewable target
- Under an inefficient market, disregarding the errors will entail a significant increase of the cost

Conclusions

- We have presented a set of generation and transmission expansion models that account for the forecast errors of stochastic production
- These models can be reformulated as single-level mixed-integer linear or non-linear programming problems
- Considering production forecast errors impacts the expansion plans for the generation and transmission of power systems
- An efficient market design softens the negative effects of forecast errors and leads to cheaper expansion plans and higher penetration levels of renewable production
- The consequences of an expansion plan determined under an error-free assumption highly depend on the market design

Future research

- Model intermediate situations at the investment level between perfect competition and collusion
- Model intermediate market designs between the paradigmatic efficient and inefficient
- Model the exercise of market power by the producers when offering in the electricity market
- Apply dedicated computational methods to improve tractability of the multi-year case

Thanks for the attention!

Questions?

Website: https://sites.google.com/site/slv2pm/