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Intro
°

J. von Neumann: "The Mathematician” (1947)

"Ha egy matematikai diszciplina messzire tavolodik tapasztalati
forrdsatdl, az silyos veszélyeket rejt magaban. A forrasatdl
eltavolodott folyd jelentéktelen dgak sokasdgava kiiloniil el és a
diszciplina részletek és bonyodalmak szervezetlen tomegévé vilik.”
(in The Works of the Mind (1947))

D. Szdasz: John von Neumann, the Mathematician,
THE MATHEMATICAL INTELLIGENCER, 33, No 2 (2011), 42-51
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(no mass flow)

oT(x,t) 1
——1 2 ="V [kVT(x,t
28 29 [ T, )
¢ - specific heat/unit volume (= 1)
rk = k(T) - thermal conductivity
For a wide class of models: #(T) = const.\/T
(insulating materials, or gas of weakly/rarely interacting particles)

However: de Roeck-IP Téth: (in progress)

const.

h(T) = W

Some surveys:

1. Bonetto-Lebowitz-Rey-Bellet in Math. Phys 2000, Imp. Coll.
2. Dhar in Adv. Phys, 2008, 1-78.
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Recent wave:

@ Ruelle, CMP, 1996 - Dolgopyat, Inv. Math, 2004: Linear
response theory vs. differentiability of SRB states

e Eckmann-Young, CMP, 2006 (also Lin-Young, 2010)
non-equilibrium steady states under phenomenological
assumptions
(Krdmli-Simanyi-Sz., JSP, 1987: RWwIS, temperature profile
by postulating local equilibrium)

o Gaspard-Gilbert, PhRL, 2008—: model of localized hard
disks (balls) - a two step approach:

(1) @ derive a mesoscopic master equ.
from the microscopic kinetic equ. of the Hamiltonian model
@ in the rare (but strong) interaction limit
@ it is a Markov jump process
© derive the macroscopic heat equ.
from the mesoscopic master equ.



GG model
°

No mass transport (Coquard et al., J. Non-Crystalline Solids, 2013:
Modelling of conductive heat transfer
though nano-structured porous silica materials)
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GG model
.

Parameter choice of Gaspard-Gilbert,’08.

box size: 1; periodic b. c.'s along y-axis
chain length = N;

radius of fixed scatterers (shaded circles)= pr
radius of moving disks (empty circles) = pp,
condition of confinement: pr + pp, > 1/2

condition of conductivity:
Pm > Perit = \/(Pf + pm)2 - (1/2)2
@ small parameter ¢ = py, — perit > 0

Gaspard-Gilbert's trick:
@ Keep pr + pm =: p fixed
o If pm = pcrit, then we have N non-interacting billiards.
Moreover, their phase spaces only depend on p!



GG model
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Liouville equation

Ernst-Dorfman, '89: The kinetic equ. for the N-particle density

PN(Ql; Vi,..., 4N, VN, t) is
N
Oepn =Y (—vi0q, + Kuanj + Cijs1) Py
j=1

@ the first two terms on the RHS describe the billiard dynamics
of each disk within its cell (denote wall collision rate by a1 <)

@ the third one: the interaction of neighboring disks provides
the energy transfer (denote binary collision rate by v, )



GG model
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Scale separation

Gaspard-Gilbert '08. '09: Scale separation at
B \, 0, i. e. Vwall.a(N Vwall crit > 0) > Vbine — 0
© they derive a master equation for the density
PN(El,...,EN;t) (EJ:VJ21§_/§N)
© HDL: from the master equation they obtain the
coefficient of heat conductivity: k = const. /T (?7, but
Sasada, ms in progress)

2011, Cuernavaca: Derivation of diffusion /superdiffusion for
mechanical models. Henryk Larralde: Why?
2013, B. Fernandez: True understanding

2011, S. Olla: GG's derivation of HDL uses an incorrect symmetry
argument
2013, M. Sasada: correction, based on Green-Kubo (still heuristic)



GG model

Keller-Liverani, CMP, 2009: rare interaction limit.
CML, i. e. interval maps coupled by collisions. Result:
Uniqueness of SRB and exponential space-time corr. decay.

Dolgopyat-Liverani, CMP, 2011: weak interaction limit.
Mesoscopic equ. is a system of interacting stochastic differential
equ.’s.

Dolgopyat-Néndori (in progress): Heat equ. from deterministic
dynamics BUT with stochastic bry conditions corresponding to
different temperatures

Li Yau-LS Young (in progress): stochastic dynamics in slab w.
different bry temperatures. Task: definition of local temperature!?
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Dynamical approach for step 1

By Hirata-Saussol-Vaienti, CMP, 1999 (also Collet-Eckmann,
Springer, 2006; Chazottes-Collet, EThDS, 2013): If

@ a dynamical system (M, T, ) is mixing in a controlled way
(e. g. a-mixing)
@ and A. is a sequence of nice subsets (to avoid e. g.
neighborhoods of periodic points) with lim._,o u(A:) =0
then the successive entrance times of the dynamics into A
form a Poisson process on the time scale of u(A;)™!.

For simplicity let N = 2 with free boundary conditions along x-axis.
The model is isomorphic to a 4D semi-dispersing billiard.

It is K-mixing, but no mixing rate is known. (Balint-Téth, '08 is
for dispersing billiards, only, and, moreover, it is hypothetical).



Step 1
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Conjecture for 2-disk chain, with IP Toéth

N = 2, free boundary along x-axis. Dynamics: (& = pm — perit)
(M: = {q1, vi; G2, va|dist(q1, G2) > 2pm, v + v5 = 1}), 5%, pic).
Denote by 0 < 710 < 7. < ... successive binary collision times of
the two disks. Then, as ¢ — 0
® Ei(Vpinet), Eox(Vbint) converges to a jump Markov process
on the state space £y + E» = 1 where Ej(t) = 3v2(t);j = 1,2
@ the transition kernel k(E;"|E;) is calculated by verifying
Boltzmann's 'microscopic chaos’ property (cf. scattering cross
section)



Step 1
°

Conjecture for 2-disk chain, with IP Toéth

N = 2, free boundary along x-axis. Dynamics: (& = pm — perit)
(M: = {q1, vi; G2, va|dist(q1, G2) > 2pm, v + v5 = 1}), 5%, pic).
Denote by 0 < 710 < 7. < ... successive binary collision times of
the two disks. Then, as ¢ — 0
® Ei(Vpinet), Eox(Vbint) converges to a jump Markov process
on the state space £y + E» = 1 where Ej(t) = 3v2(t);j = 1,2
@ the transition kernel k(E;"|E;) is calculated by verifying
Boltzmann's 'microscopic chaos’ property (cf. scattering cross
section)

Note: vpin e ~ const.e3.



Envisioned proof

@ since binary collisions are rare, most of the time the two disks
evolve independently

@ between two binary collisions - with an overwhelming
probability - there is averaging in each of the in-cell, 2D
billiard dynamics

o for these typically long time intervals it is natural to apply
Chernov-Dolgopyat averaging

o for that purpose

e one checks that for an incoming proper family of stable pairs,
so is the outgoing family 777

e one applies martingale approximation for jump processes (4 la
Ethier-Kurtz)
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Paradigm: in-cell dynamics is billiard in cpct

constant negative curvature

P Balint-P Nandori-D. Sz.-T. Tasnady-IP Téth; in progress
Geodesics in Poincaré model of hyperbolic geometry




Hyperbolic "octagonal tori”

OcToton — A Hyterforlc TORUS
0D BY 4LEODESILC
Glit clpclec il mo BRY)

Phase space: dim M = 7. Scatterers 16 boundaries, + 1 "cylinder”
Goal: Mimic the geometry of GG model.



Warm-up result

P Bélint-P Nandori-D. Sz.-T. Tasnady-IP Téth, 2013

For a reasonable set of 0 < p., < pn, the billiard model is
ergodic and K-mixing. Tools:

@ (un)stable invariant manifolds of the billiard in the
octagon with rectangular geodesic edges are (un)stable
invariant manifolds of the non-compact model reflected
through the edges of the octagon

@ Chernov-Sinai, 1987 type local ergodicity theorem in the form
of Liverani-Wojtkowski, 1995

@ Kramli-Simanyi-Sz., 1989: method for semi-dispersing billiards



Step 1
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Second fundamental form of the superficies

Skew cylinder: superficies set (i. e. generator in Euclidean
geometry): A = {(x,y)|d(x.y) = 2pm}

Notation:

n = collision unit normal pointing to the right

t = collision unit tangent (n rotated with angle 7/2)
Local orthogonal "basis™

v () ) ) e

Eigenvalues: 0,tanh pp,, coth pn,



Step 1

Dimension reduction: Billiard coupled to a piston

Collision rule: v =v—, vt =v_, v =v, .

(ax,qy) € Q,
qge€[—e L—¢
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Transition kernel

, tanf /1 —min{EL, E[}
27l1QI 1 EJE T B —1 (E+E>D

KELIE) ~ =
thus for the rate A(EL) = fo (e|EL)de one has e 2A(E,) =

tan 3 l—EL ifEL<1/2.
tafgf V2E — 1+ \/127'5 (5 — arcsin (3 — E%)ﬂ if £, >1/2.




Step2
]

Step 2: A (mesoscopic) stochastic model of energies

Grigo-Khanin-Sz. Nonlinearity, 2012.

State space: x = (x1,...,xn) € R_’X

Generator £ of the continuous time Markov jump process X(t)
(given on RY) acting on bounded functions A : RY — R is

N—1
LAGK) = 5™ A, xi41) / P(xi, xi41: da) [A(Tiax) — A(X)]
i=1

where P(xj, xj4+1; da) is a probability measure on [0, 1].
The maps T; ., modelling energy exchange between the
neighboring sites / and i + 1, are defined by

Tia(xi) = axi + Xit1)

Tia(xi+1) = (1 — a)(xi + xit1)



Remarks

@ Total energy is invariant, i. e.

N g
Se,N = {XERQ" ZNXi :e}
i=1

is invariant wrt dynamics;

@ Standing assumptions:
@ for any E, E’, the kernel P(E, E’, d«)
@ is symmetric wrt 1/2 ;
@ is never equal to (o + 61) (i. e. {E{", B} # {E1, B2})
© plus an appropriate condition for A.
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Mesoscopic generator in the GG model, case d =3

=]

/\(El, E2) = /\s(El + E2) /\r(E]_ + E2

(factorization property!) where

2 3+ BV(1-p)

Ns(s) = /s A, —
and M
P(x1,x0;da) = P yda) = P(5; d
(x1,%2; dav) (X1 o a) = P(B; da)
with 8 = leﬁ)@ (simple dependence!), where
an(l—a)

P(B;da) 3 1N\ Gaa—p)
do 253+BV(1-B)




Limiting heat equ. in GG model

In the limit, as N - oo and { = i/N, t = N2 7. the empirical
process

should converge to a process with density T(x, t) solving

OT(());t) = const.V {\/ T(x,t)VT(x, t)}



Main result for GG

Theorem (G-Kh-Sz, 12)

If Ns(s) is replaced by any non-negative continuous function, which
is bounded away from zero, then, for any N and e,
@ Ford > 2,
@ The product measure pu(dx) = v(dxy) - - - v(dxy) with
v(dx)) = T(% — 1) is the unique non-degenerate reversible
product measure for X(t).
@ On every S, y there exists a unique stationary distribution
Te N- This measure is obtained by conditioning p(dx).

@ For d > 3, the spectrum (L) of the generator L acting on
L2 satisfies

™

o(L) C (—oo,—c sin [NHH u {0}

for some constant C, which may depend on the choice of As.




Sasada’s gap bd, invited talk at ICMP12

Assume that the rate function A factorizes and satisfies

A(a, b) > N*(a+ b)™ for some A* > 0 and m > 0. (cf. porous
medium equ.)

Denote the spectral gap for the N-chain by ~(™) (e, N) wrt
reversible measure @/ I'(g) conditioned to S.y (g = ¢ — 1 from
before).

Theorem (Sasada: arXiv:1305.4066)

There exists a positive constant C
depending only on N*, m and g such that Ve > 0 and N > 2

Mg, N) > Ce™—.

Cf. Kac' model for heat exchange and Boltzmann equation
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