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(BME Matematika Intézet, Sztochasztika Tsz.)

Alkalmazott Matematikai Nap

2013 november 22



Intro GG model Step 1 Step2

J. von Neumann: ”The Mathematician” (1947)

”Ha egy matematikai diszcipĺına messzire távolodik tapasztalati
forrásától, az súlyos veszélyeket rejt magában. A forrásától
eltávolodott folyó jelentéktelen ágak sokaságává különül el és a
diszcipĺına részletek és bonyodalmak szervezetlen tömegévé válik.”
(in The Works of the Mind (1947))

D. Szász: John von Neumann, the Mathematician,
THE MATHEMATICAL INTELLIGENCER, 33, No 2 (2011), 42-51
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Heat Equation (no mass flow)

∂T (x , t)

∂t
=

1

c
O [κOT (x , t)]

c - specific heat/unit volume (= 1)
κ = κ(T ) - thermal conductivity

For a wide class of models: κ(T ) = const.
√

T
(insulating materials, or gas of weakly/rarely interacting particles)

However: de Roeck-IP Tóth: (in progress)

κ(T ) =
const.

T 3/2

Oscillating interest since late 60’s. Some surveys:

1. Bonetto-Lebowitz-Rey-Bellet in Math. Phys 2000, Imp. Coll.
2. Dhar in Adv. Phys, 2008, 1-78.
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Recent wave:

Ruelle, CMP, 1996 - Dolgopyat, Inv. Math, 2004: Linear
response theory vs. differentiability of SRB states

Eckmann-Young, CMP, 2006 (also Lin-Young, 2010)
non-equilibrium steady states under phenomenological
assumptions
(Krámli-Simányi-Sz., JSP, 1987: RWwIS, temperature profile
by postulating local equilibrium)

Gaspard-Gilbert, PhRL, 2008–: model of localized hard
disks (balls) - a two step approach:

1 derive a mesoscopic master equ.
from the microscopic kinetic equ. of the Hamiltonian model
in the rare (but strong) interaction limit
it is a Markov jump process

2 derive the macroscopic heat equ.
from the mesoscopic master equ.
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No mass transport (Coquard et al., J. Non-Crystalline Solids, 2013:
Modelling of conductive heat transfer
though nano-structured porous silica materials)

Figure : Periodic scatterers (shaded disks), confined disks (white circles)
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Parameter choice of Gaspard-Gilbert,’08.

box size: 1; periodic b. c.’s along y -axis

chain length = N;

radius of fixed scatterers (shaded circles)= ρf

radius of moving disks (empty circles) = ρm

condition of confinement: ρf + ρm > 1/2

condition of conductivity:
ρm > ρcrit =

√
(ρf + ρm)2 − (1/2)2

small parameter ε = ρm − ρcrit > 0

Gaspard-Gilbert’s trick:

Keep ρf + ρm =: ρ fixed

If ρm = ρcrit , then we have N non-interacting billiards.
Moreover, their phase spaces only depend on ρ!
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Liouville equation

Ernst-Dorfman, ’89: The kinetic equ. for the N-particle density
pN(q1, v1, . . . , qN , vN ; t) is

∂tpN =
N∑
j=1

(
−vj∂qj + Kwall ,j + Cj ,j+1

)
pN

the first two terms on the RHS describe the billiard dynamics
of each disk within its cell (denote wall collision rate by νwall,ε)

the third one: the interaction of neighboring disks provides
the energy transfer (denote binary collision rate by νbin,ε)
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Scale separation

Gaspard-Gilbert ’08. ’09: Scale separation at
ε↘ 0, i. e. νwall,ε(∼ νwall ,crit > 0)� νbin,ε → 0

1 they derive a master equation for the density
PN(E1, . . . ,EN ; t) (Ej = v2

j : 1 ≤ j ≤ N)

2 HDL: from the master equation they obtain the
coefficient of heat conductivity: κ = const.

√
T (??, but

Sasada, ms in progress)

2011, Cuernavaca: Derivation of diffusion/superdiffusion for
mechanical models. Henryk Larralde: Why?
2013, B. Fernandez: True understanding

2011, S. Olla: GG’s derivation of HDL uses an incorrect symmetry
argument
2013, M. Sasada: correction, based on Green-Kubo (still heuristic)
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Challenge: Rigorous theory for GG

Keller-Liverani, CMP, 2009: rare interaction limit.
CML, i. e. interval maps coupled by collisions. Result:
Uniqueness of SRB and exponential space-time corr. decay.

Dolgopyat-Liverani, CMP, 2011: weak interaction limit.
Mesoscopic equ. is a system of interacting stochastic differential
equ.’s.

Dolgopyat-Nándori (in progress): Heat equ. from deterministic
dynamics BUT with stochastic bry conditions corresponding to
different temperatures

Li Yau-LS Young (in progress): stochastic dynamics in slab w.
different bry temperatures. Task: definition of local temperature!?
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Dynamical approach for step 1

By Hirata-Saussol-Vaienti, CMP, 1999 (also Collet-Eckmann,
Springer, 2006; Chazottes-Collet, EThDS, 2013): If

a dynamical system (M,T , µ) is mixing in a controlled way
(e. g. α-mixing)

and Aε is a sequence of nice subsets (to avoid e. g.
neighborhoods of periodic points) with limε→0 µ(Aε) = 0

then the successive entrance times of the dynamics into Aε
form a Poisson process on the time scale of µ(Aε)

−1.

For simplicity let N = 2 with free boundary conditions along x-axis.
The model is isomorphic to a 4D semi-dispersing billiard.
It is K-mixing, but no mixing rate is known. (Bálint-Tóth, ’08 is
for dispersing billiards, only, and, moreover, it is hypothetical).
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Conjecture for 2-disk chain, with IP Tóth

N = 2, free boundary along x-axis. Dynamics: (ε = ρm − ρcrit)
(Mε = {q1, v1; q2, v2|dist(q1, q2) ≥ 2ρm, v

2
1 + v2

2 = 1}), SR, µε).
Denote by 0 < τ1,ε < τ2,ε < . . . successive binary collision times of
the two disks. Then, as ε→ 0

E1(νbin,εt),E2(νbin,εt) converges to a jump Markov process
on the state space E1 + E2 = 1 where Ej(t) = 1

2v2
j (t); j = 1, 2

the transition kernel k(E+
1 |E

−
1 ) is calculated by verifying

Boltzmann’s ’microscopic chaos’ property (cf. scattering cross
section)

Note: νbin,ε ∼ const.ε3.
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Envisioned proof

since binary collisions are rare, most of the time the two disks
evolve independently

between two binary collisions - with an overwhelming
probability - there is averaging in each of the in-cell, 2D
billiard dynamics

for these typically long time intervals it is natural to apply
Chernov-Dolgopyat averaging

for that purpose

one checks that for an incoming proper family of stable pairs,
so is the outgoing family ???
one applies martingale approximation for jump processes (á la
Ethier-Kurtz)
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Paradigm: in-cell dynamics is billiard in cpct
constant negative curvature

P Bálint-P Nándori-D. Sz.-T. Tasnády-IP Tóth; in progress
Geodesics in Poincaré model of hyperbolic geometry
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Hyperbolic ”octagonal tori”

Phase space: dim M = 7. Scatterers 16 boundaries, + 1 ”cylinder”
Goal: Mimic the geometry of GG model.
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Warm-up result

P Bálint-P Nándori-D. Sz.-T. Tasnády-IP Tóth, 2013

For a reasonable set of 0 < ρcr < ρm the billiard model is
ergodic and K-mixing. Tools:

(un)stable invariant manifolds of the billiard in the
octagon with rectangular geodesic edges are (un)stable
invariant manifolds of the non-compact model reflected
through the edges of the octagon

Chernov-Sinai, 1987 type local ergodicity theorem in the form
of Liverani-Wojtkowski, 1995

Krámli-Simányi-Sz., 1989: method for semi-dispersing billiards
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Second fundamental form of the superficies

Skew cylinder: superficies set (i. e. generator in Euclidean
geometry): A = {(x , y)|d(x , y) = 2ρm}
Notation:
n = collision unit normal pointing to the right
t = collision unit tangent (n rotated with angle π/2)
Local orthogonal ”basis”:

N =

(
−n
n

)
T1 =

(
n
n

)
T2 =

(
t
t

)
T3 =

(
t
−t

)
Eigenvalues: 0, tanh ρm, coth ρm
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Dimension reduction: Billiard coupled to a piston

Collision rule: v+
x = v−, v+ = v−x , v

+
y = v−y .

(qx , qy ) ∈ Q,

q ∈ [−ε, L− ε]
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Transition kernel

k(E ′L|EL) ∼ ε2 tanβ

2πL|Q|

√
1−min{EL,E ′L}√

1− E ′L
√

EL + E ′L − 1
1{EL+E ′

L>1}

thus for the rate Λ(EL) =
∫ 1
0 k(e|EL)de one has ε−2Λ(EL) =

=


tanβ
L|Q|
√

1− EL if EL < 1/2,
tanβ
L|Q|

[√
2EL − 1 +

√
1−EL
2

(
π
2 − arcsin (3− 2

EL
)
)]

if EL ≥ 1/2.
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Step 2: A (mesoscopic) stochastic model of energies

Grigo-Khanin-Sz. Nonlinearity, 2012.
State space: x = (x1, . . . , xN) ∈ RN

+

Generator L of the continuous time Markov jump process X (t)
(given on RN

+) acting on bounded functions A : RN
+ → R is

LA(x) =
N−1∑
i=1

Λ(xi , xi+1)

∫
P(xi , xi+1; dα) [A(Ti ,αx)− A(x)]

where P(xi , xi+1; dα) is a probability measure on [0, 1].
The maps Ti ,α, modelling energy exchange between the
neighboring sites i and i + 1, are defined by

Ti ,α(xi ) = α(xi + xi+1)

Ti ,α(xi+1) = (1− α)(xi + xi+1)
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Remarks

Total energy is invariant, i. e.

Sε,N =
{

x ∈ RN
+|

N∑
i=1

1

N
xi = ε

}
is invariant wrt dynamics;

Standing assumptions:
1 for any E ,E ′, the kernel P(E ,E ′, dα)

1 is symmetric wrt 1/2 ;
2 is never equal to 1

2
(δ0 + δ1) (i. e. {E+

1 ,E
+
2 } 6= {E1,E2})

2 plus an appropriate condition for Λ.
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Mesoscopic generator in the GG model, case d = 3

Λ(E1,E2) = Λs(E1 + E2) Λr (
E1

E1 + E2
)

(factorization property!) where

Λs(s) =
√

s Λr (β) =
2π

6

1
2 + β ∨ (1− β)√

β ∨ (1− β)

and
P(x1, x2; dα) = P(

x1
x1 + x2

; dα) = P(β; dα)

with β = x1
x1+x2

(simple dependence!), where

P(β; dα)

dα
=

3

2

1 ∧
√

α∧(1−α)
β∧(1−β)

1
2 + β ∨ (1− β)

.
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Limiting heat equ. in GG model

In the limit, as N →∞ and ξ = i/N, t = N2 τ , the empirical
process

N∑
i=1

1

N
δXi (t)

should converge to a process with density T (x , t) solving

∂T (x , t)

∂t
= const.O

[√
T (x , t)OT (x , t)

]
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Main result for GG

Theorem (G-Kh-Sz, 12)

If Λs(s) is replaced by any non-negative continuous function, which
is bounded away from zero, then, for any N and ε,

1 For d ≥ 2,
1 The product measure µ(dx) = ν(dx1) · · · ν(dxN) with
ν(dx1) = Γ( d

2 − 1) is the unique non-degenerate reversible
product measure for X(t).

2 On every Sε,N there exists a unique stationary distribution
πε,N . This measure is obtained by conditioning µ(dx).

2 For d ≥ 3, the spectrum σ(L) of the generator L acting on
L2
πε,N

satisfies

σ(L) ⊂
(
−∞,−C sin2

[ π

N + 2

]]
∪ {0}

for some constant C, which may depend on the choice of Λs .
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Sasada’s gap bd, invited talk at ICMP12

Assume that the rate function Λ factorizes and satisfies
Λ(a, b) ≥ Λ∗(a + b)m for some Λ∗ > 0 and m ≥ 0. (cf. porous
medium equ.)
Denote the spectral gap for the N-chain by γ(m)(ε,N) wrt
reversible measure

⊗N
1 Γ(g) conditioned to Sε,N (g = d

2 − 1 from
before).

Theorem (Sasada: arXiv:1305.4066)

There exists a positive constant C
depending only on Λ∗, m and g such that ∀ε > 0 and N ≥ 2

γ(m)(ε,N) ≥ Cεm
1

N2
.

Cf. Kac’ model for heat exchange and Boltzmann equation
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THANKS
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