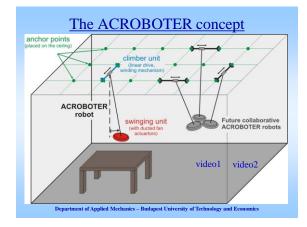
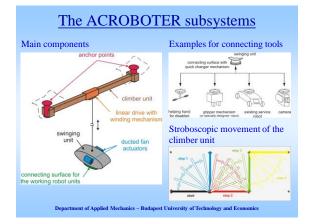

	badságfokok, otok a mennyezeten
:	Stépán Gábor
Műsza	ki Mechanikai Tanszék
Budapesti Műszak	ki és Gazdaságtudományi Egyetem
Suspended ceiling with anchor plates	Swinging unit
Climbing unit	Winding mechanism
Suspending cable	Orienting cables
Cable connector	Ducted fans
Swinging unit	Winches Winches


Contents


- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions

		The consortium
1	BME	Budapest University of Technology and Economics (HU)
2	LU	Lund University (S)
3	FIPK	Fraunhofer IPK (D)
4	DUTH	Democritus University of Thrace (EL)
5	ROBO	Robosoft SA (F)
6	UREAD	University of Reading (UK)
7	ROBOTNIK	Robotnik Automation SLL (E)
	Aca Departmen	demic partners Industrial partners Industrial partners Industrial partners Industrial partners Industrial partners

Application scenarios

Climber

unit

Swinging

actuator

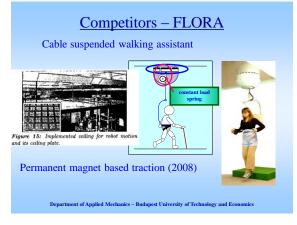
- Cleaning
- Tidying a (seminar) room
- Assistance to young/elderly people
- Movement rehabilitation
- Pick and place
- · Haptic interface
- · Tourist guide
- Move cameras in auditoriums
- Decoration/lighting/entertainmentGreen house robot
- Robot in Collaborative Working Environments
 Department of Applied Mechanics Budapest University of Technology and Economics

Department of Applied Mechanics - Budapest University of Technology and Economics

Department of Applied Mechanics - Budapest University of Technology and Economics

ACROI	5011		mpen		
	Robotic toys	Robotic vacuums	Humanoids	Flexibot	Acroboter
Has real market potential for everyday applications	1	1	×	1	√ depends
Special installation is needed	×	×	×	1	✓ minor
Can entertain people	1	×	1	×	1
Can help the disabled		1	1	1	1
Can co-operate with people			1	1	1
Can exercise patient	\sim				1
Can carry small objects	7 4	~	1		1
Has weight/payload ratio near above 1:1	Fill	ROBOT s the Gap			✓ almost
Can reach above 2 metres		Ca,	cr 7	1	1
Can move in 3D space incl. the whole cubic volume of a room		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{}$		1

Department of Applied Mechanics - Budapest University of Technology and Economics


ACROBOTER competitors (cntn'd)

	Robotic toys	Robotic vacuums	Humanoids	Flexibot	Acroboter
The workspace should not be prepared before operation		10		1	1
Provides an open architecture platform for service robots	\sim	IIIs DB	OTER		1
Works continuously without battery recharge (no battery)		ine (ap ?	1	1
Can move fast in a room		×			✓ no
Can avoid any obstacles in a room					1

Department of Applied Mechanics - Budapest University of Technology and Economics

ACROBOTER competitors

Technical data	
Description	Goal ('06) ATR('08) FR['10]
Horizontal speed	5 [m/s] (0.5 - 1.0) [0.5 - 1.0]
Vertical speed	10 [m/s] (2 - 4) [2 - 4]
Horizontal acceleration	9.81 [m/s ²] (1) [1]
Vertical acceleration	9.81 [m/s ²] (9.81) [9]
Accuracy (position / path)	± 3 [mm] (10 / 50) [10 / 50]
Own weight of the CU	35 [kg] (35) [35]
Own weight of the SU	5 [kg] (7) [7.7]
Load capability	5 [kg] (5) [5]
Cost	15000 EUR + 100 EUR/m2 of the covered area 5 [kg] (-) [reduce after substantial design refinement]

Competitors - SPIDERBOT

It walks on ceiling by shooting retractable suction cups (Ben Gurion University, 2009)

Department of Applied Mechanics - Budapest University of Technology and Economics

Competitors

Tethered aerial robot for rescue tasks

Philip J. McKerrow, Danny Ratner, The design of a tethered aerial robot, in *Proceedings of the IEEE International Conference on Robotics and Automation*, Roma, Italy, 10-14 April 2007

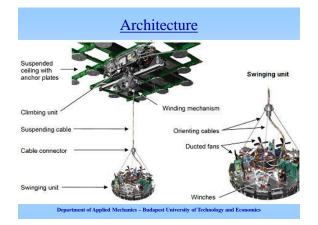
Department of Applied Mechanics - Budapest University of Technology and Economics

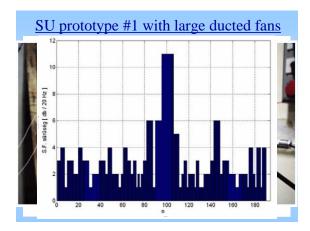
<u>Contents</u>

- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions

Kézfogás és 7 DoF

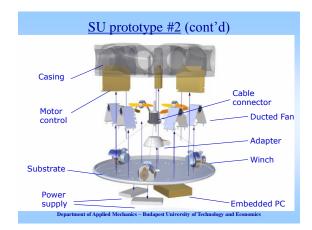
Under-actuated fingers

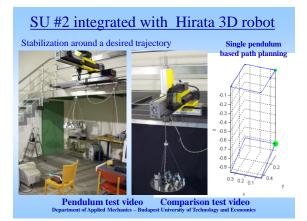

Highly Underactuated Self-Adaptive 10-DOF Robotic Hand (plastic prototype)


Department of Applied Mechanics - Budapest University of Technology and Economi

Contents

- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions

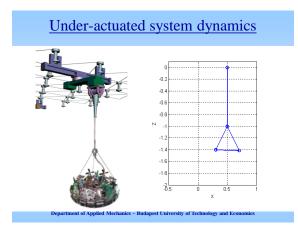


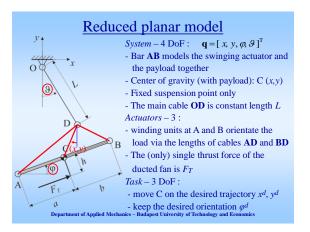


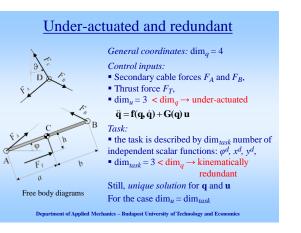
- 6 small sized and identical ducted fans (counts 3 actuators)
- blades optimized for thrust and noise

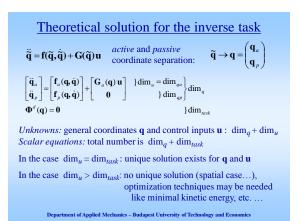
Department of Applied Mechanics - Budapest University of Technology and Economics

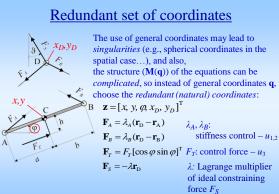
SU #2 positioning with ducted fans

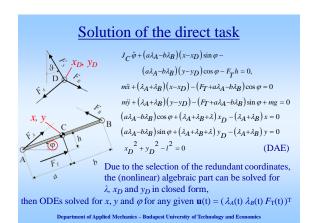



 Rectangle (side view)
 Rectangle (top view)
 Nutation


 Rectangle (side view)
 Department of Applied Mechanics - Budapest University of Technology and Economics


Contents


- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions



Contents

- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions

Department of Applied Mechanics - Budapest University of Technology and Economics

Application of computed torque method

First, the control inputs λ_A , λ_B and F_T are calculated based on the desired trajectory given by the scalar functions: x^d , y^d , φ^d . This can be solved in closed form, again, in 2 steps:

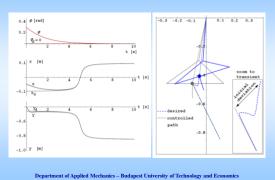
 $x_D^d = x_D(x^d, y^d, \varphi^d, \ddot{x}^d, \ddot{y}^d, \ddot{\varphi}^d); \quad y_D^d = y_D(x^d, y^d, \varphi^d, \ddot{x}^d, \ddot{y}^d, \ddot{\varphi}^d);$

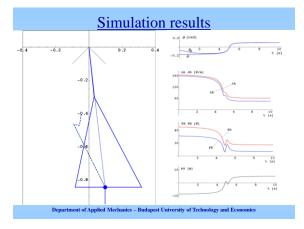
Then the control inputs $\mathbf{u} = [\lambda_A \ \lambda_B \ F_T]^T$ come from

 $\mathbf{A}\mathbf{u} + \mathbf{b} = \mathbf{0}; \quad \mathbf{A} = \mathbf{A}(x^d, y^d, \varphi^d, x_D^d, y_D^d)$ $\mathbf{b} = [\ddot{\varphi}^d \quad \ddot{x}^d \quad \ddot{y}^d - g]^{\mathrm{T}}$

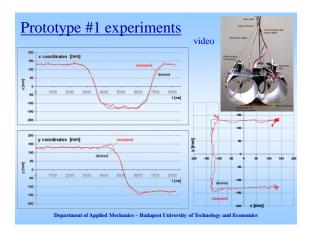
Additionally, a closed loop linear controller is applied with the feedback for the active general coordinates q_a :

$$\mathbf{q}_{a} = \begin{bmatrix} x & y & \varphi \end{bmatrix} \qquad \mathbf{u}_{err} = \mathbf{K}_{P}(\mathbf{q}_{a}^{d} - \mathbf{q}_{a}) + \mathbf{K}_{D}(\dot{\mathbf{q}}_{a}^{d} - \dot{\mathbf{q}}_{a})$$
$$\mathbf{q}_{a}^{d} = \begin{bmatrix} x^{d} & y^{d} & \varphi^{d} \end{bmatrix} \qquad \mathbf{u}_{control} = \mathbf{u} + \mathbf{u}_{arc}$$


Department of Applied Mechanics - Budapest University of Technology and Economics


Contents

- Motivation
- Degrees of Freedom (DoF)
- Architecture
- Dynamics modeling, task and control inputs
- Computed torque control concept
- Simulation results
- Prototype experiment
- Conclusions


Department of Applied Mechanics - Budapest University of Technology and Economics

	Contents
-	Motivation
-	Architecture
-	Dynamics modeling, task and control inputs
-	Computed torque control concept
-	Simulation results
-	Prototype experiment
_	Conclusions

<u>Conclusion</u> – Don't give up

- the appropriate choice of coordinates can simplify the structure of the equations of motion and can avoid singularities
- redundant number of coordinates may increase the size of the mathematical model but can simplify its solution
- the otherwise undesirable swinging of the manipulator can be utilized to achieve fast trajectory following
- Thanks to Kovács L, Tóth A, Magyar B, Zelei A, Bencsik L, Jurák M & Project Partners: • Budapest University of Technology and Economics
 - Lund University Fraunhofer IPK
 - Democritus University of Thrace University of Reading
 • Robosoft SA Robotnik Automation SLL
 Department of Applied Mechanics Budapest University of Technology and Economics

Conclusion #2 – never give up

