Intro	GG model	Step 1	Step2

Hõegyenlet newtoni mechanikából?

Szász Domokos (BME Matematika Intézet, Sztochasztika Tsz.)

Alkalmazott Matematikai Nap 2013 november 22

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

•000	00000	00000000	
J. von Neuma	nn: "The Mathei	matician" (1947)	

"Ha egy matematikai diszciplína messzire távolodik tapasztalati forrásától, az súlyos veszélyeket rejt magában. A forrásától eltávolodott folyó jelentéktelen ágak sokaságává különül el és a diszciplína részletek és bonyodalmak szervezetlen tömegévé válik." (in The Works of the Mind (1947))

D. Szász: John von Neumann, the Mathematician, THE MATHEMATICAL INTELLIGENCER, 33, No 2 (2011), 42-51

Intro	GG model	Step 1	Step2
0000			
Contents			

- Intro
- ② Gaspard-Gilbert model and two-step strategy
- Approach to Step 1
- **9** Step2: Mesoscopic model and gap bound of Grigo-Khanin-Sz.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Intro	GG model	Step 1	Step2
0000			

Heat Equation (no mass flow)

$$\frac{\partial T(x,t)}{\partial t} = \frac{1}{c} \nabla \left[\kappa \nabla T(x,t) \right]$$

c - specific heat/unit volume (= 1) $\kappa = \kappa(T)$ - thermal conductivity

For a wide class of models: $\kappa(T) = \text{const.}\sqrt{T}$ (insulating materials, or gas of weakly/rarely interacting particles) However: de Roeck-IP Tóth: (in progress)

$$\kappa(T) = \frac{\text{const.}}{T^{3/2}}$$

Oscillating interest since late 60's. Some surveys:

Bonetto-Lebowitz-Rey-Bellet in Math. Phys 2000, Imp. Coll.
 Dhar in Adv. Phys, 2008, 1-78.

Intro	GG model	Step 1	Step2
0000			

Recent wave:

•

- Ruelle, CMP, 1996 Dolgopyat, Inv. Math, 2004: Linear response theory vs. differentiability of SRB states
- Eckmann-Young, CMP, 2006 (also Lin-Young, 2010) non-equilibrium steady states under phenomenological assumptions (Krámli-Simányi-Sz., JSP, 1987: RWwIS, temperature profile by postulating local equilibrium)
- Gaspard-Gilbert, PhRL, 2008–: model of localized hard disks (balls) a two step approach:
 - derive a mesoscopic master equ. from the microscopic kinetic equ. of the Hamiltonian model
 - in the rare (but strong) interaction limit
 - it is a Markov jump process
 - derive the macroscopic heat equ. from the mesoscopic master equ.

ntro	GG model	Step 1	Step2
	00000		

No mass transport (Coquard et al., J. Non-Crystalline Solids, 2013: Modelling of conductive heat transfer though nano-structured porous silica materials)

Intro	GG model	Step 1	Step2
	0000		

Parameter choice of Gaspard-Gilbert,'08.

- box size: 1; periodic b. c.'s along y-axis
- chain length = N;
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of **conductivity**:

$$ho_m >
ho_{crit} = \sqrt{(
ho_f +
ho_m)^2 - (1/2)^2}$$

• small parameter $\varepsilon = \rho_m - \rho_{crit} > 0$

Gaspard-Gilbert's trick:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- If ρ_m = ρ_{crit}, then we have N non-interacting billiards. Moreover, their phase spaces only depend on ρ!

Intro	GG model	Step 1	Step2
0000	○○●○○	00000000	
Liouville equa	tion		

Ernst-Dorfman, '89: The kinetic equ. for the *N*-particle density $p_N(q_1, v_1, \ldots, q_N, v_N; t)$ is

$$\partial_t p_N = \sum_{j=1}^N \left(-v_j \partial_{q_j} + K_{wall,j} + C_{j,j+1} \right) p_N$$

 the first two terms on the RHS describe the billiard dynamics of each disk within its cell (denote wall collision rate by ν_{wall,ε})

 the third one: the interaction of neighboring disks provides the energy transfer (denote binary collision rate by ν_{bin,ε})

Intro 0000	GG model ○○○●○	Step 1 00000000	. Step2 0000000
Scale sep	aration		

Gaspard-Gilbert '08. '09: Scale separation at

 $\varepsilon \searrow 0$, i.e. $\nu_{\mathrm{wall},\varepsilon} (\sim \nu_{\mathit{wall},\mathit{crit}} > 0) \gg \nu_{\mathrm{bin},\varepsilon} \to 0$

• they derive a master equation for the density $P_N(E_1, ..., E_N; t)$ $(E_j = v_j^2 : 1 \le j \le N)$

2 HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$ (??, but Sasada, ms in progress)

2011, Cuernavaca: Derivation of diffusion/superdiffusion for mechanical models. Henryk Larralde: Why?2013, B. Fernandez: True understanding

2011, S. Olla: GG's derivation of HDL uses an incorrect symmetry argument

2013, M. Sasada: correction, based on Green-Kubo (still heuristic)

Keller-Liverani, CMP, 2009: rare interaction limit. CML, i. e. interval maps **coupled by collisions**. Result: Uniqueness of SRB and exponential space-time corr. decay.

Dolgopyat-Liverani, CMP, 2011: weak interaction limit. Mesoscopic equ. is a system of interacting stochastic differential equ.'s.

Dolgopyat-Nándori (in progress): Heat equ. from deterministic dynamics BUT with stochastic bry conditions corresponding to different temperatures

Li Yau-LS Young (in progress): stochastic dynamics in slab w. different bry temperatures. Task: definition of local temperature!?

D ·			
		00000000	
Intro	GG model	Step 1	Step2

Dynamical approach for step 1

By Hirata-Saussol-Vaienti, CMP, 1999 (also Collet-Eckmann, Springer, 2006; Chazottes-Collet, EThDS, 2013): *If*

- a dynamical system (M, T, μ) is mixing in a controlled way (e. g. α-mixing)
- and A_ε is a sequence of nice subsets (to avoid e. g. neighborhoods of periodic points) with lim_{ε→0} μ(A_ε) = 0

then the successive entrance times of the dynamics into A_{ε} form a Poisson process on the time scale of $\mu(A_{\varepsilon})^{-1}$.

For simplicity let N = 2 with free boundary conditions along x-axis. The model is isomorphic to a 4D semi-dispersing billiard. It is K-mixing, but no mixing rate is known. (Bálint-Tóth, '08 is for dispersing billiards, only, and, moreover, it is hypothetical).

Conjecture for 2-disk chain, with IP Tóth

N = 2, free boundary along x-axis. Dynamics: $(\varepsilon = \rho_m - \rho_{crit})$ $(M_{\varepsilon} = \{q_1, v_1; q_2, v_2 | dist(q_1, q_2) \ge 2\rho_m, v_1^2 + v_2^2 = 1\}), S^{\mathbb{R}}, \mu_{\varepsilon}).$ Denote by $0 < \tau_{1,\varepsilon} < \tau_{2,\varepsilon} < \ldots$ successive binary collision times of the two disks. Then, as $\varepsilon \to 0$

- $E_1(\nu_{\text{bin},\varepsilon}t), E_2(\nu_{\text{bin},\varepsilon}t)$ converges to a jump Markov process on the state space $E_1 + E_2 = 1$ where $E_j(t) = \frac{1}{2}v_j^2(t); j = 1, 2$
- the transition kernel $k(E_1^+|E_1^-)$ is calculated by verifying Boltzmann's 'microscopic chaos' property (cf. scattering cross section)

Note: $\nu_{\mathrm{bin},\varepsilon} \sim \mathrm{const.}\varepsilon^3$.

Conjecture for 2-disk chain, with IP Tóth

N = 2, free boundary along x-axis. Dynamics: $(\varepsilon = \rho_m - \rho_{crit})$ $(M_{\varepsilon} = \{q_1, v_1; q_2, v_2 | dist(q_1, q_2) \ge 2\rho_m, v_1^2 + v_2^2 = 1\}), S^{\mathbb{R}}, \mu_{\varepsilon}).$ Denote by $0 < \tau_{1,\varepsilon} < \tau_{2,\varepsilon} < \ldots$ successive binary collision times of the two disks. Then, as $\varepsilon \to 0$

- $E_1(\nu_{\text{bin},\varepsilon}t), E_2(\nu_{\text{bin},\varepsilon}t)$ converges to a jump Markov process on the state space $E_1 + E_2 = 1$ where $E_j(t) = \frac{1}{2}v_j^2(t); j = 1, 2$
- the transition kernel $k(E_1^+|E_1^-)$ is calculated by verifying Boltzmann's 'microscopic chaos' property (cf. scattering cross section)

Note: $\nu_{\text{bin},\varepsilon} \sim \text{const.}\varepsilon^3$.

Intro	GG model	Step 1	Step2
0000	00000	0000000	0000000
Envisione	ed proof		

- since binary collisions are rare, most of the time the two disks evolve independently
- between two binary collisions with an overwhelming probability there is averaging in each of the in-cell, 2D billiard dynamics
- for these typically long time intervals it is natural to apply Chernov-Dolgopyat averaging
- for that purpose
 - one checks that for an incoming proper family of stable pairs, so is the outgoing family ???
 - one applies martingale approximation for jump processes (á la Ethier-Kurtz)

Intro	GG model	Step 1	Step2
	00000	00000000	0000000
Paradigm:	in-cell dynam	nics is billiard in cpct	

constant negative curvature

P Bálint-P Nándori-D. Sz.-T. Tasnády-IP Tóth; in progress Geodesics in Poincaré model of hyperbolic geometry

Intro 0000		GG model			Step 1		Step2	
					00000000			

Hyperbolic "octagonal tori"

Phase space: dim M = 7. Scatterers 16 boundaries, + 1 "cylinder" Goal: Mimic the geometry of GG model.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

P Bálint-P Nándori-D. Sz.-T. Tasnády-IP Tóth, 2013

For a reasonable set of $0 < \rho_{cr} < \rho_m$ the billiard model is ergodic and K-mixing. Tools:

- (un)stable invariant manifolds of the billiard in the octagon with rectangular geodesic edges are (un)stable invariant manifolds of the non-compact model reflected through the edges of the octagon
- Chernov-Sinai, 1987 type local ergodicity theorem in the form of Liverani-Wojtkowski, 1995
- Krámli-Simányi-Sz., 1989: method for semi-dispersing billiards

Second fundamental form of the superficies

Skew cylinder: superficies set (i. e. generator in Euclidean geometry): $A = \{(x, y) | d(x, y) = 2\rho_m\}$ Notation:

 $\mathbf{n} =$ collision unit normal pointing to the right

 $\mathbf{t} =$ collision unit tangent (**n** rotated with angle $\pi/2$) Local orthogonal "basis":

$$N = \begin{pmatrix} -\mathbf{n} \\ \mathbf{n} \end{pmatrix}$$
 $T_1 = \begin{pmatrix} \mathbf{n} \\ \mathbf{n} \end{pmatrix}$ $T_2 = \begin{pmatrix} \mathbf{t} \\ \mathbf{t} \end{pmatrix}$ $T_3 = \begin{pmatrix} \mathbf{t} \\ -\mathbf{t} \end{pmatrix}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Eigenvalues: 0, $\tanh \rho_m$, $\coth \rho_m$

Intro		GG model		Step 1	Step2
				000000000	
D .	•		DUU		• •

Dimension reduction: Billiard coupled to a piston

Collision rule:
$$v_x^+ = v^-, v^+ = v_x^-, v_y^+ = v_y^-$$
.

 $(q_x, q_y) \in Q,$ $q \in [-\varepsilon, L - \varepsilon]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

990

Intro	GG model	Step 1	Step2
0000	00000	00000000	0000000

Transition kernel

$$k(E'_{L}|E_{L}) \sim \varepsilon^{2} \frac{\tan \beta}{2\pi L|Q|} \frac{\sqrt{1 - \min\{E_{L}, E'_{L}\}}}{\sqrt{1 - E'_{L}}\sqrt{E_{L} + E'_{L} - 1}} \mathbb{1}_{\{E_{L} + E'_{L} > 1\}}$$

thus for the rate $\Lambda(E_L) = \int_0^1 k(e|E_L) de$ one has $e^{-2}\Lambda(E_L) =$

$$= \begin{cases} \frac{\tan\beta}{L|Q|} \sqrt{1-E_L} & \text{if } E_L < 1/2, \\ \frac{\tan\beta}{L|Q|} \left[\sqrt{2E_L - 1} + \frac{\sqrt{1-E_L}}{2} \left(\frac{\pi}{2} - \arcsin\left(3 - \frac{2}{E_L}\right) \right) \right] & \text{if } E_L \ge 1/2. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step 2: A (n	nesoscopic)	stochastic model of e	nergies
			000000
Intro	GG model	Step 1	Step2

Grigo-Khanin-Sz. Nonlinearity, 2012. State space: $x = (x_1, ..., x_N) \in \mathbb{R}^N_+$ Generator \mathcal{L} of the continuous time Markov jump process X(t)(given on \mathbb{R}^N_+) acting on bounded functions $A : \mathbb{R}^N_+ \to \mathbb{R}$ is

$$\mathcal{L}A(x) = \sum_{i=1}^{N-1} \Lambda(x_i, x_{i+1}) \int P(x_i, x_{i+1}; d\alpha) \left[A(T_{i,\alpha}x) - A(x) \right]$$

where $P(x_i, x_{i+1}; d\alpha)$ is a probability measure on [0, 1]. The maps $T_{i,\alpha}$, modelling energy exchange between the neighboring sites *i* and *i* + 1, are defined by

$$T_{i,\alpha}(x_i) = \alpha(x_i + x_{i+1})$$

$$T_{i,\alpha}(x_{i+1}) = (1 - \alpha)(x_i + x_{i+1})$$

Intro	GG model	Step 1	Step2
			000000
Romarks			

• Total energy is invariant, i. e.

$$\mathcal{S}_{\epsilon,N} = \left\{ x \in \mathbb{R}^N_+ | \ \sum_{i=1}^N rac{1}{N} x_i = \epsilon
ight\}.$$

is invariant wrt dynamics;

- Standing assumptions:
 - 1 for any E, E', the kernel $P(E, E', d\alpha)$
 - **1** is symmetric wrt 1/2 ;
 - 2 is never equal to $\frac{1}{2}(\delta_0 + \delta_1)$ (i. e. $\{E_1^+, E_2^+\} \neq \{E_1, E_2\}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

2 plus an appropriate condition for Λ .

Intro	GG model		Step 1		Step2	
					0000	
						-

Mesoscopic generator in the GG model, case d = 3

$$\Lambda(E_1, E_2) = \Lambda_s(E_1 + E_2) \Lambda_r(\frac{E_1}{E_1 + E_2})$$

(factorization property!) where

$$\underline{\Lambda_{s}(s) = \sqrt{s}} \qquad \qquad \Lambda_{r}(\beta) = \frac{2\pi}{6} \ \frac{\frac{1}{2} + \beta \vee (1 - \beta)}{\sqrt{\beta \vee (1 - \beta)}}$$

and

$$P(x_1, x_2; d\alpha) = P(\frac{x_1}{x_1 + x_2}; d\alpha) = P(\beta; d\alpha)$$

with $\beta = \frac{x_1}{x_1 + x_2}$ (simple dependence!), where

$$rac{P(eta; dlpha)}{dlpha} = rac{3}{2} \, rac{1 \wedge \sqrt{rac{lpha \wedge (1-lpha)}{eta \wedge (1-eta)}}}{rac{1}{rac{1}{2} + eta ee (1-eta)}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Limiting	host ogu	in CC model	
			0000000
Intro	GG mode	I Step 1	Step2

In the limit, as $N \to \infty$ and $\xi = i/N$, $t = N^2 \tau$, the empirical process

 $\sum_{i=1}^{N} \frac{1}{N} \,\delta_{\mathsf{X}_{i}(t)}$

should converge to a process with density T(x, t) solving

$$\frac{\partial T(x,t)}{\partial t} = \text{const.} \nabla \left[\sqrt{T(x,t)} \nabla T(x,t) \right]$$

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Main result for GG

Theorem (G-Kh-Sz, 12)

If $\Lambda_s(s)$ is replaced by any non-negative continuous function, which is bounded away from zero, then, for any N and ϵ ,

- For $d \geq 2$,
 - The product measure μ(dx) = ν(dx₁) ··· ν(dx_N) with ν(dx₁) = Γ(^d/₂ − 1) is the unique non-degenerate reversible product measure for X(t).
 - **2** On every $S_{\epsilon,N}$ there exists a unique stationary distribution $\pi_{\epsilon,N}$. This measure is obtained by conditioning $\mu(dx)$.
- **2** For $d \geq 3$, the spectrum $\sigma(\mathcal{L})$ of the generator \mathcal{L} acting on $L^2_{\pi_{\epsilon,N}}$ satisfies

$$\sigma(\mathcal{L}) \subset \left(-\infty, -C \sin^2\left[\frac{\pi}{N+2}\right]\right] \cup \{0\}$$

for some constant C, which may depend on the choice of Λ_s .

Sasada's ga	p bd. invited t	alk at ICMP12	
0000	00000	00000000	0000000
Intro	GG model	Sten 1	Sten2

Assume that the rate function Λ factorizes and satisfies $\Lambda(a, b) \geq \Lambda^*(a + b)^m$ for some $\Lambda^* > 0$ and $m \geq 0$. (cf. porous medium equ.) Denote the spectral gap for the *N*-chain by $\gamma^{(m)}(\varepsilon, N)$ wrt reversible measure $\bigotimes_1^N \Gamma(g)$ conditioned to $\mathcal{S}_{\epsilon,N}$ ($g = \frac{d}{2} - 1$ from before).

Theorem (Sasada: arXiv:1305.4066)

There exists a positive constant C depending only on Λ^* , m and g such that $\forall \varepsilon > 0$ and $N \ge 2$

$$\gamma^{(m)}(\varepsilon, N) \ge C \varepsilon^m \frac{1}{N^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Cf. Kac' model for heat exchange and Boltzmann equation

Intro	GG model	Step 1	Step2
			0000000

THANKS