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Goal and motivation

Robustifying Infrastructure

survivability, cost robustness
structural robustness
pre-disaster investment

Different modeling and solution approaches

(worst-case-) robust optimization
fault-tolerant-feasibility models
multistage stochastic models
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Networks with uncertain data:
Robust Optimization
Setting

A network problem with uncertain cost, supply/demand or capacity
data: uncertainty set ∆

Solution approaches

Worst-case (∀δ ∈ ∆) or best-case (∃δ ∈ ∆) setting are interesting

∀: Reformulate and solve robust counterpart

∃: Reformulate as Generalized LP(/IP/...)

... or separate robust/generalized (split-)cuts directly

Caveat 1: Reformulation often loses combinatorial structure

Caveat 2: Shortest path with 2 cost scenarios is (weakly)
NP-hard

Notions of Robustness Cost, supply, capacity 3 / 23
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Structural Robustness – Fault-tolerant Feasibility

Deal with failure of resources, have certain cost structure
Requires: up-monotonicity of feasible sets

Structural Robust Counterpart

Given nominal instance P = (A,S ,w) (A: ground set, S : feasible
solutions, w : cost function) and failure scenarios Ω = {F1, . . . ,Fk}
with Fi ⊆ A find X ∗ attaining

min
X⊆A:∀i :X\Fi∈S

w(X ).

Idea: Accept (potentially more expensive) solutions that remain
feasible in every scenario

Notions of Robustness Structural Robustness 4 / 23



Structural Robustness: Survey

Examples for P = (A, S ,w)

Shortest Path (SP), Bipartite Matching (BM), Spanning Tree (ST),
Matroid Linear Optimization (MLO), Sparsest k-Spanner (SkS)

Scenario encodings

explicit Ω = {F1, . . . ,Fk}: ERCC(P, k)

implicit:

uniform cardinality constrained Ω = {F ⊆ A : |F | ≤ k}:
IRCC(P, k)
uniform cardinality constrained in subset U ⊆ A (‘unguarded’
elements) Ω = {F ⊆ U : |F | ≤ k}: SIRCC(P,U, k)

for details: see Adjiashvili et al, MathProg A 2014
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Structural Robustness: Some results

ERCC(P,k) hardness

Assuming NP 6⊂ DT IME(nlog log n) there is no polynomial c log k
approximation for ERCC(P) for any c < 1. (P=SP,BM,ST,MLO,SkS)

ERCC(MLO,k) approximability

There is a polynomial O(log rk(M) + log k) approximatation algorithm
for ERCC(MLO,k) (M a matroid).

ERCC(SP,k,|Fj | ≤ 2) approximability

There is a a constant-factor approximation for ERCC(SP,k,|Fj | ≤ 2),
and for |Fj | = 1 the algorithm is exact.

(Adjiashvili et al, MathProg A 2014)
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Pre-Disaster Investment – Stochastic Models
2-stage stochastic problem

minEξ|x [f (ξ)]

Cx ≤ d

x = (xe)e∈E ∈ {0, 1}|E |, ξ = (ξe)e∈E ∈ {0, 1}|E |

where computing f (ξ) means solving an optimization problem in
scenario realization ξ after decisions x (ξe indep. rand. var.).

Example

Consider a graph G = (V ,E ), edge lengths (le)e∈E , and edge
survivability probabilities (pe)e∈E . Scenarios correspond to sets of
surviving edges after a disaster. fSP(s, t,Gξ) is the shortest path
length between two designated nodes s, t ∈ V . Decisions are whether
to strengthen edge e, i.e. improve resilience, to pe + δe .
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Solution approaches

sampling scenarios/simulation

sample average/sample-path: may yield statistically testable
bounds

partition or cover scenario space and do exact reformulation

Example (cont.): Computing expected path length

min
∑
ξ∈2E

∏
e∈ξ

pe
∏
e /∈ξ

(1− pe)

 fSP(s, t,Gξ = (V , ξ))

Instead of enumerating 2|E | scenarios the scenarios can be partitioned
into sets with same f -value whose probabilities can be computed.
(Prestwich et al., ’13)
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A 2-stage stochastic optimization problem is called aggregable if

f is order-reversing (or order-preserving) wrt. taking subsets of
scenarios,

ξ1 ⊆ ξ2 ⇒ f (ξ1) ≥ f (ξ2) (1)

for all ξ1, ξ2 ∈ 2E ,

the probabilities of events e ∈ E are independent.

We denote the range of f by C(f ) = {α : α = f (ξ), ξ ∈ 2E}, and the
minimal survivable scenarios for each critical value by
M(f ) = {Mα(f ) : α ∈ C(f )} with
Mα(f ) = {ξ ∈ 2E : f (ξ) = α,∀ξ′ ⊂ ξ : f (ξ′) > f (ξ)}.
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Examples

‘friendly’: where computing f (ξ) is polynomial time

(multi-terminal-) shortest path

number of edge-disjoint paths/k-connectivity

longest path in acyclic networks

maximal flow

maximal/max weighted matching

LP (with vanishing constraints)

but also

clique number

Pre-Disaster Investment Aggregable Problems 10 / 23



Each Mα(f ) induces a monotone Boolean function Φ≤α on the
scenarios whose minimal true points are the members of Mα(f ) by

Φ≤α (ξ) = 1 if and only if f (ξ) ≤ α.

Encoding Φ≤α

as DNF: using explicit list Mα(f )

as IP of covering type: p>x ≥ 1(∀p ∈Mα(f ))

as binary decision diagram (BDD), built from explicit or implicit
Mα(f )

using the fact that it is isomorphic to the BDD of the dual
monotone Boolean function ¬(Φ≤α (¬ξ))

Pre-Disaster Investment EncodingMα(f ) 11 / 23
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(Reduced Ordered) Binary Decision Diagrams
(Bryant, 1986)

Pre-Disaster Investment BDDs 12 / 23

Layered (rooted) digraph

arcs only from Li to Lj s.t. j > i

each node has at most two outgoing arcs

true-arcs are plain, false-arcs are dotted

each path from the root to > defines a
feasible solution (or a ‘nice’ family)

each path from the root to some node
defines a partial feasible solution

each node is root of a unique sub-BDD
encoding all completions

Layer Li has width ωi = |Li |
BDD width ω = maxi ωi

L1

L2

L3

L4

L5

>



Boolean function in CNF: A covering problem

Aggregable Problems: Tools BDDs for Covering Problems 13 / 23

Let A ∈ {0, 1}m×n.

Ax ≥ 1
x ∈ {0, 1}n (SC)

TOP-DOWN BDD COMPILATION:
Let u, v ∈ L4 with paths (1, 0, 0) and
(0, 0, 1)

Example: x1+ x3+ x6 ≥ 1
x4+ x6 ≥ 1

x2+ x4+ x5 ≥ 1
x1+ x2+ x3+ ≥ 1

x3+ x4+ x5 ≥ 1
x ∈ {0, 1}n
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Ax ≥ 1
x ∈ {0, 1}n (SC)

TOP-DOWN BDD COMPILATION:
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(0, 0, 1)
Completions at u and v determined by
same matrix minor
⇒ u and v can be merged!

Example: x1+ x3+ x6 ≥ 1
x4+ x6 ≥ 1

x2+ x4+ x5 ≥ 1
x1+ x2+ x3+ ≥ 1

x3+ x4+ x5 ≥ 1
x ∈ {0, 1}n



Boolean function in CNF: A covering problem
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Let A ∈ {0, 1}m×n.

Ax ≥ 1
x ∈ {0, 1}n (SC)

TOP-DOWN BDD COMPILATION:
Let u, v ∈ L4 with paths (1, 0, 0) and
(0, 0, 1)

Example: x1+ x3+ x6 ≥ 1
x4+ x6 ≥ 1

x2+ x4+ x5 ≥ 1
x1+ x2+ x3+ ≥ 1

x3+ x4+ x5 ≥ 1
x ∈ {0, 1}n

(having DNF of Φ≤α gives us CNF of its dual for free; resulting BDD
only needs arc label flipping)



BDDs encoding the members of an
Independence System/Circuit System

Top-down compilation rule for BDDs encoding the members of I.

Key ingredient: an oracle to decide if two minors of the circuit system
of I are equivalent.

Examples: stable sets, packing, matching, covering, knapsack.

If an efficient oracle is available, the procedure yields an output-linear
time algorithm for BDD compilation (e.g.: stable sets, packing,
covering, or graphic matroid, but not 0/1-knapsack)

The size of BDDs depends heavily on the ordering of the variables. Is
it possible to bound the maximum width of a BDD with respect to
some ordering?

Aggregable Problems: Tools BDDs for Independence Systems 14 / 23
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Graphic matroid

Enumerating all spanning forests of a graph

Independence system: spanning forests of G

Circuit system: simple cycles of G

Circuit system minor equivalence check

Needs to check whether two minors of G have the same simple cycles

Need to check graph 2-isomorphism, but only for two minors of G
under edge deletion/contraction of a common initial segment of
the edge order: linear time!

Choose basis for minors (necessarily same for both minors)
compute basis representation
compare coefficients (feature of binary matroids)

Aggregable Problems: Tools Circuit System Minor Equivalence 15 / 23



Bandwidth and BDD width

Let C be a clutter and let A be the matrix whose rows are the
incidence vectors of the members of C.

The bandwidth b(A) of A is the largest distance between any two ones
in a row.

For the BDD B associated to C (in the variable ordering given by the
constraint matrix), it holds that ω(B) ≤ 2b(A)−1.

Example:

A =



1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1


b(A) = 4

ω(B) ≤ 23

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 16 / 23



Bandwidth and BDD width

Let C be a clutter and let A be the matrix whose rows are the
incidence vectors of the members of C.

The bandwidth b(A) of A is the largest distance between any two ones
in a row.

For the BDD B associated to C (in the variable ordering given by the
constraint matrix), it holds that ω(B) ≤ 2b(A)−1.

Example:

A =



1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1


b(A) = 4

ω(B) ≤ 23

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 16 / 23



Bandwidth and BDD width

Let C be a clutter and let A be the matrix whose rows are the
incidence vectors of the members of C.

The bandwidth b(A) of A is the largest distance between any two ones
in a row.

For the BDD B associated to C (in the variable ordering given by the
constraint matrix), it holds that ω(B) ≤ 2b(A)−1.

Example:

A =



1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1


b(A) = 4

ω(B) ≤ 23

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 16 / 23



Bandwidth and BDD width

Let C be a clutter and let A be the matrix whose rows are the
incidence vectors of the members of C.

The bandwidth b(A) of A is the largest distance between any two ones
in a row.

For the BDD B associated to C (in the variable ordering given by the
constraint matrix), it holds that ω(B) ≤ 2b(A)−1.

Example:

A =



1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1


b(A) = 4

ω(B) ≤ 23

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 16 / 23

Lj



Bandwidth and BDD width

Let C be a clutter and let A be the matrix whose rows are the
incidence vectors of the members of C.

The bandwidth b(A) of A is the largest distance between any two ones
in a row.

For the BDD B associated to C (in the variable ordering given by the
constraint matrix), it holds that ω(B) ≤ 2b(A)−1.

Example:

A =



1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1


b(A) = 4

ω(B) ≤ 23

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 16 / 23

Lj



Proof:

Consider a node u ∈ Lj in layer j of the BDD encoding the
transversals of the clutter. Since the clutter is nonempty every
row of A has at least one nonzero.

If the i-th row of A has all nonzeros before j it is deleted in M(u)
(otherwise the empty row in the minor would make it infeasible,
so u would not be a node in the BDD.)

By the bandwidth limit, if Aih 6= 0 for h ≥ j , among the entries
preceding h only those in {Ai ,h−(k−1), . . . ,Ai ,h−1} can be
nonzero.

Since there are at most 2k−1 ways of differently assigning values
to the k − 1 variables directly preceding xj , we can construct at
most 2k−1 different deletion/contraction minors at layer Lj ,
limiting the BDD-width to 2k−1.

Aggregable Problems: Tools Circuit Bandwidth Bound for BDDs 17 / 23



Computing Prob[Φ≤α = 1]: BDD to LP

Recursive definition of intermediate probabilities for ‘scenarios sharing
suffix’ at node in layer e∗. Survival probabilities pe for each event.

e1

e2

e3

e4

e5

p1

p2 p3

p4 p5

p6 p7

p8

>

leaf >:

Prob[Φ(ξ) = 1] = 1

Pre-Disaster Investment Computing Prob[Φ≤
α = 1]: BDD to LP 18 / 23
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e1

e2

e3

e4

e5

p1

p2 p3

p4 p5

p6 p7
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Recursive definition of intermediate probabilities for ‘scenarios sharing
suffix’ at node in layer e∗. Survival probabilities pe for each event.

e1

e2

e3

e4

e5

p1

p2 p3

p4 p5

p6 p7

p8

>

layer e5 skipped below p7:

Prob[Φ(ξ) = 1]

=(1− pe4)

·

(
5∏

i=5

(pei + (1− pei ))

)
·

· pchild

=pe4pchild
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Computing Prob[Φ≤α = 1]: BDD to LP

Recursive definition of intermediate probabilities for ‘scenarios sharing
suffix’ at node in layer e∗. Survival probabilities pe for each event.

e1

e2

e3

e4

e5

p1

p2 p3

p4 p5

p6 p7

p8

>

otherwise, e.g., p1:

Prob[Φ(ξ) = 1]

=pe∗pTrue-child + (1− pe∗)pFalse-child

Pre-Disaster Investment Computing Prob[Φ≤
α = 1]: BDD to LP 18 / 23



Computing Prob[Φ≤α = 1]: BDD to LP

Recursive definition of intermediate probabilities for ‘scenarios sharing
suffix’ at node in layer e∗. Survival probabilities pe for each event.

Linear equations with O(ω(BDD) · |E |) auxilliary variables:

leaf:
Prob[Φ(ξ) = 1] = 1

1-child node (wlog: True-edge):

Prob[Φ(ξ) = 1] = pe∗pchild

layers 2..(l − 1) skipped (wlog: True-edge):

Prob[Φ(ξ) = 1] = pe∗pchild

otherwise:

Prob[Φ(ξ) = 1] = pe∗pTrue-child + (1− pe∗)pFalse-child

Pre-Disaster Investment Computing Prob[Φ≤
α = 1]: BDD to LP 18 / 23



Consider binary decisions xe such that

pe(x) =

{
pe if xe = 0,

pe + ∆e if xe = 1

(where ∆e ∈ [−pe , 1− pe ]).

Then we can define for each arc (u, v) ∈ A with label ε(u) = e of the
BDD

p(u,v)(x) =

{
pe(x) if (u, v) ∈ A, ε(u) = e, l((u, v)) = 1

(1− pe(x)) if (u, v) ∈ A, ε(u) = e, l((u, v)) = 0,

and write the computations as linear constraints coupled to the
binaries xe by big-M (M = 1).

Yields a MIP of size 4(# BDD nodes)× ((# BDD nodes) + |E |).

Pre-Disaster Investment Computing Prob[Φ≤
α = 1|x]: BDD to MIP 19 / 23



Pre-disaster investment decisions
for Istanbul road network from
Peeta et al. ’10 (30 decision
variables)
(total construction time < 1s)

O-D-pair cutoff dist #bundles MIP size # BDDs MIP size
(in Prestwich ’13) (using BDD bundles)

14–20 31 39 4 237× 89
14–7 31 29 6 333× 113
12–18 28 56 4 237× 89
9–7 19 26 4 164× 71
4–8 35 73 6 421× 135∑

223 14174× 6221 24 1466× 454

Pre-Disaster Investment Computations 20 / 23



No cutoff: BDD construction < 1s

O-D-pair #bundles MIP size # BDDs MIP size
(in Prestwich ’13) (using BDD bundles)

14–20 378 14 2609× 682
14–7 712 30 13097× 3304
12–18 233 8 997× 1026
9–7 266 8 1137× 314
4–8 305 12 2301× 605∑

1894 123682× 56851 72 20137× 5064
MIP solve 36s

Pre-Disaster Investment Computations 21 / 23



Generic application framework
... for 2-stage stochastic problems with scenario-monotone objective

Construct BDDs B≤α for all α ∈ [L,U]

Can be achieved by

enumerating α-solutions, or

enumerating α-cutsets, or

circuit system oracle and equivalence check

BDD size may be bounded due to structural properties, e.g.,
bandwidth, treewidth, ...

Build MIP

linear in BDD size

has network-flow flavor

can accomodate an IP constraining the decisions

Pre-Disaster Investment Application framework 22 / 23
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Applications

Expected shortest path with failing edges

... was the running example (interdiction problems also fit)

Expected assignment value with failing edges

crew/task assignments, assignment costs, probabilities of assignment
failing (e.g., to complete task before deadline), decisions to invest in
training crew members

Expected network flow with edge failures

network flow problem, edge capacities, probabilities of discrete edge
capacity changes, decisions to influence edge capacities

Expected maximum clique size with edge failures

maximum clique problem, probabilities of edges failing, decisions to
suppress or strengthen edges
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