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Dynamic portfolio selection: multi-period investment

multi-period investment

Constantly Re-balanced Portfolio (CRP)

a portfolio vector b = (b(1), . . . b(d))
b(j) gives the proportion of the investor’s capital invested in stock j
b is the constant portfolio vector for each trading day
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Evolution

for the first day S0 denotes the initial capital

S1 = S0

d∑
j=1

b(j)x
(j)
1 = S0 〈b , x1〉

for the second day, S1 new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .

for the nth day:

Sn = Sn−1 〈b , xn〉 = S0

n∏
i=1

〈b , xi 〉 = S0e
nWn(b)

with the average growth rate

Wn(b) =
1

n

n∑
i=1

ln 〈b , xi 〉 .
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log-optimum portfolio

Special market process: X1,X2, . . . is independent and identically
distributed (i.i.d.)

log-optimum portfolio b∗

E{ln 〈b∗ , X1〉} = max
b

E{ln 〈b , X1〉}

Best Constantly Re-balanced Portfolio (BCRP)
universal portfolio

for dependent market process we can do even better
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Chapter 15 of D. G. Luenberger, Investment Science. Oxford
University Press, 1998.

”Volatility is NOT the same as Risk. Volatility is Opportunity”
”Conclusions about multiperiod investment situations are not mere
variations of single-period conclusions – rather they often reverse
those earlier conclusions. This makes the subject exiting, both
intellectually and in practice. Once the subtleties of multiperiod
investment are understood, the reward in terms of enhanced
investment performance can be substantial.”
”Fortunately the concepts and the methods of analysis for
multiperiod situation build on those of earlier chapters. Internal
rate of return, present value, the comparison principle, portfolio
design, and lattice and tree valuation all have natural extensions to
general situations. But conclusions such as volatility is ”bad” or
diversification is ”good” are no longer universal truths. The story
is much more interesting.”
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Dynamic portfolio selection: general case

xi = (x
(1)
i , . . . x

(d)
i ) the return vector on day i

b = b1 is the portfolio vector for the first day
initial capital S0

S1 = S0 · 〈b1 , x1〉
for the second day, S1 new initial capital, the portfolio vector
b2 = b(x1)

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .
nth day a portfolio strategy bn = b(x1, . . . , xn−1) = b(xn−11 )

Sn = S0

n∏
i=1

〈
b(xi−11 ) , xi

〉
= S0e

nWn(B)

with the average growth rate

Wn(B) =
1

n

n∑
i=1

ln
〈

b(xi−11 ) , xi
〉
.
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log-optimum portfolio

X1,X2, . . . drawn from the vector valued stationary and ergodic
process

log-optimum portfolio B∗ = {b∗(·)}

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }
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Optimality

Algoet and Cover (1988): If S∗n = Sn(B∗) denotes the capital after
day n achieved by a log-optimum portfolio strategy B∗, then for
any portfolio strategy B with capital Sn = Sn(B) and for any
stationary ergodic process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn −

1

n
lnS∗n

)
≤ 0 almost surely

and

lim
n→∞

1

n
lnS∗n = W ∗ almost surely,

where

W ∗ = E

{
max
b(·)

E{ln
〈
b(X−1−∞) , X0

〉
| X−1−∞}

}
is the maximal growth rate of any portfolio.
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Proof

1

n
lnSn =

1

n

n∑
i=1

ln
〈

b(Xi−1
1 ) , Xi

〉

=
1

n

n∑
i=1

E{ln
〈

b(Xi−1
1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑
i=1

(
ln
〈

b(Xi−1
1 ) , Xi

〉
− E{ln

〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)

and

1

n
lnS∗n =

1

n

n∑
i=1

E{ln
〈

b∗(Xi−1
1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑
i=1

(
ln
〈

b∗(Xi−1
1 ) , Xi

〉
− E{ln

〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
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Universally consistent portfolio

These limit relations give rise to the following definition:

Definition

A portfolio strategy B is called universally consistent with
respect to a class C of stationary and ergodic processes
{Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
lnSn(B) = W ∗ almost surely.
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Empirical portfolio selection

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

fixed integer k > 0

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } ≈ E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}

and

b∗(Xn−1
1 ) ≈ bk(Xn−1

n−k) = argmax
b(·)

E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}
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because of stationarity

bk(xk1) = argmax
b(·)

E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k = xk1}

= argmax
b(·)

E{ln
〈

b(xk1) , Xn

〉
| Xn−1

n−k = xk1}

= argmax
b(·)

E{ln
〈

b(xk1) , Xk+1

〉
| Xk

1 = xk1}

= argmax
b

E{ln 〈b , Xk+1〉 | Xk
1 = xk1},

which is the maximization of the regression function

mb(xk1) = E{ln 〈b , Xk+1〉 | Xk
1 = xk1}
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Regression function

Y real valued
X observation vector

Regression function

m(x) = E{Y | X = x}

i.i.d. data: Dn = {(X1,Y1), . . . , (Xn,Yn)}
Regression function estimate

mn(x) = mn(x ,Dn)

Kernel regression estimate with window kernel
Bandwidth r > 0

mn(x) =

∑n
i=1 Yi I{‖x−Xi‖≤r}∑n
i=1 I{‖x−Xi‖≤r}

L. Györfi, M. Kohler, A. Krzyzak, H. Walk (2002) A
Distribution-Free Theory of Nonparametric Regression,
Springer-Verlag, New York.
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Correspondence

X ∼ Xk
1

Y ∼ ln 〈b , Xk+1〉
m(x) = E{Y | X = x} ∼ mb(xk1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk1}
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Kernel-based portfolio selection

choose the radius rk,` > 0 such that for any fixed k ,

lim
`→∞

rk,` = 0.

for n > k + 1, define the expert b(k,`) by

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉 ,

where
J
(k,`)
n =

{
k < i < n : ‖xi−1i−k − xn−1n−k‖ ≤ rk,`

}
if the sum is non-void, and b0 = (1/d , . . . , 1/d) otherwise.
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Combining elementary portfolios

for fixed k , ` = 1, 2, . . .,
B(k,`) = {b(k,`)(·)}, are called elementary portfolios

How to choose k , `

small k or large rk,`: large bias

large k and small rk,`: few matching, large variance

Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.
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Aggregation

combine the elementary portfolio strategies B(k,`) = {b(k,`)
n }

let {qk,`} be a probability distribution on the set of all pairs (k , `)
such that for all k , `, qk,` > 0.
put

wn,k,` = qk,`Sn−1(B(k,`))

the aggregated portfolio b:

bn(xn−11 ) =

∑
k,` wn,k,`b

(k,`)
n (xn−11 )∑

k,` wn,k,`
.
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wn,k,` = qk,`Sn−1(B(k,`))

the aggregated portfolio b:

bn(xn−11 ) =

∑
k,` wn,k,`b

(k,`)
n (xn−11 )∑

k,` wn,k,`
.
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Theorem

The kernel-based portfolio scheme is universally consistent with
respect to the class of all ergodic processes such that
E{| lnX (j)|} <∞, for j = 1, 2, . . . , d .

L. Györfi, G. Lugosi, F. Udina (2006) ”Nonparametric kernel-based
sequential investment strategies”, Mathematical Finance, 16, pp.
337-357
www.szit.bme.hu/ g̃yorfi/kernel.pdf
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Proof

Sn(B) =
n∏

i=1

〈
bi (xi−11 ) , xi

〉

=
n∏

i=1

∑
k,` wi ,k,`

〈
b
(k,`)
i (xi−11 ) , xi

〉
∑

k,` wi ,k,`

=
n∏

i=1

∑
k,` qk,`Si−1(B(k,`))

〈
b
(k,`)
i (xi−11 ) , xi

〉
∑

k,` qk,`Si−1(B(k,`))

=
n∏

i=1

∑
k,` qk,`Si (B(k,`))∑

k,` qk,`Si−1(B(k,`))

=
∑
k,`

qk,`Sn(B(k,`)),
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Equivalent form of aggregation

The strategy B then arises from weighing the elementary portfolio

strategies B(k,`) = {b(k,`)
n } such that the investor’s capital becomes

Sn(B) =
∑
k,`

qk,`Sn(B(k,`)).
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We have to prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
lnSn(B) ≥W ∗ a.s.

W.l.o.g. we may assume S0 = 1, so that

Wn(B) =
1

n
lnSn(B)

=
1

n
ln

∑
k,`

qk,`Sn(B(k,`))


≥ 1

n
ln

(
sup
k,`

qk,`Sn(B(k,`))

)
=

1

n
sup
k,`

(
ln qk,` + ln Sn(B(k,`))

)
= sup

k,`

(
Wn(B(k,`)) +

ln qk,`
n

)
.
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Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,`

(
Wn(B(k,`)) +

ln qk,`
n

)

≥ sup
k,`

lim inf
n→∞

(
Wn(B(k,`)) +

ln qk,`
n

)
= sup

k,`
lim inf
n→∞

Wn(B(k,`))

= sup
k,`

εk,`

Because of lim`→∞ rk,` = 0, we have that

sup
k,`

εk,` = lim
k→∞

lim
l→∞

εk,` = W ∗.
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Semi-log-optimal (mean-variance) portfolio

empirical log-optimal:

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2 empirical

semi-log-optimal:

b̃(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

h(〈b , xi 〉) = argmax
b
{〈b , m〉−〈b , Cb〉}

Connection to the Markowitz theory

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf

Györfi Empirical portfolio selections



Semi-log-optimal (mean-variance) portfolio

empirical log-optimal:

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2

empirical
semi-log-optimal:

b̃(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

h(〈b , xi 〉) = argmax
b
{〈b , m〉−〈b , Cb〉}

Connection to the Markowitz theory

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf

Györfi Empirical portfolio selections



Semi-log-optimal (mean-variance) portfolio

empirical log-optimal:

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2 empirical

semi-log-optimal:

b̃(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

h(〈b , xi 〉) = argmax
b
{〈b , m〉−〈b , Cb〉}

Connection to the Markowitz theory

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf

Györfi Empirical portfolio selections



Semi-log-optimal (mean-variance) portfolio

empirical log-optimal:

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2 empirical

semi-log-optimal:

b̃(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

h(〈b , xi 〉) = argmax
b
{〈b , m〉−〈b , Cb〉}

Connection to the Markowitz theory

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf

Györfi Empirical portfolio selections



Semi-log-optimal (mean-variance) portfolio

empirical log-optimal:

b(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2 empirical

semi-log-optimal:

b̃(k,`)(xn−11 ) = argmax
b

∑
i∈J(k,`)n

h(〈b , xi 〉) = argmax
b
{〈b , m〉−〈b , Cb〉}

Connection to the Markowitz theory

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf

Györfi Empirical portfolio selections



Conditions of the model:

Assume that

the assets are arbitrarily divisible,

the assets are available in unbounded quantities at the current
price at any given trading period,

there are no transaction costs,

the behavior of the market is not affected by the actions of
the investor using the strategy under investigation.
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NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark
data set from NYSE:

The first data set consists of daily data of 36 stocks with
length 24 years (1962–1985)

The second data set contains 19 stocks and has length 45
years (1962–2006)

Our experiment is on the second data set
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Experiments on average annual yields (AAY) for kernel
based experts

Kernel based semi-log-optimal portfolio selection with

finite array of size K × L such that K = 5 and L = 10. Choose the
uniform distribution {qk,`} = 1/(KL) over the experts in use.
k = 1, . . . , 5 and l = 1, . . . , 10

r2k,l = 0.0002 · d · k + 0.00002 · d · k · `,

AAY of kernel based semi-log-optimal portfolio is 31%
MORRIS had the best AAY, 20%
the BCRP had average AAY 21%
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The average annual yields of the of the kernel based
experts.

k 1 2 3 4 5
`

1 31% 30% 24% 21% 26%

2 34% 31% 27% 25% 22%

3 35% 29% 26% 24% 23%

4 35% 30% 30% 32% 27%

5 34% 29% 33% 24% 24%

6 35% 29% 28% 24% 27%

7 33% 29% 32% 23% 23%

8 34% 33% 30% 21% 24%

9 37% 33% 28% 19% 21%

10 34% 29% 26% 20% 24%
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Experiments on average annual yields for nearest neighbor
based experts

We performed some experiments using nearest neighbor strategy.
take a finite array of size K × L such that K = 5 and L = 10.
Choose the uniform distribution {qk,`} = 1/(KL) over the experts
in use.
Experts are indexed by k = 1 . . . 5 in columns and
` = 50, 100, . . . , 500 in rows, where ` is the number of nearest
neighbors.
The average annual yield of nearest neighbor portfolio is 35%
Comparing the tables, one can conclude that the nearest neighbor
strategy is more robust.
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The average annual yields of the nearest neighbor based
experts.

k 1 2 3 4 5
`

50 31% 33% 28% 24% 35%

100 33% 32% 25% 29% 28%

150 38% 33% 26% 32% 27%

200 38% 28% 32% 32% 24%

250 37% 31% 37% 28% 26%

300 41% 35% 35% 30% 29%

350 39% 36% 31% 34% 32%

400 39% 35% 33% 32% 35%

450 39% 34% 34% 35% 37%

500 42% 36% 33% 38% 35%
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