Scuola universitaria professionale della Svizzera italiana

Universitä della Svizzera italiana

Istituto Dalle Molle di studi sull'intelligenza artificiale

Distributed optimization for demand-side management in *smart grids*

M. Salani^a, A. Giusti^a, D. Rivola^b, A.E. Rizzoli^a, R. Rudel^b, L.M. Gambardella^a ^a IDSIA - USI and SUPSI - Lugano, Switzerland ^b ISAAC - SUPSI - Lugano, Switzerland

CWM3EO 2014 September 25-26, Budapest, Hungary

Context: S2G Project

Pilot & Demonstration project financed by the Swiss Federal Office of Energy and the Swiss Electric Research council.

Purpose: evaluate with "on the field" experiments the feasibility and impact of demand-side load management on low voltage networks.

Figure : http://www.s2g.ch

Project partners

Project partners and main task:

- ISAAC: Project mgt, PV-System, B2G, data acquisition
- ISEA: Development of a HAC household measurements, data communication
- ISIN: Interaction panel, data gateway
- IDSIA: Control algorithms and simulations
- BFH: Grid simulation Digsilent
- Bacher: Grid measurements
- DSAS: Business Models (tariffs)
- AIM: Local distributor of Mendrisio

Motivation

Alternative control concepts for smart-grids: Centralized control by massive ICT vs. **Decentralized** algorithms exploiting **local** information.

Expected outcomes:

- Impact of load shifting on grid stability
- Potential of load shifting/household storage for own consumption
- Economic advantage of load shifting
- Determine max. PV or load on present grid infrastructure
- Compare performances of different levels of communication

Structure of the project

Participants

The town of **Mendrisio** hosts the P&D project.

Monitored neigborhood

About 10% of a local branch is monitored.

Reliable and comprehensive data acquisition

Data is collected for accurate calibration of users' and grid's simulation models.

A test site

- ▶ 1.5kWp
- EV HCD
- B2G System
- 2kW controllable load

Control algorithm

The scheduler performs load shifting optimizing.

- Cost of energy for the end user
- Network stability (flatness of the overall load)

Subject to:

- Preserved users' comfort
- Network balance constraints

Controllable and non-controllable entities:

- Non-preemptible load jobs (e.g., dishwashers)
- Energy buffers (e.g., AC or water heaters)
- B2G and EV tasks
- PV production (forecast)
- Base load (simulated)

Rolling Horizon Control

The scheduler implements a rolling horizon control scheme:

- Randomized control horizon of avg. 30 minutes
- Prediction horizon is set to 24 hours

- Optimal control is computed via MILP
- Time is discretized (15 minutes in the experiments)

Contrasting objectives

Contrasting objectives

Contrasting objectives

Multi-objective optimization addressed with a Lexicographic approach.

Lexicographic multi-objective optimization

Two contrasting objectives:

$$\min[z_c(\mathbf{e}, t), z_s(\mathbf{e}, t)] \tag{1}$$

Primary objective is energy cost:

$$z_c^* = \min z_c(\mathbf{e}, t) \tag{2}$$

Secondary objective is network load:

$$z_s^* = \min z_s(\mathbf{e}, t) \tag{3}$$

s.t.
$$z_c(\mathbf{e},t) \leq (1+\eta)z_c^*$$
 (4)

We define z'_{si} , the forecast voltage profile at each node *i*, as a proxy for z_s .

Field tests - Voltage/Power correlation

Extensive simulations with logged data in 2013.

Predictability of voltage profiles, regularity of voltage profiles in different days, drifting of voltage patterns along different seasons, correlations among voltages and powers

Effect of local load on voltage

Each kW causes a voltage drop of about 2.1V

Matteo Salani Swiss 2 Grid 15/33

Voltage forecast

Exponential smoothing after 5 days of training.

Voltage forecast

Exponential smoothing after 5 days of training.

Other forecast techniques

Exponential smoothing, despite simple, is the most effective.

A full featured HH simulation tool

Architecture of simulations

Simulation step of 10 seconds, control step of 15 minutes.

Results

Results

Results

Matteo Salani Swiss 2 Grid 24/33

Voltage comparison

Power histogram - summer

No more very high peaks.

Voltage histogram - summer

More stable voltage.

Voltage violations - summer

More stable voltage.

IEC 50160 power quality

Averaged over 10 minutes, voltage at a terminal is outside the interval 230 ± 23 V for more than 5% of the time during a week result in a **violation**.

In the simulations, no violations happen up to pv200, ev200

			s			
PV	EV	0 10	20	40	100	
pv000	ev000	0	0	0	0	0
	ev100	0	0	0	0	0
	ev200	0	0	0	0	0
	ev300	0	0	0	0	0
pv100	ev000	0	0	0	0	0
	ev100	0	0	0	0	0
	ev200	0	0	0	0	0
	ev300	0	0	0	0	0
pv200	ev000	0	0	0	0	0
	ev100	0	0	0	0	0
	ev200	0	0	0	0	0
	ev300	6	0	0	0	0
pv220	ev000	0	0	0	0	0
	ev100	0	0	0	0	0
	ev200	0	0	0	0	0
	ev300	8	0	0	0	0
pv240	ev000	4	2	0	0	0
	ev100	5	2	0	0	0
	ev200	7	1	0	0	o
	ev300	11	5	0	0	o
pv260	ev000	13	13	13	3	0
	ev100	14	13	6	0	0
	ev200	13	13	8	3	0
	ev300	14	13	13	3	0
pv280	ev000	15	15	13	11	0
	ev100	15	15	13	10	o
	ev200	15	15	15	13	0
	ev300	15	15	15	13	0
pv300	ev000	15	15	15	14	0
	ev100	15	15	15	15	5
	ev200	15	15	15	14	6
	ev300	15	15	15	15	2
pv400	ev000	15	15	15	15	15
	ev100	15	15	15	15	15
	ev200	15	15	15	15	15
	ev300	15	15	15	15	15
pv500	ev000	16	16	16	16	15
	ev100	16	16	16	16	15
	ev200	16	16	16	16	15
	ev300	16	16	16	16	15

Current trend to enable Smart Grid is pervasive ICT.

Quoting from Galli et. al (2011):

"The brute force solution of polling all the sensors can become the true bottleneck for the sheer problem of collecting all the data in a timely way" and also, "Delivering messages to Smart Grid terminals through many relays will produce a broadcast storm if protocols to support this function are not designed judiciously".

To what extent communication (i.e., synchronization among terminals) helps?

Inter-agent communication

We intend to assess the added value of sharing information among households as an alternative to voltage prediction.

We define as *Neighbourhood* a set of households that can communicate among them (via wireless or PLC).

Every time a control algorithm completes the optimization, it broadcasts the expected load to its neighbours. In average 50 times a day (about 10kB/day) way below current standards, e.g. narrow-band PLC 21.4 kbps (www.prime-alliance.org).

Benefits of communication

Conclusions and future work

Some insights:

- Massive and reliable data collection is essential
- Local information can be exploited to guide the controllers to achieve a common goal
- Decentralized approach is reliable and has a strong potential
- Cost and Network stability should be concerned as separate objectives (market does not self-regulate)
- Communication can improve results up to a limited extent
 Future work:
 - Integration of local forecasts and partial communication
 - Extend models and algorithms to manage stochastic information

References

Thank you

M. Salani, A. Giusti, G. Di Caro, A. Rizzoli, L. Gambardella Lexicographic Multi-objective Optimization for the Unit Commitment Problem and Economic Dispatch in a Microgrid. Proc. of IEEE-PES International Conference on Smart GridTechnology (ISGT), 2011.Kriett, P.O., Salani, M. Optimal control of a residential microgrid. (2012). Energy 42(1):321-330.Giusti, A. Salani, M., Di Caro, G.A. Rizzoli, A.E., Gambardella, L.M., Restricted Neighborhood Communication Improves Decentralized Demand-Side Load Management, Smart Grid, IEEE Transactions on , vol.5, no.1, pp.92,101, Jan. 2014

Deterministic model for EV Charging

symbol	par/var	description
V	par	Set of electric vehicle jobs indexed by v
Eiv	par	SOC at time r _v for EV v
Et_v	par	Target SOC at due date of EV v
r _v	par	Release date (relative time step) of EV v
d_v	par	Due date (relative time step) of EV v
F_v^t	par	Self discharge rate of EV v
$\eta_v^c \le 1$	par	Efficiency rate for charging EV v
$\eta_v^d \ge 1$	par	Inverse of efficiency rate for discharging EV v
E_v^{LB}	par	Energy lower band limit for EV v
EVB	par	Energy upper band limit for EV v
E_v^d	par	Derating limit for EV v
MP ^c _y	par	Max power that can be drawn
•		for charging EV v
mP_v^c	par	Min power at full derating
		for charging EV v
MP_{v}^{d}	par	Max power that can be released
•		discharging EV v
Pcv	var	Power drawn for charging EV v at time step t
Pd_{v}^{t}	var	Power released discharging EV v at time step t
P_{u}^{t}	var	Overall power exchange for EV v at time step t
Ev.t.	var	Energy stored in EV v at time step t
v		3,

Table : EV jobs

Deterministic model for EV Charging

$$\min \bar{z}_s = \sum_{t \in T} \underline{s}_t \cdot P^t \cdot \Delta t \tag{5}$$

s.t.
$$z_c = \sum_{t \in T} c_t \cdot P^t \cdot \Delta t$$
 (6)

$$z_c \le (1+\eta) \cdot z_c^* \tag{7}$$

$$\begin{aligned} & +(Pc_{v}^{rv} \cdot \eta_{v}^{c} \cdot \Delta t) \\ Ev_{v}^{rv} &= & -(Pd_{v}^{rv} \cdot \eta_{v}^{d} \cdot \Delta t) \\ & -(F_{v} \cdot \Delta t) + Ei_{v} \end{aligned} \qquad \forall v \in V$$
(8)

$$\begin{array}{ll}
+(Pc_{v}^{t} \cdot \eta_{v}^{c} \cdot \Delta t) & \forall v \in V, \\
Ev_{v}^{t} = & -(Pd_{v}^{t} \cdot \eta_{v}^{d} \cdot \Delta t) & \forall t \in T \mid r_{v} < t \\
-(F_{v} \cdot \Delta t) + Ev_{v}^{t-1} & \forall t \in T \mid r_{v} < t \le d_{v}
\end{array} \tag{9}$$

$$E_{v}^{LB} \leq E_{v}^{t} \leq E_{v}^{UB} \qquad \qquad \forall v \in V, \\ \forall t \in T \mid r_{v} \leq t \leq d_{v} \qquad (10)$$

$$Ev_{v}^{d_{v}} \geq Et_{v} \qquad \forall v \in V$$
(11)

$$z_{v}^{t} \geq E v_{v}^{t} - E_{v}^{d} \qquad \forall v \in V, \forall t \in T$$
(12)

$$Pc_{v}^{t} \leq \frac{z_{v}^{t}}{E_{v}^{UB} - E_{v}^{d}} \cdot mP_{v}^{c} + \left(1 - \frac{z_{v}^{t}}{E_{v}^{UB} - E_{v}^{d}}\right) \cdot MP_{v}^{c} \qquad \forall v \in V, \forall t \in T$$

$$(13)$$

$$Pd_{v}^{t} \leq MP_{v}^{d} \qquad \forall v \in V, \forall t \in T$$
 (14)

$$P_{v}^{t} = Pc_{v}^{t} - Pd_{v}^{t} \qquad \forall v \in V, \forall t \in T$$
(15)

$$P_{v}^{t} = 0 \qquad \qquad \begin{array}{c} \forall v \in V, \\ \forall t \in T \mid t < r_{v}, t > d_{v} \end{array}$$
(16)

$$P^{t} = \sum_{v \in V} P_{v}^{t} \qquad \forall t \in T$$
(17)

Matteo Salani	Swiss 2 Grid	36/33
---------------	--------------	-------